\begin{code}
module Space where
open import Mini-library
open import Cons
open import Extensionality
\end{code}
\begin{code}
C : Subset(₂ℕ → ₂ℕ)
C = uniformly-continuous-₂ℕ
\end{code}
\begin{code}
coverage-axiom : ∀(m : ℕ) → ∀(t : ₂ℕ → ₂ℕ) → t ∈ C →
∃ \(n : ℕ) → ∀(s : ₂Fin n) →
∃ \(s' : ₂Fin m) → ∃ \(t' : ₂ℕ → ₂ℕ) →
(t' ∈ C) ∧ (t ∘ (cons s) ≡ (cons s') ∘ t')
coverage-axiom m t uct = ∃-intro n prf
where
n : ℕ
n = ∃-witness (uct m)
prf : ∀(s : ₂Fin n) → ∃ \(s' : ₂Fin m) → ∃ \(t' : ₂ℕ → ₂ℕ) →
(t' ∈ C) ∧ (t ∘ (cons s) ≡ (cons s') ∘ t')
prf s = ∃-intro s' (∃-intro t' (∧-intro c₀ c₁))
where
s' : ₂Fin m
s' = take m (t (cons s (λ i → ₀)))
t' : ₂ℕ → ₂ℕ
t' α = drop m (t (cons s α))
c₀ : t' ∈ C
c₀ k = ∃-intro l prf₀
where
ucts : uniformly-continuous-₂ℕ (t ∘ (cons s))
ucts = Lemma[∘-UC] t uct (cons s) (Lemma[cons-UC] s)
l : ℕ
l = ∃-witness (ucts (k + m))
eq : ∀(α : ₂ℕ) → ∀(i : ℕ) → t' α i ≡ t (cons s α) (i + m)
eq α i = Lemma[cons-drop] m (t (cons s α)) i
prf₀ : ∀(α β : ₂ℕ) → α ≣ l ≣ β → ∀(i : ℕ) → i < k → t' α i ≡ t' β i
prf₀ α β awl i i<k = subst {₂} {λ b → t' α i ≡ b}
(sym(eq β i)) claim₂
where
claim₀ : t (cons s α) ≣ k + m ≣ t (cons s β)
claim₀ = ∃-elim (ucts (k + m)) α β awl
claim₁ : t (cons s α) (i + m) ≡ t (cons s β) (i + m)
claim₁ = claim₀ (i + m) (Lemma[a<b→a+c<b+c] {i} {k} {m} i<k)
claim₂ : t' α i ≡ t (cons s β) (i + m)
claim₂ = subst {₂} {λ b → b ≡ t (cons s β) (i + m)}
(sym(eq α i)) claim₁
c₁ : t ∘ (cons s) ≡ (cons s') ∘ t'
c₁ = extensionality (λ α → (extensionality (λ i → (prf₁ α i))))
where
prf₁ : ∀(α : ₂ℕ) → ∀(i : ℕ) → t (cons s α) i ≡ cons s' (t' α) i
prf₁ α i = subst {₂Fin m} {λ x → t (cons s α) i ≡ cons x (t' α) i} claim₂ claim₀
where
claim₀ : t (cons s α) i ≡ cons (take m (t (cons s α))) (t' α) i
claim₀ = sym (Lemma[cons-take-drop] m (t (cons s α)) i)
claim₁ : t (cons s α) ≣ m ≣ t (cons s 0̄)
claim₁ = ∃-elim (uct m) (cons s α) (cons s 0̄) (Lemma[cons-≣_≣] s α 0̄)
claim₂ : take m (t (cons s α)) ≡ s'
claim₂ = Lemma[≣_≣-take] m (t (cons s α)) (t (cons s 0̄)) claim₁
\end{code}
\begin{code}
probe-axioms : (X : Set) → Subset(₂ℕ → X) → Set
probe-axioms X P =
(∀(p : ₂ℕ → X) → constant p → p ∈ P)
∧ (∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → X) → p ∈ P → p ∘ t ∈ P)
∧ (∀(p : ₂ℕ → X) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P)
TopologyOn : Set → Set₁
TopologyOn X = Σ \(P : Subset(₂ℕ → X)) → probe-axioms X P
Space : Set₁
Space = Σ \(X : Set) → TopologyOn X
U : Space → Set
U = π₀
Probe : (X : Space) → Subset(₂ℕ → U X)
Probe X = π₀ (π₁ X)
cond₀ : (X : Space) →
∀(p : ₂ℕ → U X) → constant p → p ∈ Probe X
cond₀ X = π₀ (π₁ (π₁ X))
cond₁ : (X : Space) →
∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → U X) → p ∈ Probe X →
p ∘ t ∈ Probe X
cond₁ X = π₀ (π₁ (π₁ (π₁ X)))
cond₂ : (X : Space) →
∀(p : ₂ℕ → U X) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → p ∘ (cons s) ∈ Probe X) →
p ∈ Probe X
cond₂ X = π₁ (π₁ (π₁ (π₁ X)))
\end{code}
\begin{code}
continuous : {X Y : Space} → (U X → U Y) → Set
continuous {X} {Y} f = ∀ p → p ∈ Probe X → f ∘ p ∈ Probe Y
Map : Space → Space → Set
Map X Y = Σ \(f : U X → U Y) → continuous {X} {Y} f
id-is-continuous : ∀{X : Space} → continuous {X} {X} id
id-is-continuous p pinP = pinP
∘-preserves-continuity : {X Y Z : Space} →
∀(f : U X → U Y) → continuous {X} {Y} f →
∀(g : U Y → U Z) → continuous {Y} {Z} g →
continuous {X} {Z} (g ∘ f)
∘-preserves-continuity f fcts g gcts p pinP = gcts(f ∘ p)(fcts p pinP)
∅Space : Space
∅Space = ∅ , P , c₀ , c₁ , c₂
where
P : Subset (₂ℕ → ∅)
P p = ∅
c₀ : ∀(p : ₂ℕ → ∅) → constant p → p ∈ P
c₀ p _ = p 0̄
c₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → ∅) → p ∈ P → p ∘ t ∈ P
c₁ _ _ p _ = p 0̄
c₂ : ∀(p : ₂ℕ → ∅) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P
c₂ p _ = p 0̄
⒈Space : Space
⒈Space = ⒈ , P , c₀ , c₁ , c₂
where
P : Subset (₂ℕ → ⒈)
P p = ⒈
c₀ : ∀(p : ₂ℕ → ⒈) → constant p → p ∈ P
c₀ _ _ = ⋆
c₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → ⒈) → p ∈ P → p ∘ t ∈ P
c₁ _ _ _ _ = ⋆
c₂ : ∀(p : ₂ℕ → ⒈) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P
c₂ _ _ = ⋆
\end{code}