Fredrik Nordvall Forsberg, 9 October 2025 We characterise the initial segments of ω as ω ↓ n = Fin n (as expected). Hence, in particular, we see that ω = sup (λ n → Fin n), since α = sup (λ (a : α) → α ↓ a + 1) for all ordinals α, and Fin n + 1 = Fin (n + 1). \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.Univalence open import UF.PropTrunc open import UF.Size module Ordinals.Omega (ua : Univalence) (pt : propositional-truncations-exist) (sr : Set-Replacement pt) where open import Fin.Type open import Fin.Variation open import MLTT.Spartan open import Naturals.Order open import Notation.Order open import UF.Base open import UF.Equiv open import UF.FunExt open import UF.UA-FunExt private fe : FunExt fe = Univalence-gives-FunExt ua fe' : Fun-Ext fe' {𝓤} {𝓥} = fe 𝓤 𝓥 open import Ordinals.Arithmetic fe open import Ordinals.AdditionProperties ua open import Ordinals.Equivalence open import Ordinals.Fin open import Ordinals.Maps open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.OrdinalOfOrdinalsSuprema ua open PropositionalTruncation pt open suprema pt sr ω-↓ : (n : ℕ) → ω ↓ n = Fin-ordinal n ω-↓ n = eqtoidₒ (ua _) fe' (ω ↓ n) (Fin-ordinal n) (f , f-is-order-equiv) where f : Σ k ꞉ ℕ , k < n → Fin n f = Fin-unprime n f-order-preserving : is-order-preserving (ω ↓ n) (Fin-ordinal n) f f-order-preserving k k' = transport₂⁻¹ (λ z w → pr₁ z < pr₁ w) (ηFin n k) (ηFin n k') f-order-reflecting : is-order-reflecting (ω ↓ n) (Fin-ordinal n) f f-order-reflecting m m' = transport₂ (λ z w → pr₁ z < pr₁ w) (ηFin n m) (ηFin n m') f-is-order-equiv : is-order-equiv (ω ↓ n) (Fin-ordinal n) f f-is-order-equiv = order-preserving-reflecting-equivs-are-order-equivs (ω ↓ n) (Fin-ordinal n) f (inverses-are-equivs (Fin-prime n) (Fin-prime-is-equiv n)) f-order-preserving f-order-reflecting ω-is-sup-of-Fin : ω = sup (λ (n : ℕ) → Fin-ordinal n) ω-is-sup-of-Fin = ω =⟨ I ⟩ sup (λ (n : ℕ) → (ω ↓ n) +ₒ 𝟙ₒ) =⟨ II ⟩ sup (λ (n : ℕ) → Fin-ordinal (succ n)) =⟨ III ⟩ sup (λ (n : ℕ) → Fin-ordinal n) ∎ where I = supremum-of-successors-of-initial-segments pt sr ω II = ap sup (dfunext fe' (λ n → ap (_+ₒ 𝟙ₒ) (ω-↓ n) ∙ Fin-ordinal-succ' ua n ⁻¹)) III = ⊴-antisym _ _ (sup-composition-⊴ succ Fin-ordinal) (sup-monotone Fin-ordinal (Fin-ordinal ∘ succ) III') where III' : (m : ℕ) → Fin-ordinal m ⊴ Fin-ordinal (succ m) III' m = Fin-ordinal-preserves-≤ ua (≤-succ m) \end{code}