Todd Waugh Ambridge, January 2024

# Examples of uniformly continuous searchable closeness spaces

\begin{code}
{-# OPTIONS --without-K --safe #-}

open import MLTT.Spartan
open import UF.FunExt
open import NotionsOfDecidability.Complemented
open import UF.Subsingletons
open import UF.Equiv
open import UF.SubtypeClassifier
open import UF.DiscreteAndSeparated
open import Fin.Bishop

open import TWA.Thesis.Chapter2.Finite
open import TWA.Thesis.Chapter2.Sequences

module TWA.Thesis.Chapter3.SearchableTypes-Examples
 (fe : FunExt) (pe : PropExt) where

open import TWA.Thesis.Chapter3.SearchableTypes fe
open import TWA.Thesis.Chapter3.ClosenessSpaces fe
 hiding (decidable-predicate;decidable-uc-predicate)
open import TWA.Thesis.Chapter3.ClosenessSpaces-Examples fe
open import TWA.Thesis.Chapter3.PredicateEquality fe pe
\end{code}

## Finite uniformly continuously searchable spaces

\begin{code}
finite-csearchable
 : (X : ClosenessSpace 𝓤)
  (f : finite-linear-order  X )
  pointed  X 
  csearchable 𝓦 X
finite-csearchable X f x
 = searchable→csearchable X (finite-searchable f x)
\end{code}

## Disjoint union of uniformly continuously searchable spaces

\begin{code}
+-csearchable : (X : ClosenessSpace 𝓤) (Y : ClosenessSpace 𝓥)
               csearchable 𝓦 X
               csearchable 𝓦 Y
               csearchable 𝓦 (+-ClosenessSpace X Y)
+-csearchable {𝓤} {𝓥} {𝓦} X Y Sx Sy ((p , d) , δ , ϕ)
 = xy₀ (d (inl x₀)) , γ (d (inl x₀))
 where
  px : decidable-uc-predicate 𝓦 X
  px = (p  inl , d  inl) , δ , λ x₁ x₂  ϕ (inl x₁) (inl x₂)
  py : decidable-uc-predicate 𝓦 Y
  py = (p  inr , d  inr) , δ , λ x₁ x₂  ϕ (inr x₁) (inr x₂)
  x₀ :  X 
  x₀ = pr₁ (Sx px)
  γx : (Σ x   X  , (p (inl x) holds))  p (inl x₀) holds
  γx = pr₂ (Sx px)
  y₀ :  Y 
  y₀ = pr₁ (Sy py)
  γy : (Σ y   Y  , (p (inr y) holds))  p (inr y₀) holds
  γy = pr₂ (Sy py)
  xy₀ : is-decidable (p (inl x₀) holds)   X  +  Y  
  xy₀ (inl _) = inl x₀
  xy₀ (inr _) = inr y₀
  γ : (dpx₀ : is-decidable (p (inl x₀) holds))
     ((_ , pxy) : Σ xy   X  +  Y  , p xy holds)
     p (xy₀ dpx₀) holds
  γ (inl  px₀) _ = px₀
  γ (inr ¬px₀) (inl x , px) = 𝟘-elim (¬px₀ (γx (x , px)))
  γ (inr ¬px₀) (inr y , py) = γy (y , py)
\end{code}

## Binary product of uniformly continuously searchable spaces

\begin{code}
×-pred-left : (X : ClosenessSpace 𝓤) (Y : ClosenessSpace 𝓥)
             decidable-uc-predicate 𝓦 (×-ClosenessSpace X Y)
              Y   decidable-uc-predicate 𝓦 X
×-pred-left X Y ((p , d) , δ , ϕ) y
 = ((p  (_, y)) , (d  (_, y))) , δ
 , λ x₁ x₂ Cδx₁x₂
  ϕ (x₁ , y) (x₂ , y)
     (×-C-combine X Y x₁ x₂ y y δ Cδx₁x₂ (C-refl Y δ y))

×-pred-right : (X : ClosenessSpace 𝓤) (Y : ClosenessSpace 𝓥)
              decidable-uc-predicate 𝓦 (×-ClosenessSpace X Y)
               X   decidable-uc-predicate 𝓦 Y
×-pred-right X Y ((p , d) , δ , ϕ) x
 = ((p  (x ,_)) , (d  (x ,_))) , δ
 , λ y₁ y₂ Cδy₁y₂
  ϕ (x , y₁) (x , y₂)
     (×-C-combine X Y x x y₁ y₂ δ (C-refl X δ x) Cδy₁y₂)

×-csearchable : (X : ClosenessSpace 𝓤) (Y : ClosenessSpace 𝓥)
               csearchable 𝓦 X
               csearchable 𝓦 Y
               csearchable 𝓦 (×-ClosenessSpace X Y)
×-csearchable {𝓤} {𝓥} {𝓦} X Y Sx Sy ((p , d) , δ , ϕ)
 = xy₀ , γ
 where
  py→ :  X   decidable-uc-predicate 𝓦 Y
  py→ x = (p  (x ,_) , d  (x ,_))
        , δ , λ y₁ y₂ Cδy₁y₂  ϕ (x , y₁) (x , y₂)
                (×-C-combine X Y x x y₁ y₂ δ (C-refl X δ x) Cδy₁y₂)
  y₀ :  X    Y 
  y₀ x = pr₁ (Sy (py→ x))
  γy : (x :  X )
      (Σ y   Y  , (p (x , y) holds))
      p (x , y₀ x) holds
  γy x = pr₂ (Sy (py→ x))
  pyϕ : (x₁ x₂ :  X )
       C X δ x₁ x₂
       (y :  Y )
       p (x₁ , y) holds  p (x₂ , y) holds
  pyϕ x₁ x₂ Cδx₁x₂ y
   = ϕ (x₁ , y) (x₂ , y)
         (×-C-combine X Y x₁ x₂ y y δ Cδx₁x₂ (C-refl Y δ y))
   , ϕ (x₂ , y) (x₁ , y)
         (×-C-combine X Y x₂ x₁ y y δ (C-sym X δ x₁ x₂ Cδx₁x₂)
         (C-refl Y δ y))
  px : decidable-uc-predicate 𝓦 X
  px = ((λ x  p (x , y₀ x)) , λ x  d (x , y₀ x))
     , δ , λ x₁ x₂ Cδx₁x₂  ϕ (x₁ , y₀ x₁) (x₂ , y₀ x₂)
             (×-C-combine X Y x₁ x₂ (y₀ x₁) (y₀ x₂) δ Cδx₁x₂
               (transport  -  C Y δ (y₀ x₁) (pr₁ (Sy -)))
                 (decidable-uc-predicate-= Y (py→ x₁) (py→ x₂)
                   refl (pyϕ x₁ x₂ Cδx₁x₂))
                 (C-refl Y δ (y₀ x₁))))
  x₀ :  X 
  x₀ = pr₁ (Sx px)
  γx : (Σ x   X  , (p (x , y₀ x) holds))  p (x₀ , y₀ x₀) holds
  γx = pr₂ (Sx px)
  xy₀ :  X  ×  Y 
  xy₀ = x₀ , y₀ x₀
  γ : (Σ xy   X  ×  Y  , (p xy holds))  p xy₀ holds
  γ ((x , y) , pxy) = γx (x , γy x (y , pxy))
\end{code}

## Equivalent uniformly continuously searchable spaces

\begin{code}
≃-csearchable : {X : 𝓤 ̇} (Y : ClosenessSpace 𝓥)
               (e : X   Y )
               csearchable 𝓦 Y
               csearchable 𝓦 (≃-ClosenessSpace Y e)
≃-csearchable {𝓤} {𝓥} {𝓦} {X}
 Y e@(f , (g , η) , (h , μ)) S ((p' , d') , δ , ϕ')
 = x₀ , γ
 where
  p :  Y   Ω 𝓦
  p y = p' (g y)
  d : is-complemented  x  p x holds)
  d y = d' (g y)
  ϕ : p-ucontinuous-with-mod Y p δ
  ϕ y₁ y₂ Cδy₁y₂
   = ϕ' (g y₁) (g y₂)
       (C-trans Y δ (f (g y₁)) y₁ (f (g y₂))
         (C-id Y δ (f (g y₁)) y₁ (η y₁))
         (C-trans Y δ y₁ y₂ (f (g y₂)) Cδy₁y₂
           (C-id Y δ y₂ (f (g y₂)) (η y₂ ⁻¹))))
  x₀ : X
  x₀ = g (pr₁ (S ((p , d) , δ , ϕ)))
  γ : Sigma  ≃-ClosenessSpace Y e   x  p' x holds)
     p' x₀ holds
  γ (x , phx)
   = pr₂ (S ((p , d) , δ , ϕ))
       (f x , transport  -  p' - holds)
         (μ x ⁻¹  (ap h (η (f x) ⁻¹)  μ (g (f x)))) phx)
\end{code}

## Finite-sequence uniformly continuously searchable spaces

\begin{code}
tail-predicate
 : {X :   𝓤 ̇ }
  (f : (n : )  finite-linear-order (X n))
  (ds : (n : )  is-discrete (X n))
  (δ : )
  (x : X 0)
  decidable-uc-predicate-with-mod 𝓦 (ΠD-ClosenessSpace ds) (succ δ)
  decidable-uc-predicate-with-mod 𝓦 (ΠD-ClosenessSpace (ds  succ)) δ
tail-predicate {𝓤} {𝓦} {X} f ds δ x ((p' , d') , ϕ') = (p , d) , ϕ
 where
  p : Π (X  succ)  Ω 𝓦
  p xs = p' (x  xs)
  d : is-complemented  -  p - holds)
  d xs = d' (x  xs)
  ϕ : p-ucontinuous-with-mod (ΠD-ClosenessSpace (ds  succ)) p δ
  ϕ x₁ x₂ Cδx₁x₂
   = ϕ' (x  x₁) (x  x₂) (∼ⁿ-to-C' ds (x  x₁) (x  x₂) (succ δ) γ) 
   where
    γ : ((x  x₁) ∼ⁿ (x  x₂)) (succ δ)
    γ zero i<sδ = refl
    γ (succ i) i<sδ = C-to-∼ⁿ' (ds  succ) x₁ x₂ δ Cδx₁x₂ i i<sδ

dep-discrete-finite-seq-csearchable'
 : {X :   𝓤 ̇ }
  Π X
  (f : (n : )  finite-linear-order (X n))
  (ds : (n : )  is-discrete (X n))
  (δ : )
  (((p , _) , _) : decidable-uc-predicate-with-mod 𝓦
                      (ΠD-ClosenessSpace ds) δ)
  Σ xs₀  Π X
 , ((Σ xs  Π X , p xs holds)  p xs₀ holds)

head-predicate
 : {X :   𝓤 ̇ }
  Π X
  (f : (n : )  finite-linear-order (X n))
  (ds : (n : )  is-discrete (X n))
  (δ : )
  decidable-uc-predicate-with-mod 𝓦 (ΠD-ClosenessSpace ds) (succ δ)
  decidable-predicate 𝓦 (X 0)
head-predicate {𝓤} {𝓦} {X} α f ds δ ((p , d) , ϕ)
 = p  xs→ , d  xs→
 where
  xs→ : X 0  Π X
  xs→ x
   = x
    pr₁ (dep-discrete-finite-seq-csearchable' (α  succ)
           (f  succ) (ds  succ) δ
           (tail-predicate f ds δ x ((p , d) , ϕ)))
     
dep-discrete-finite-seq-csearchable' α f ds 0 ((p , d) , ϕ)
 = α , λ (y , py)  ϕ y α  _ ()) py
dep-discrete-finite-seq-csearchable'
 {𝓤} {𝓦} {X} α f ds (succ δ) ((p , d) , ϕ)
 = xs₀ , γ
 where
   pₕ  = head-predicate α f ds δ ((p , d) , ϕ)
   x₀ : X 0
   x₀ = pr₁ (finite-searchable (f 0) (α 0) pₕ) 
   γₕ : Σ x  X 0 , pr₁ pₕ x holds  pr₁ pₕ x₀ holds
   γₕ = pr₂ (finite-searchable (f 0) (α 0) pₕ) 
   pₜ→ = λ x  tail-predicate f ds δ x ((p , d) , ϕ)
   xs→ : (x : X 0)  Σ xs₀  Π (X  succ)
       , ((Σ xs  Π (X  succ) , (pr₁  pr₁) (pₜ→ x) xs holds)
        (pr₁  pr₁) (pₜ→ x) xs₀ holds) 
   xs→ x = dep-discrete-finite-seq-csearchable'
             (α  succ) (f  succ) (ds  succ) δ (pₜ→ x)
   xs₀ : Π X
   xs₀ = x₀  pr₁ (xs→ x₀)
   γ : Σ xs  Π X , (p xs holds)  p xs₀ holds
   γ (y , py)
    = γₕ (y 0 , pr₂ (xs→ (y 0))
        (y  succ , ϕ y (y 0  (y  succ))
           n _  decidable-𝟚₁ (∼ⁿ-decidable ds _ _ _)
            λ i _  ζ i) py))
    where
     ζ : y  (y 0   x₁  y (succ x₁)))
     ζ zero = refl
     ζ (succ i) = refl

dep-discrete-finite-seq-csearchable
 : {X :   𝓤 ̇ }
  Π X
  (f : (n : )  finite-linear-order (X n))
  (ds : (n : )  is-discrete (X n))
  csearchable 𝓦 (ΠD-ClosenessSpace ds)
dep-discrete-finite-seq-csearchable α f ds ((p , d) , (δ , ϕ))
 = dep-discrete-finite-seq-csearchable' α f ds δ ((p , d) , ϕ)

discrete-finite-seq-csearchable
 : {X : 𝓤 ̇ }
  X 
  (f : finite-linear-order X)
  (ds : is-discrete X)
  csearchable 𝓦 (ℕ→D-ClosenessSpace ds)
discrete-finite-seq-csearchable x₀ f ds
 = dep-discrete-finite-seq-csearchable  _  x₀)  _  f)  _  ds) 
\end{code}

## Tychonoff theorem

\begin{code}
tail-predicate-tych
 : (T :   ClosenessSpace 𝓤)
  (δ : )
  (x :  T 0 )
  decidable-uc-predicate-with-mod 𝓦
     (Π-ClosenessSpace T) (succ δ)
  decidable-uc-predicate-with-mod 𝓦
     (Π-ClosenessSpace (tail T)) δ
tail-predicate-tych {𝓤} {𝓦} T δ x₀ ((p' , d') , ϕ') = (p , d) , ϕ
 where
  p : Π (⟨_⟩  T  succ)  Ω 𝓦
  p xs = p' (x₀  xs)
  d : is-complemented  x  p x holds)
  d xs = d' (x₀  xs)
  ϕ : p-ucontinuous-with-mod (Π-ClosenessSpace (T  succ)) p δ
  ϕ xs ys Cδxsys
   = ϕ' (x₀  xs) (x₀  ys)
       (Π-C-combine T x₀ x₀ xs ys δ
         (C-refl (T 0) (succ δ) x₀)
           Cδxsys)

tychonoff'
 : (T :   ClosenessSpace 𝓤)
  ((n : )  csearchable 𝓦 (T n))
  (δ : )
  (((p , _) , _) : decidable-uc-predicate-with-mod 𝓦
     (Π-ClosenessSpace T) δ)
  Σ xs₀  Π (⟨_⟩  T)
 , ((Σ xs  Π (⟨_⟩  T) , p xs holds)  p xs₀ holds)

head-predicate-tych
 : (T :   ClosenessSpace 𝓤)
  ((n : )  csearchable 𝓦 (T n))
  (δ : )
  decidable-uc-predicate-with-mod 𝓦
     (Π-ClosenessSpace T) (succ δ)
  decidable-uc-predicate 𝓦 (T 0)
head-predicate-tych {𝓤} {𝓦} T S δ ((p , d) , ϕ)
 = ((p  xs→) , d  xs→)
 , succ δ , γ
 where
  xs→ :  T 0   Π (⟨_⟩  T)
  xs→ x = x  pr₁ (tychonoff' (T  succ) (S  succ) δ
                 (tail-predicate-tych T δ x ((p , d) , ϕ)))
  γ : p-ucontinuous-with-mod (T 0)  x  p (xs→ x)) (succ δ)
  γ x₁ x₂ Csδx₁x₂
   = ϕ (xs→ x₁) (xs→ x₂)
        (Π-C-combine T x₁ x₂ (xs→ x₁  succ) (xs→ x₂  succ)
        δ Csδx₁x₂ ζₛ)
    where
     χ : (xs : Π (⟨_⟩  T  succ))
        (pr₁ (pr₁ (tail-predicate-tych T δ x₁ ((p , d) , ϕ))) xs
           holds)
        (pr₁ (pr₁ (tail-predicate-tych T δ x₂ ((p , d) , ϕ))) xs
           holds)
     χ xs = ϕ (x₁  xs) (x₂  xs)
              (Π-C-combine T x₁ x₂ xs xs δ
                Csδx₁x₂
                (C-refl (Π-ClosenessSpace (T  succ)) δ xs))
          , ϕ (x₂  xs) (x₁  xs)
              (Π-C-combine T x₂ x₁ xs xs δ
                (C-sym (T 0) (succ δ) x₁ x₂ Csδx₁x₂)
                (C-refl (Π-ClosenessSpace (T  succ)) δ xs))
     ζₛ : C (Π-ClosenessSpace (T  succ)) δ
           (xs→ x₁  succ) (xs→ x₂  succ)
     ζₛ = transport
             -  C (Π-ClosenessSpace (T  succ)) δ
                     (xs→ x₁  succ)
                     (pr₁ (tychonoff' (T  succ) (S  succ) δ -)))
          (decidable-uc-predicate-with-mod-=
            (Π-ClosenessSpace (T  succ)) δ
            (tail-predicate-tych T δ x₁ ((p , d) , ϕ))
            (tail-predicate-tych T δ x₂ ((p , d) , ϕ))
            χ)
          (C-refl (Π-ClosenessSpace (T  succ)) δ (xs→ x₁  succ))

tychonoff' T S 0 ((p , d) , ϕ)
 =  n  pr₁ (S n (((λ _  ) ,  _  inl ))
 , (0 ,  x₁ x₂ _ _  )))) )
 ,  (α , )  ϕ α _  _ ()) )
tychonoff' T S (succ δ) ((p , d) , ϕ) 
 = (x  pr₁ (xs→ x)) , γ
 where
   pₜ→ = λ x  tail-predicate-tych T δ x ((p , d) , ϕ)
   pₕ  = head-predicate-tych T S δ ((p , d) , ϕ)
   xs→ : (x :  T 0 )   Σ xs₀  Π (⟨_⟩  T  succ)
       , ((Σ xs  Π (⟨_⟩  T  succ)
                , (pr₁  pr₁) (pₜ→ x) xs holds)
        (pr₁  pr₁) (pₜ→ x) xs₀ holds) 
   xs→ x = tychonoff' (T  succ) (S  succ) δ (pₜ→ x)
   x :  T 0 
   x = pr₁ (S 0 pₕ)
   γₕ : _
   γₕ = pr₂ (S 0 pₕ)
   γ : _
   γ (y , py)
    = γₕ (y 0 , pr₂ (xs→ (y 0))
           (y  succ
           , ϕ y (y 0  (y  succ)) (Π-C-eta T y (succ δ)) py))

tychonoff : (T :   ClosenessSpace 𝓤)
           ((n : )  csearchable 𝓦 (T n))
           csearchable 𝓦 (Π-ClosenessSpace T)
tychonoff T S ((p , d) , δ , ϕ) = tychonoff' T S δ ((p , d) , ϕ)
\end{code}