Martin Escardo, 3 February 2021.
⋆ Symmetric closure of a relation.
⋆ Iteration of a relation.
⋆ Reflexive-transitive closure of a relation.
⋆ Symmetric-reflexive-transitive closure of a relation.
⋆ propositional, symmetric-reflexive-transitive closure of a relation.
⋆ A special kind of Church-Rosser property.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan hiding (_^_)
module Relations.SRTclosure where
open import UF.Subsingletons
open import UF.PropTrunc
open import Naturals.Addition renaming (_+_ to right-addition)
\end{code}
We work with addition defined by induction on the left argument:
\begin{code}
_∔_ : ℕ → ℕ → ℕ
m ∔ n = right-addition n m
_⊑_ : {X : 𝓤 ̇ } → (X → X → 𝓥 ̇ ) → (X → X → 𝓦 ̇ ) → 𝓤 ⊔ 𝓥 ⊔ 𝓦 ̇
R ⊑ S = ∀ x y → R x y → S x y
is-prop-valued-rel is-equiv-rel : {X : 𝓤 ̇ } → (X → X → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇
is-prop-valued-rel A = ∀ x y → is-prop (A x y)
is-equiv-rel A = is-prop-valued-rel A
× reflexive A
× symmetric A
× transitive A
\end{code}
The symmetric closure of a relation A:
\begin{code}
module _ {𝓤 : Universe}
{X : 𝓤 ̇ }
(A : X → X → 𝓥 ̇ )
where
s-closure : X → X → 𝓥 ̇
s-closure x y = A x y + A y x
s-symmetric : symmetric s-closure
s-symmetric x y (inl a) = inr a
s-symmetric x y (inr a) = inl a
s-extension : A ⊑ s-closure
s-extension x y = inl
s-induction : (R : X → X → 𝓦 ̇ )
→ symmetric R
→ A ⊑ R
→ s-closure ⊑ R
s-induction R s A-included-in-R x y (inl a) = A-included-in-R x y a
s-induction R s A-included-in-R x y (inr a) = s y x (A-included-in-R y x a)
\end{code}
To define the reflexive-transitive closure, we first consider the
iteration of a relation B:
\begin{code}
module _ {𝓤 : Universe}
{X : 𝓤 ̇ }
(B : X → X → 𝓤 ̇ )
where
iteration : ℕ → X → X → 𝓤 ̇
iteration 0 x y = x = y
iteration (succ n) x y = Σ z ꞉ X , B x z × iteration n z y
iteration-reflexive : (x : X) → iteration 0 x x
iteration-reflexive x = refl
iteration-transitive' : (n : ℕ) (x y z : X) → iteration n x y → B y z → iteration (succ n) x z
iteration-transitive' 0 x x z refl b = z , b , refl
iteration-transitive' (succ n) x y z (t , b , c) b' = t , b , iteration-transitive' n t y z c b'
iteration-transitive'-converse : (n : ℕ) (x z : X)
→ iteration (succ n) x z
→ Σ y ꞉ X , iteration n x y × B y z
iteration-transitive'-converse 0 x z (z , b , refl) = x , refl , b
iteration-transitive'-converse (succ n) x z (y , b , t , b' , i) = γ
where
IH : Σ u ꞉ X , iteration n y u × B u z
IH = iteration-transitive'-converse n y z (t , b' , i)
u : X
u = pr₁ IH
i' : iteration n y u
i' = pr₁ (pr₂ IH)
b'' : B u z
b'' = pr₂ (pr₂ IH)
γ : Σ u ꞉ X , iteration (succ n) x u × B u z
γ = u , (y , b , i') , b''
iteration-symmetric : symmetric B → (m : ℕ) → symmetric (iteration m)
iteration-symmetric sym 0 x x refl = refl
iteration-symmetric sym (succ m) x y (z , b , c) = γ
where
c' : iteration m y z
c' = iteration-symmetric sym m z y c
γ : iteration (succ m) y x
γ = iteration-transitive' m y z x c' (sym x z b)
iteration-transitive : (m n : ℕ) (x y z : X) → iteration m x y → iteration n y z → iteration (m ∔ n) x z
iteration-transitive 0 n x x z refl c' = c'
iteration-transitive (succ m) n x y z (t , b , c) c' = t , b , iteration-transitive m n t y z c c'
\end{code}
This is regarding the above anonymous module but needs to be outside it:
\begin{code}
private
_^_ : {X : 𝓤 ̇ } → (X → X → 𝓤 ̇ ) → ℕ → (X → X → 𝓤 ̇ )
_^_ = iteration
\end{code}
The reflexive-transitive closure of a relation B:
\begin{code}
module _ {𝓤 : Universe}
{X : 𝓤 ̇ }
(B : X → X → 𝓤 ̇ )
where
rt-closure : X → X → 𝓤 ̇
rt-closure x y = Σ n ꞉ ℕ , (B ^ n) x y
rt-reflexive : reflexive rt-closure
rt-reflexive x = 0 , refl
rt-symmetric : symmetric B → symmetric rt-closure
rt-symmetric s x y (m , c) = m , iteration-symmetric B s m x y c
rt-transitive : transitive rt-closure
rt-transitive x y z (m , c) (m' , c') = (m ∔ m') , iteration-transitive B m m' x y z c c'
rt-extension : B ⊑ rt-closure
rt-extension x y b = 1 , y , b , refl
rt-induction : (R : X → X → 𝓥 ̇ )
→ reflexive R
→ transitive R
→ B ⊑ R
→ rt-closure ⊑ R
rt-induction R r t B-included-in-R = γ
where
γ : (x y : X) → rt-closure x y → R x y
γ x x (0 , refl) = r x
γ x y (succ n , z , b , c) = t x z y (B-included-in-R x z b) (γ z y (n , c))
\end{code}
By combining the symmetric closure with the reflective-transitive
closure, we get the symmetric-reflexive-transitive-closure:
\begin{code}
module _ {𝓤 : Universe}
{X : 𝓤 ̇ }
(A : X → X → 𝓤 ̇ )
where
srt-closure : X → X → 𝓤 ̇
srt-closure = rt-closure (s-closure A)
srt-symmetric : symmetric srt-closure
srt-symmetric = rt-symmetric (s-closure A) (s-symmetric A)
srt-reflexive : reflexive srt-closure
srt-reflexive = rt-reflexive (s-closure A)
srt-transitive : transitive srt-closure
srt-transitive = rt-transitive (s-closure A)
srt-extension'' : s-closure A ⊑ srt-closure
srt-extension'' = rt-extension (s-closure A)
srt-extension' : A ⊑ s-closure A
srt-extension' = s-extension A
srt-extension : A ⊑ srt-closure
srt-extension x y = srt-extension'' x y ∘ srt-extension' x y
rt-gives-srt : (x y : X) → rt-closure A x y → srt-closure x y
rt-gives-srt x y (m , i) = g m x y i
where
f : (n : ℕ) (x y : X) → iteration A n x y → iteration (s-closure A) n x y
f 0 x x refl = refl
f (succ n) x y (z , e , i) = z , inl e , (f n z y i)
g : (n : ℕ) (x y : X) → iteration A n x y → srt-closure x y
g 0 x x refl = srt-reflexive x
g (succ n) x y (z , e , i) = succ n , z , inl e , f n z y i
srt-induction : (R : X → X → 𝓥 ̇ )
→ symmetric R
→ reflexive R
→ transitive R
→ A ⊑ R
→ srt-closure ⊑ R
srt-induction R s r t A-included-in-R x y = γ
where
δ : s-closure A ⊑ R
δ = s-induction A R s A-included-in-R
γ : srt-closure x y → R x y
γ = rt-induction (s-closure A) R r t δ x y
\end{code}
The proposition-valued, symmetric-reflexive-transitive closure of a
relation A:
\begin{code}
module psrt
(pt : propositional-truncations-exist)
{𝓤 : Universe}
{X : 𝓤 ̇ }
(A : X → X → 𝓤 ̇ )
where
open PropositionalTruncation pt
psrt-closure : X → X → 𝓤 ̇
psrt-closure x y = ∥ srt-closure A x y ∥
psrt-is-prop-valued : (x y : X) → is-prop (psrt-closure x y)
psrt-is-prop-valued x y = ∥∥-is-prop
psrt-symmetric : symmetric psrt-closure
psrt-symmetric x y = ∥∥-functor (srt-symmetric A x y)
psrt-reflexive : reflexive psrt-closure
psrt-reflexive x = ∣ srt-reflexive A x ∣
psrt-transitive : transitive psrt-closure
psrt-transitive x y z = ∥∥-functor₂ (srt-transitive A x y z)
psrt-extension : A ⊑ psrt-closure
psrt-extension x y a = ∥∥-functor (srt-extension A x y) ∣ a ∣
psrt-induction : (R : X → X → 𝓥 ̇ )
→ ((x y : X) → is-prop (R x y))
→ reflexive R
→ symmetric R
→ transitive R
→ A ⊑ R
→ psrt-closure ⊑ R
psrt-induction R p r s t A-included-in-R x y =
∥∥-rec (p x y) (srt-induction A R s r t A-included-in-R x y)
psrt-is-equiv-rel : is-equiv-rel psrt-closure
psrt-is-equiv-rel = psrt-is-prop-valued ,
psrt-reflexive ,
psrt-symmetric ,
psrt-transitive
\end{code}
Any proposition-valued relation that is logically equivalent to an
equivalence relation is itself an equivalence relation. Unfortunately,
we cannot use univalence to perform this transport as the types live
in different universes.
\begin{code}
is-equiv-rel-transport : {X : 𝓤 ̇ }
(A : X → X → 𝓥 ̇ )
(B : X → X → 𝓦 ̇ )
→ is-prop-valued-rel B
→ ((x y : X) → A x y ↔ B x y)
→ is-equiv-rel A
→ is-equiv-rel B
is-equiv-rel-transport {X} A B p' e (p , r , s , t) = (p' , r' , s' , t')
where
r' : reflexive B
r' x = lr-implication (e x x) (r x)
s' : symmetric B
s' x y b = lr-implication (e y x) (s x y (rl-implication (e x y) b))
t' : transitive B
t' x y z b b' = lr-implication (e x z)
(t x y z (rl-implication (e x y) b)
(rl-implication (e y z) b'))
\end{code}