Chuangjie Xu, 2012

\begin{code}

module CSpace-interpretation-of-T where

open import Mini-library
open import ConsHeadTail
open import Setoid
open import Space
open import Space-exponential
open import Space-product
open import Space-coproduct
open import Space-discrete
open import Continuous-combinator
open import System-T


space : Ty  Space
space  = ⒈Space
space  = ₂Space
space  = ℕSpace
space (A  B) = (space A)  (space B)
space (A  B) = (space A)  (space B)
space (A  B) = (space A)  (space B)


C⟦_⟧ : {A : Ty}  Tm A  Ū (space A)
C⟦                  = 
C⟦ Unit {A}          = continuous-unit {space A}
C⟦                  = 
C⟦                  = 
C⟦ If {A}            = continuous-if {space A}
C⟦ Zero              = 0
C⟦ Succ              = continuous-succ
C⟦ Rec {A}           = continuous-rec {space A}
C⟦ K {A} {B}         = continuous-k {space A} {space B}
C⟦ S {A} {B} {C}     = continuous-s {space A} {space B} {space C}
C⟦ t · u             = π₀ (π₀ C⟦ t ) C⟦ u 
C⟦ t ˣ u             = (C⟦ t  , C⟦ u )
C⟦ Prj₀ {A} {B}      = continuous-π₀ {space A} {space B}
C⟦ Prj₁ {A} {B}      = continuous-π₁ {space A} {space B}
C⟦ Inj₀ {A} {B}      = continuous-in₀ {space A} {space B}
C⟦ Inj₁ {A} {B}      = continuous-in₁ {space A} {space B}
C⟦ Case {A} {B} {C}  = continuous-case {space A} {space B} {space C}

\end{code}