Martin Escardo, 24-26 October 2023. A type is called rigid if its only automorphism is the identity. In HoTT/UF, we would instead say that its type of automorphisms is contractible. The type Ξ© is not rigid in boolean toposes, because in such toposes it has precisely two automorphisms (the identity and negation). But, in any topos, if there is an automorphism of Ξ© different from the identity, then the topos is boolean. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.ClassicalLogic open import UF.Embeddings open import UF.Equiv hiding (_β _) open import UF.Equiv-FunExt open import UF.FunExt open import UF.Subsingletons open import UF.SubtypeClassifier hiding (Ξ©) open import UF.SubtypeClassifier-Properties module Higgs.Rigidity {π€ : Universe} (fe : Fun-Ext) (pe : propext π€) where open import Higgs.InvolutionTheorem fe pe \end{code} From the existence of certain automorphisms of Ξ©, we conclude that excluded middle holds. \begin{code} Ξ©-automorphism-that-maps-β€-to-β₯-gives-EM : (Ξ£ π κ Aut Ξ© , β π β β€ οΌ β₯) β EM π€ Ξ©-automorphism-that-maps-β€-to-β₯-gives-EM ((f , f-is-equiv) , e) = II where f-is-involutive : involutive f f-is-involutive = automorphisms-of-Ξ©-are-involutive f f-is-equiv I : (P : π€ Μ ) β is-prop P β Ξ£ Q κ π€ Μ , (P β Β¬ Q) I P P-is-prop = f p holds , g , h where p : Ξ© p = (P , P-is-prop) g : P β Β¬ (f p holds) g p-holds = equal-β₯-gives-fails (f p) (f p οΌβ¨ ap f (holds-gives-equal-β€ pe fe p p-holds) β© f β€ οΌβ¨ e β© β₯ β) h : Β¬ (f p holds) β P h Ξ½ = equal-β€-gives-holds p (p οΌβ¨ (f-is-involutive p)β»ΒΉ β© f (f p) οΌβ¨ ap f (fails-gives-equal-β₯ pe fe (f p) Ξ½) β© f β₯ οΌβ¨ ap f (e β»ΒΉ) β© f (f β€) οΌβ¨ f-is-involutive β€ β© β€ β) II : EM π€ II = all-props-negative-gives-EM fe I Ξ©-automorphism-swap-β : (π : Aut Ξ©) β {p q : Ξ©} β (β π β p οΌ q) β (β π β q οΌ p) Ξ©-automorphism-swap-β π {p} {q} = involution-swap-β β π β (automorphisms-of-Ξ©-are-involutive β π β β π β-is-equiv) (Ξ©-is-set fe pe) \end{code} A stronger version of the following is proved below. \begin{code} Ξ©-automorphism-apart-from-id-gives-EM : (Ξ£ π κ Aut Ξ© , Ξ£ pβ κ Ξ© , β π β pβ β pβ) β EM π€ Ξ©-automorphism-apart-from-id-gives-EM (π@(f , f-is-equiv) , pβ , Ξ½) = VIII where I : f β€ β β€ I e = VI where II : pβ β β€ II eβ = Ξ½ II' where II' : f pβ οΌ pβ II' = transportβ»ΒΉ (Ξ» - β f - οΌ -) eβ e III : pβ οΌ β₯ III = different-from-β€-gives-equal-β₯ fe pe pβ II IV : f β₯ β β₯ IV eβ = Ξ½ IV' where IV' : f pβ οΌ pβ IV' = transportβ»ΒΉ (Ξ» - β f - οΌ -) III eβ V : f β₯ β β€ V eβ = β₯-is-not-β€ (β₯ οΌβ¨ (β Ξ©-automorphism-swap-β π β eβ)β»ΒΉ β© f β€ οΌβ¨ e β© β€ β) VI : π VI = no-truth-values-other-than-β₯-or-β€ fe pe (f β₯ , IV , V) VII : f β€ οΌ β₯ VII = different-from-β€-gives-equal-β₯ fe pe (f β€) I VIII : EM π€ VIII = Ξ©-automorphism-that-maps-β€-to-β₯-gives-EM (π , VII) \end{code} Notice that we can replace "Ξ£" by "β" in the above propositions, to get the same conclusion EM π€, because the type EM π€ is a proposition. Notice also that the converses of the above propositions hold. We show that there can't be any automorphism of Ξ© distinct from the identity unless excluded middle holds. The fact eval-at-β€-is-lc stated and proved below, which is our main lemma, is attributed to Denis Higgs in the literature [1] [2], without any explicit citation I could find, with diagrammatic proofs in topos theory rather than proofs in the internal language of a topos. Our internal proofs don't necessarily follow the external diagrammatic proofs. [1] Peter T. Johnstone. Automorphisms of Ξ©. Algebra Universalis, 9 (1979) 1-7. https://doi.org/10.1007/BF02488012 [2] Peter Freyd. Choice and well-ordering. Annals of Pure and Applied Logic 35 (1987) 149-166. https://doi.org/10.1016/0168-0072(87)90060-1 https://core.ac.uk/download/pdf/81927529.pdf \begin{code} private fe' : FunExt fe' π₯ π¦ = fe {π₯} {π¦} eval-at-β€ : Aut Ξ© β Ξ© eval-at-β€ π = β π β β€ eval-at-β€-is-lc : left-cancellable eval-at-β€ eval-at-β€-is-lc {π@(f , _)} {π@(g , _)} e = III where have-e : f β€ οΌ g β€ have-e = e I : (p : Ξ©) β (f p οΌ β€) β (g p οΌ β€) I p = (f p οΌ β€) ββ¨ Ξ©-automorphism-swap-β π β© (f β€ οΌ p) ββ¨ transport-β (_οΌ p) e β© (g β€ οΌ p) ββ¨ Ξ©-automorphism-swap-β π β© (g p οΌ β€) β II : f βΌ g II p = Ξ©-ext' pe fe (I p) III : π οΌ π III = to-β-οΌ fe II eval-at-β€-is-embedding : is-embedding eval-at-β€ eval-at-β€-is-embedding = lc-maps-into-sets-are-embeddings eval-at-β€ eval-at-β€-is-lc (Ξ©-is-set fe pe) \end{code} From this we conclude that there can't be any automorphism of Ξ© distinct from the identity unless excluded middle holds. I don't think this has been observed before in the literature, but it may have been observed in the folklore. \begin{code} Ξ©-automorphism-distinct-from-ππ-gives-EM : (Ξ£ π κ Aut Ξ© , π β ππ) β EM π€ Ξ©-automorphism-distinct-from-ππ-gives-EM (π , Ξ½) = IV where f : Ξ© β Ξ© f = β π β I : f β€ οΌ β€ β π οΌ ππ I = eval-at-β€-is-lc {π} {ππ} II : f β€ β β€ II = contrapositive I Ξ½ III : f β€ οΌ β₯ III = different-from-β€-gives-equal-β₯ fe pe (f β€) II IV : EM π€ IV = Ξ©-automorphism-that-maps-β€-to-β₯-gives-EM (π , III) \end{code} It follows that the type Ξ£ f κ Aut Ξ© , f β id is a proposition, constructively. In boolean toposes it is a singleton, in non-boolean toposes it is empty, and in all toposes it is a subsingleton. This is because from any hypothetical element (f , Ξ½) of this type we conclude that excluded middle holds, and hence Ξ© β π, and therefore f is negation. So this is a constructive proof in which we deduce excluded middle as an intermediate step. And once we conclude that this type is a proposition, we see that it is equivalent to the type EM π€, which is also a proposition, as these two propositions imply each other: (Ξ£ f κ Aut Ξ© , f β id) β EM π€ and hence they are equal if we further assume propositional extensionality (which follows from univalence). TODO. Write down this argument in Agda.