---
title: Thesis Index
author: Ayberk Tosun
date-started: 2024-09-19
---
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan
open import UF.Base
open import UF.FunExt
open import UF.PropTrunc
open import UF.Sets
open import UF.Size
open import UF.Subsingletons
open import UF.SubtypeClassifier
module Locales.ThesisIndex
(pt : propositional-truncations-exist)
(fe : Fun-Ext)
(pe : Prop-Ext)
where
open import Locales.ContinuousMap.FrameHomomorphism-Definition pt fe
open import Locales.Frame pt fe
open import Locales.InitialFrame pt fe
open import Locales.Nucleus pt fe
open import OrderedTypes.SupLattice pt fe hiding (⟨_⟩)
open Locale
\end{code}
\section{Definition of the notion of frame}
\begin{code}
definition∶frame : (𝓤 𝓥 𝓦 : Universe) → (𝓤 ⊔ 𝓥 ⊔ 𝓦) ⁺ ̇
definition∶frame = Frame
lemma∶partial-order-gives-sethood : (X : 𝓤 ̇ )
→ (_≤_ : X → X → Ω 𝓥)
→ is-partial-order X _≤_
→ is-set X
lemma∶partial-order-gives-sethood {𝓤} {𝓥} X _≤_ ϑ =
carrier-of-[ P ]-is-set
where
P : Poset 𝓤 𝓥
P = X , _≤_ , ϑ
\end{code}
\subsection{Local smallness of frames}
\subsection{Primer on predicative lattice theory}
\begin{code}
sup-complete : (𝓤 𝓣 𝓥 : Universe) {A : 𝓤 ̇ }
→ sup-lattice-data 𝓤 𝓣 𝓥 A → 𝓤 ⊔ 𝓣 ⊔ 𝓥 ⁺ ̇
sup-complete = is-sup-lattice
\end{code}
\subsection{Categories of frames and locales}
Given frames `K` and `L`, the type of frame homomorphisms from `K` into `L` is
denoted `K ─f→ L`.
\begin{code}
definition∶frame-homomorphism : Frame 𝓤 𝓥 𝓦 → Frame 𝓤' 𝓥' 𝓦 → 𝓤 ⊔ 𝓦 ⁺ ⊔ 𝓤' ⊔ 𝓥' ̇
definition∶frame-homomorphism =
FrameHomomorphisms._─f→_
\end{code}
\section{Basic examples of locales}
\subsection{The terminal locale}
\begin{code}
example∶terminal-locale : (pe : Prop-Ext) (𝓤 : Universe) → Locale (𝓤 ⁺) 𝓤 𝓤
example∶terminal-locale pe _ = 𝟏Loc pe
\end{code}
\section{Sublocales}
Definition of the notion of nucleus:
\begin{code}
definition∶nucleus : Frame 𝓤 𝓥 𝓦 → 𝓤 ⊔ 𝓥 ̇
definition∶nucleus = Nucleus
\end{code}
The closed nucleus:
\begin{code}
example∶closed-nucleus : (X : Locale 𝓤 𝓥 𝓦) (U : ⟨ 𝒪 X ⟩) → Nucleus (𝒪 X)
example∶closed-nucleus = closed-nucleus
\end{code}
\section{Compactness and the way-below relation}
\subsection{Compact opens}
\subsection{The way-below relation}
\section{Clopens and the well-inside relation}
\subsection{Clopens}
\subsection{The well-inside relation}
\section{Bases}
\subsection{Intensional vs. extensional bases}
\subsection{Weak vs. strong bases}
\subsection{Directification of bases}
\subsection{Examples}
\section{Important classes of locales}
\section{Adjoint Functor Theorem for frames}
\subsection{Construction of Heyting implications}