Martin Escardo, Jun 7 2013.

We use Dan Licata's trick 
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
to implement hpropositional truncation so that the elimination-rule equations hold definitionally.

\begin{code}

{-# OPTIONS --without-K #-}

module hprop-truncation where

open import tiny-library

\end{code}

We implement the hpropositional truncation of ∥ X ∥ as X itself, or
rather its isomorphic copy ∥ X ∥', which is kept private to the
module:

\begin{code}

private
 data ∥_∥' (X : Set) : Set where
   ∣_∣' : X   X ∥'

∥_∥ : Set  Set
∥_∥ = ∥_∥'

postulate truncation-path : {X : Set}  hprop  X 

∣_∣ : {X : Set}  X   X 
∣_∣ = ∣_∣'

truncation-ind : {X : Set} {P :  X   Set}  ((s :  X )  hprop(P s))  ((x : X)  P  x )
                (s :  X )  P s
truncation-ind _ f  x ∣' = f x

truncation-rec : {X P : Set}  hprop P  (X  P)   X   P
truncation-rec _ f  x ∣' = f x

\end{code}

The crucial point is that the above two elimination rules hold
definitionally. Because of the postulate, we lose canonicity.