Martin Escardo, Chuangjie Xu, December 2013
Here we prove the main lemma that
If function extensionality is available, then for any
type family A : ℕ → U such that
(1) A(n) is a proposition for all n,
(2) if A(n) then A(m) is decidable for all i < n,
the truncation ∥ Σ n:ℕ, A(n) ∥ exists, and
∥ Σ n:ℕ, A(n) ∥ → Σ(n:ℕ).A(n).
One example of such a predicate A is
Π α β : ₂ℕ , (α =[n] β → f α = f β)
for any f : ₂ℕ → ℕ and n : ℕ.
\begin{code}
{-# OPTIONS --safe --without-K #-}
module ContinuityAxiom.ExitingTruncations where
open import ContinuityAxiom.Preliminaries
open import MLTT.Plus-Properties
open import MLTT.Spartan
open import UF.Base
open import UF.FunExt
open import UF.Subsingletons
\end{code}
For any P : ℕ → U and n : ℕ, if P(m) is decidable for all m ≤ n, then
(Π m ≤ n, ¬P(m)) + (Σ(m ≤ n). P(m)).
\begin{code}
Lemma[≤-dec-+] : {P : ℕ → 𝓤₀ ̇ }
(n : ℕ)
→ ((m : ℕ) → m ≤ n → is-decidable (P m))
→ (∀ m → m ≤ n → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ n × P m))
Lemma[≤-dec-+] {P} 0 dp = cases c₀ c₁ (dp 0 ≤-zero)
where
c₀ : P 0 → (∀ m → m ≤ 0 → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ 0 × P m))
c₀ p0 = inr (0 , ≤-zero , p0)
c₁ : ¬(P 0) → (∀ m → m ≤ 0 → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ 0 × P m))
c₁ f0 = inl claim
where
claim : ∀ m → m ≤ 0 → ¬(P m)
claim 0 ≤-zero = f0
claim (succ m) ()
Lemma[≤-dec-+] {P} (succ n) dp = cases c₀ c₁ (dp (succ n) ≤-refl)
where
dp' : ∀(m : ℕ) → m ≤ n → is-decidable (P m)
dp' m r = dp m (≤-r-succ r)
c₀ : P(succ n) → (∀ m → m ≤ succ n → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ succ n × P m))
c₀ psn = inr (succ n , ≤-refl , psn)
c₁ : ¬(P(succ n)) → (∀ m → m ≤ succ n → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ succ n × P m))
c₁ fsn = +functor sc₀ sc₁ (Lemma[≤-dec-+] n dp')
where
sc₀ : (∀ m → m ≤ n → ¬(P m)) → ∀ m → m ≤ succ n → ¬(P m)
sc₀ fms m r = cases (fms m) (λ e → transport (λ x → ¬ P x) (e ⁻¹) fsn)
(Lemma[n≤m+1→n≤m+n=m+1] r)
sc₁ : (Σ m ꞉ ℕ , (m ≤ n × P m)) → Σ m ꞉ ℕ , (m ≤ succ n × P m)
sc₁ (m , r , pm) = (m , ≤-r-succ r , pm)
\end{code}
If P(n) implies that P(i) is is-decidable for all i < n,
then we can find the least m such that P(m).
\begin{code}
Σ-min : (ℕ → 𝓤₀ ̇ ) → 𝓤₀ ̇
Σ-min P = Σ n ꞉ ℕ , ((P n) × (∀(n' : ℕ) → P n' → n ≤ n'))
μ : {P : ℕ → 𝓤₀ ̇ }
(n : ℕ)
→ P n
→ (∀ i → i ≤ n → is-decidable (P i))
→ Σ-min \(m : ℕ) → P m
μ {P} = CoV-induction step
where
Q : ℕ → 𝓤₀ ̇
Q n = P n → (∀ i → i ≤ n → is-decidable (P i)) → Σ-min \(m : ℕ) → P m
g : {A : 𝓤₀ ̇ } → A + ¬ A → A → A
g (inl a) _ = a
g (inr f) a = 𝟘-elim (f a)
step : ∀ n → (∀ m → m < n → Q m) → Q n
step 0 f p0 dp = 0 , g (dp 0 ≤-zero) p0 , (λ _ _ → ≤-zero)
step (succ n) f psn dp = cases c₀ c₁ claim
where
dp' : ∀(m : ℕ) → m ≤ n → is-decidable (P m)
dp' m r = dp m (≤-r-succ r)
claim : (∀ m → m ≤ n → ¬(P m)) + (Σ m ꞉ ℕ , (m ≤ n × P m))
claim = Lemma[≤-dec-+] n dp'
c₀ : (∀ m → m ≤ n → ¬(P m)) → Σ-min \(m : ℕ) → P m
c₀ fm = succ n , g (dp (succ n) ≤-refl) psn , min
where
min : ∀ m → P m → succ n ≤ m
min m pm = Lemma[n≰m→m<n] (λ r → fm m r pm)
c₁ : (Σ m ꞉ ℕ , (m ≤ n × P m)) → Σ-min \(m : ℕ) → P m
c₁ (m , r , pm) = f m (≤-succ r) pm dpm
where
dpm : ∀ k → k ≤ m → is-decidable (P k)
dpm k r' = dp k (≤-trans r' (≤-r-succ r))
\end{code}
If A : ℕ → U is a prop-valued predicate such that A(n) implies that
the type A(i) is is-decidable for all i < n, then the truncation
∥ Σ(n:ℕ).A(n) ∥ exists, and ∥ Σ(n:ℕ).A(n) ∥ → Σ(n:ℕ).A(n).
\begin{code}
∥Σ_∥ : (ℕ → 𝓤₀ ̇ ) → 𝓤₀ ̇
∥Σ A ∥ = Σ-min A
∥Σ-∥-is-prop : Fun-Ext
→ (A : ℕ → 𝓤₀ ̇ )
→ (∀ n → is-prop (A n))
→ is-prop ∥Σ A ∥
∥Σ-∥-is-prop fe A hA (n , a , r) (n' , a' , r') = goal
where
claim₀ : n = n'
claim₀ = Lemma[m≤n∧n≤m→m=n] (r n' a') (r' n a)
w : (A n') × (∀ m → A m → n' ≤ m)
w = transport _ claim₀ (a , r)
claim₁ : pr₁ w = a'
claim₁ = hA n' (pr₁ w) a'
claim₂ : ∀(m : ℕ)(am : A m) → pr₂ w m am = r' m am
claim₂ m am = ≤-is-prop (pr₂ w m am) (r' m am)
claim₃ : pr₂ w = r'
claim₃ = dfunext fe (λ m → dfunext fe (claim₂ m))
claim₄ : w = (a' , r')
claim₄ = to-×-= claim₁ claim₃
goal : (n , a , r) = (n' , a' , r')
goal = to-Σ-= (claim₀ , claim₄)
ΣA→∥ΣA∥ : {A : ℕ → 𝓤₀ ̇ }
→ (∀ n → A n → ∀ m → m ≤ n → is-decidable (A m))
→ Σ A
→ ∥Σ A ∥
ΣA→∥ΣA∥ dA (n , a) = μ n a (dA n a)
∥ΣA∥→ΣA : {A : ℕ → 𝓤₀ ̇ }
→ ∥Σ A ∥ → Σ A
∥ΣA∥→ΣA (n , a , _) = (n , a)
∥Σ-∥-elim : {A : ℕ → 𝓤₀ ̇ } {P : 𝓤₀ ̇ }
→ is-prop P
→ (Σ A → P)
→ ∥Σ A ∥ → P
∥Σ-∥-elim _ f (n , a , _) = f (n , a)
\end{code}