Martin Escardo, Paulo Oliva, 2023
A J monad transformer that give a monad T and a type R produces a new
monad JT X := (X → T R) → T X.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan hiding (J)
module MonadOnTypes.J-transf where
open import UF.FunExt
open import MonadOnTypes.Monad
𝕁-transf : Fun-Ext → Monad → Type → Monad
𝕁-transf fe 𝓣 R = monad JT ηᴶᵀ extᴶᵀ extᴶᵀ-η unitᴶᵀ assocᴶᵀ
where
T = functor 𝓣
JT : Type → Type
JT X = (X → T R) → T X
ηᴶᵀ : {X : Type} → X → JT X
ηᴶᵀ = λ x p → η 𝓣 x
extᴶᵀ : {X Y : Type} → (X → JT Y) → JT X → JT Y
extᴶᵀ f ε p = ext 𝓣 (λ x → f x p) (ε (λ x → ext 𝓣 p (f x p)))
extᴶᵀ-η : {X : Type} → extᴶᵀ (ηᴶᵀ {X}) ∼ 𝑖𝑑 (JT X)
extᴶᵀ-η ε = dfunext fe λ p →
ext 𝓣 (η 𝓣) (ε (λ x → ext 𝓣 p (η 𝓣 x))) =⟨ ext-η 𝓣 _ ⟩
ε (λ x → ext 𝓣 p (η 𝓣 x)) =⟨ ap ε (dfunext fe (unit 𝓣 _)) ⟩
ε p ∎
unitᴶᵀ : {X Y : Type} (f : X → JT Y) (x : X) → extᴶᵀ f (ηᴶᵀ x) = f x
unitᴶᵀ f x = dfunext fe (λ p → unit 𝓣 (λ x → f x p) x)
assocᴶᵀ : {X Y Z : Type} (g : Y → JT Z) (f : X → JT Y) (ε : JT X)
→ extᴶᵀ (λ x → extᴶᵀ g (f x)) ε = extᴶᵀ g (extᴶᵀ f ε)
assocᴶᵀ g f ε = dfunext fe γ
where
γ : ∀ p → extᴶᵀ (λ x → extᴶᵀ g (f x)) ε p = extᴶᵀ g (extᴶᵀ f ε) p
γ p =
extᴶᵀ (λ x → extᴶᵀ g (f x)) ε p =⟨ refl ⟩
𝕖 (λ x → 𝕖 𝕘 (𝕗 x)) (ε (λ x → 𝕖 p (𝕖 𝕘 (𝕗 x)))) =⟨ assoc 𝓣 _ _ _ ⟩
𝕖 𝕘 (𝕖 𝕗 (ε (λ x → 𝕖 p (𝕖 𝕘 (𝕗 x))))) =⟨ again-by-assoc ⟩
𝕖 𝕘 (𝕖 𝕗 (ε (λ x → 𝕖 (λ y → 𝕖 p (𝕘 y)) (𝕗 x)))) =⟨ refl ⟩
extᴶᵀ g (extᴶᵀ f ε) p ∎
where
𝕖 = ext 𝓣
𝕘 = λ y → g y p
𝕗 = λ x → f x (λ y → 𝕖 p (𝕘 y))
again-by-assoc = ap (λ - → 𝕖 𝕘 (𝕖 𝕗 (ε -)))
(dfunext fe (λ x → (assoc 𝓣 _ _ _)⁻¹))
𝕁' : Fun-Ext → Type → Monad
𝕁' fe = 𝕁-transf fe 𝕀𝕕
module JT-definitions
(𝓣 : Monad)
(R : Type)
(fe : Fun-Ext)
where
open import MonadOnTypes.K
open T-definitions 𝓣
open K-definitions R
𝕁𝕋 : Monad
𝕁𝕋 = 𝕁-transf fe 𝓣 R
JT : Type → Type
JT = functor 𝕁𝕋
KT : Type → Type
KT X = (X → T R) → R
ηᴶᵀ : {X : Type} → X → JT X
ηᴶᵀ = η 𝕁𝕋
extᴶᵀ : {X Y : Type} → (X → JT Y) → JT X → JT Y
extᴶᵀ = ext 𝕁𝕋
mapᴶᵀ : {X Y : Type} → (X → Y) → JT X → JT Y
mapᴶᵀ = map 𝕁𝕋
_⊗ᴶᵀ_ : {X : Type} {Y : X → Type}
→ JT X
→ ((x : X) → JT (Y x))
→ JT (Σ x ꞉ X , Y x)
_⊗ᴶᵀ_ = _⊗_ 𝕁𝕋
module JT-algebra-definitions
(𝓣 : Monad)
(R : Type)
(𝓐 : Algebra 𝓣 R)
(fe : Fun-Ext)
where
open import MonadOnTypes.K
open T-definitions 𝓣
open K-definitions R
open JT-definitions 𝓣 R fe
open α-definitions 𝓣 R 𝓐
α-overlineᵀ : {X : Type} → JT X → KT X
α-overlineᵀ ε = λ p → α (extᵀ p (ε p))
_α-attainsᵀ_ : {X : Type} → JT X → K X → Type
_α-attainsᵀ_ {X} ε ϕ = (p : X → T R) → α-overlineᵀ ε p = ϕ (α ∘ p)
\end{code}
Is the following variation of α-overlineᵀ useful?
\begin{code}
-α-overlineᵀ : {X : Type} → JT X → K X
-α-overlineᵀ ε = λ p → α (extᵀ (ηᵀ ∘ p) (ε (ηᵀ ∘ p)))
\end{code}