Andrew Sneap, 7 February 2021
\begin{code}
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import UF.PropTrunc
open import UF.FunExt
open import UF.Subsingletons
module Field.DedekindReals
(fe : Fun-Ext)
(pt : propositional-truncations-exist)
(pe : Prop-Ext)
where
{-
DedekindRealsField : Field-structure ℝ { 𝓤₀}
DedekindRealsField = ({!!} , {!!} , _♯_) , ℝ-is-set , {!!} , {!!} , {!!} , {!!} , {!!} , (0ℝ , 1ℝ) , ℝ-zero-apart-from-one , {!!} , {!!} , {!!} , {!!}
DedekindRealsOrderedField : Ordered-field-structure { 𝓤₁} { 𝓤₀} { 𝓤₀} ℝ DedekindRealsField
DedekindRealsOrderedField = _<ℝ_ , {!!} , {!!}
DedekindRealsOrderedField' : Ordered-Field 𝓤₁ { 𝓤₀} { 𝓤₀}
DedekindRealsOrderedField' = (ℝ , DedekindRealsField) , DedekindRealsOrderedField
DedekindRealsArchimedeanOrderedField : ArchimedeanOrderedField 𝓤₁
DedekindRealsArchimedeanOrderedField = DedekindRealsOrderedField' , I
where
I : (f : ℚ → ℝ) → (x y : ℝ) → Σ z ꞉ ℚ , x < f z × f z < y
I f x y = {!!}
-}
\end{code}