Martin Escardo, 6th September 2025. We construct two distinct 𝓛-algebra structures on the subtype classifier Ω, with structure maps given by Σ (the free algebra) and Π, where 𝓛 is the lifting monad, also known as the partial map classifier monad. This is just an adaptation of the fact that Σ and Π are 𝓛-structure maps on the universe, already proved in the file Lifting.Algebras, which uses univalence. We could prove that Σ and Π are structure maps on Ω by showing that a subtype of an algebra closed under the structure map is itself an algebra, and apply this to the subtype Ω of the universe. However, we want a proof that doesn't use univalence, so that it makes sense in the internal language of a 1-topos. We use propositional and functional extensionality instead, which are validated in any 1-topos. So notice that not even classically do we have "every algebra is a free algebra". What we do have classically (i.e. in boolean toposes) is that the underlying set of any algebra is isomorphic to the underlying set of a free algebra, that is, it is isomorphic to 𝓛 X for some X. Question. In an arbitrary 1-topos, is it the case that the underlying set of any algebra is isomorphic to 𝓛 X for some X? I very much doubt that this would be the case. In this file we restrict our attention to types that are sets, to really be able to claim that our results belong to the realm of 1-toposes (under stack semantics). [1] Michael A. Shulman. Stack semantics and the comparison of material and structural set theories, 2010. https://arxiv.org/abs/1004.3802 \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt open import UF.Subsingletons module Lifting.TwoAlgebrasOnOmega (𝓣 : Universe) (fe : Fun-Ext) (pe : propext 𝓣) where open import Lifting.Algebras 𝓣 open import UF.Base open import UF.Equiv open import UF.EquivalenceExamples open import UF.Sets open import UF.Subsingletons-FunExt open import UF.SubtypeClassifier renaming (Ω to Ω-of-universe) Ω : 𝓣 ⁺ ̇ Ω = Ω-of-universe 𝓣 private sum : {P : 𝓣 ̇ } → is-prop P → (P → Ω) → Ω sum {P} i φ = (Σ p ꞉ P , φ p holds) , (Σ-is-prop i (λ p → holds-is-prop (φ p))) Σ-algebra-on-Ω : 𝓛-alg Ω Σ-algebra-on-Ω = sum , k , ι where k : (P : Ω) → sum 𝟙-is-prop (λ (_ : 𝟙) → P) = P k P = Ω-extensionality' pe fe 𝟙-lneutral ι : (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) (i : is-prop P) (j : (p : P) → is-prop (Q p)) (φ : Σ Q → Ω) → sum (Σ-is-prop i j) φ = sum i (λ p → sum (j p) (λ q → φ (p , q))) ι P Q i j φ = Ω-extensionality' pe fe Σ-assoc private prod : {P : 𝓣 ̇ } → is-prop P → (P → Ω) → Ω prod {P} i φ = (Π p ꞉ P , φ p holds) , Π-is-prop fe (λ p → holds-is-prop (φ p)) Π-algebra-on-Ω : 𝓛-alg Ω Π-algebra-on-Ω = prod , k , ι where k : (P : Ω) → prod 𝟙-is-prop (λ (_ : 𝟙) → P) = P k P = Ω-extensionality' pe fe (≃-sym (𝟙→ fe)) ι : (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) (i : is-prop P) (j : (p : P) → is-prop (Q p)) (φ : Σ Q → Ω) → prod (Σ-is-prop i j) φ = prod i (λ p → prod (j p) (λ q → φ (p , q))) ι P Q i j φ = Ω-extensionality' pe fe (curry-uncurry' fe fe) Σ-and-Π-disagree : ¬ ( {P : 𝓣 ̇ } (i : is-prop P) (φ : P → Ω) → (Σ p ꞉ P , φ p holds) = (Π p ꞉ P , φ p holds)) Σ-and-Π-disagree a = II where I = 𝟘 ≃⟨ ×𝟘 ⟩ 𝟘 × 𝟘 ≃⟨ idtoeq _ _ (a 𝟘-is-prop λ _ → (𝟘 , 𝟘-is-prop)) ⟩ (𝟘 → 𝟘) ≃⟨ ≃-sym (𝟘→ fe) ⟩ 𝟙 {𝓤₀} ■ II : 𝟘 II = ⌜ I ⌝⁻¹ ⋆ Σ-and-Π-algebra-on-Ω-disagree : Σ-algebra-on-Ω ≠ Π-algebra-on-Ω Σ-and-Π-algebra-on-Ω-disagree e = Σ-and-Π-disagree V where I : (λ {P} → sum {P}) = prod I = ap pr₁ e II : (P : 𝓣 ̇ ) → sum {P} = prod {P} II = implicit-happly I III : (P : 𝓣 ̇ ) (i : is-prop P) → sum {P} i = prod {P} i III P = happly (II P) IV : (P : 𝓣 ̇ ) (i : is-prop P) (φ : P → Ω) → sum {P} i φ = prod {P} i φ IV P i = happly (III P i) V : {P : 𝓣 ̇ } (i : is-prop P) (φ : P → Ω) → (Σ p ꞉ P , φ p holds) = (Π p ꞉ P , φ p holds) V {P} i φ = ap _holds (IV P i φ) \end{code}