Martin Escardo and Tom de Jong, August 2018, April 2022, September 2023.
Quotients. Much of this material is moved from or abstracted from the
earlier 2018 module Quotient.Large by Martin Escardo.
\begin{code}
{-# OPTIONS --safe --without-K #-}
module Quotient.Type where
open import MLTT.Spartan
open import UF.Base hiding (_β_)
open import UF.Equiv
open import UF.FunExt
open import UF.PropTrunc
open import UF.Sets
open import UF.Sets-Properties
open import UF.SubtypeClassifier
open import UF.SubtypeClassifier-Properties
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
is-prop-valued is-equiv-relation : {X : π€ Μ } β (X β X β π₯ Μ ) β π€ β π₯ Μ
is-prop-valued _β_ = β x y β is-prop (x β y)
is-equiv-relation _β_ = is-prop-valued _β_
Γ reflexive _β_
Γ symmetric _β_
Γ transitive _β_
EqRel : {π€ π₯ : Universe} β π€ Μ β π€ β (π₯ βΊ) Μ
EqRel {π€} {π₯} X = Ξ£ R κ (X β X β π₯ Μ ) , is-equiv-relation R
_β[_]_ : {X : π€ Μ } β X β EqRel X β X β π₯ Μ
x β[ _β_ , _ ] y = x β y
identifies-related-points : {X : π€ Μ }
β EqRel {π€} {π₯} X
β {Y : π¦ Μ }
β (X β Y) β π€ β π₯ β π¦ Μ
identifies-related-points (_β_ , _) f = β {x x'} β x β x' β f x οΌ f x'
\end{code}
To account for the module Quotient.Large, and, at the same time, usual
(small) quotients, we introduce a parametric definion of existence of
quotients. For small quotients we take β = id, and for large quotients
we take β = (_βΊ) (see below).
\begin{code}
record general-set-quotients-exist (β : Universe β Universe) : π€Ο where
field
_/_ : {π€ π₯ : Universe} (X : π€ Μ ) β EqRel {π€} {π₯} X β π€ β β π₯ Μ
Ξ·/ : {π€ π₯ : Universe} {X : π€ Μ } (β : EqRel {π€} {π₯} X) β X β X / β
Ξ·/-identifies-related-points : {π€ π₯ : Universe}
{X : π€ Μ } (β : EqRel {π€} {π₯} X)
β identifies-related-points β (Ξ·/ β)
/-is-set : {π€ π₯ : Universe} {X : π€ Μ } (β : EqRel {π€} {π₯} X) β is-set (X / β)
/-universality : {π€ π₯ : Universe} {X : π€ Μ } (β : EqRel {π€} {π₯} X)
{π¦ : Universe} {Y : π¦ Μ }
β is-set Y
β (f : X β Y)
β identifies-related-points β f
β β! fΜ
κ (X / β β Y) , fΜ
β Ξ·/ β βΌ f
\end{code}
Added 22 August 2022.
The induction principle follows from the universal property.
\begin{code}
/-induction : {X : π€ Μ } (β : EqRel {π€} {π₯} X)
{P : X / β β π¦ Μ }
β ((x' : X / β) β is-prop (P x'))
β ((x : X) β P (Ξ·/ β x)) β (y : X / β) β P y
/-induction {X = X} β {P} P-is-prop-valued Ο y =
transport P (happly fΜ
-section-of-prβ y) (prβ (fΜ
y))
where
f : X β Ξ£ P
f x = (Ξ·/ β x , Ο x)
f-identifies-related-points : identifies-related-points β f
f-identifies-related-points r =
to-subtype-οΌ P-is-prop-valued (Ξ·/-identifies-related-points β r)
Ξ£P-is-set : is-set (Ξ£ P)
Ξ£P-is-set = subsets-of-sets-are-sets (X / β) P (/-is-set β)
(Ξ» {x'} β P-is-prop-valued x')
u : β! fΜ
κ (X / β β Ξ£ P) , fΜ
β Ξ·/ β βΌ f
u = /-universality β Ξ£P-is-set f f-identifies-related-points
fΜ
: X / β β Ξ£ P
fΜ
= β!-witness u
fΜ
-after-Ξ·-is-f : fΜ
β Ξ·/ β βΌ f
fΜ
-after-Ξ·-is-f = β!-is-witness u
fΜ
-section-of-prβ : prβ β fΜ
οΌ id
fΜ
-section-of-prβ = ap prβ (singletons-are-props c (prβ β fΜ
, h)
(id , Ξ» x β refl))
where
c : β! g κ (X / β β X / β) , g β Ξ·/ β βΌ Ξ·/ β
c = /-universality β (/-is-set β) (Ξ·/ β) (Ξ·/-identifies-related-points β)
h : prβ β fΜ
β Ξ·/ β βΌ Ξ·/ β
h x = ap prβ (fΜ
-after-Ξ·-is-f x)
\end{code}
Paying attention to universe levels, it is important to note that the quotient
of X : π€ by a π₯-valued equivalence relation is assumed to live in π€ β π₯. In
particular, the quotient of type in π€ by a π€-valued equivalence relation lives
in π€ again.
The following are facts about quotients, moved from Quotient.Large as
they are of general use.
\begin{code}
module _
{X : π€ Μ }
(β@(_β_ , βp , βr , βs , βt) : EqRel {π€} {π₯} X)
where
module _ (pt : propositional-truncations-exist) where
open PropositionalTruncation pt
open import UF.ImageAndSurjection pt
Ξ·/-is-surjection : is-surjection (Ξ·/ {π€} {π₯} {X} β)
Ξ·/-is-surjection = /-induction β
(Ξ» x' β being-in-the-image-is-prop x' (Ξ·/ β))
(Ξ» x β β£ x , refl β£)
module _
{A : π¦ Μ }
(A-is-set : is-set A)
where
mediating-map/ : (f : X β A)
β identifies-related-points β f
β X / β β A
mediating-map/ f j = β!-witness (/-universality β A-is-set f j)
universality-triangle/ : (f : X β A)
(j : identifies-related-points β f)
β mediating-map/ f j β Ξ·/ β βΌ f
universality-triangle/ f j = β!-is-witness (/-universality β A-is-set f j)
at-most-one-mediating-map/ : (g h : X / β β A)
β g β Ξ·/ β βΌ h β Ξ·/ β
β g βΌ h
at-most-one-mediating-map/ g h p x = Ξ³
where
f : X β A
f = g β Ξ·/ β
j : identifies-related-points β f
j e = ap g (Ξ·/-identifies-related-points β e)
q : mediating-map/ f j οΌ g
q = witness-uniqueness (Ξ» fΜ
β fΜ
β Ξ·/ β βΌ f)
(/-universality β A-is-set f j)
(mediating-map/ f j)
g
(universality-triangle/ f j)
(Ξ» x β refl)
r : mediating-map/ f j οΌ h
r = witness-uniqueness (Ξ» fΜ
β fΜ
β Ξ·/ β βΌ f)
(/-universality β A-is-set f j)
(mediating-map/ f j)
h
(universality-triangle/ f j)
(Ξ» x β (p x)β»ΒΉ)
Ξ³ = g x οΌβ¨ happly (q β»ΒΉ) x β©
mediating-map/ f j x οΌβ¨ happly r x β©
h x β
extension/ : (f : X β X / β)
β identifies-related-points β f
β (X / β β X / β)
extension/ = mediating-map/ (/-is-set β)
extension-triangle/ : (f : X β X / β)
(i : identifies-related-points β f)
β extension/ f i β Ξ·/ β βΌ f
extension-triangle/ = universality-triangle/ (/-is-set β)
module _ (f : X β X)
(p : {x y : X} β x β y β f x β f y)
where
abstract
private
Ο : identifies-related-points β (Ξ·/ β β f)
Ο e = Ξ·/-identifies-related-points β (p e)
extensionβ/ : X / β β X / β
extensionβ/ = extension/ (Ξ·/ β β f) Ο
naturality/ : extensionβ/ β Ξ·/ β βΌ Ξ·/ β β f
naturality/ = universality-triangle/ (/-is-set β) (Ξ·/ β β f) Ο
module _ (f : X β X β X)
(p : {x y x' y' : X} β x β x' β y β y' β f x y β f x' y')
where
abstract
private
Ο : (x : X) β identifies-related-points β (Ξ·/ β β f x)
Ο x {y} {y'} e = Ξ·/-identifies-related-points β (p {x} {y} {x} {y'} (βr x) e)
p' : (x : X) {y y' : X} β y β y' β f x y β f x y'
p' x {x'} {y'} = p {x} {x'} {x} {y'} (βr x)
fβ : X β X / β β X / β
fβ x = extensionβ/ (f x) (p' x)
Ξ΄ : {x x' : X} β x β x' β (y : X) β fβ x (Ξ·/ β y) οΌ fβ x' (Ξ·/ β y)
Ξ΄ {x} {x'} e y =
fβ x (Ξ·/ β y) οΌβ¨ naturality/ (f x) (p' x) y β©
Ξ·/ β (f x y) οΌβ¨ Ξ·/-identifies-related-points β (p e (βr y)) β©
Ξ·/ β (f x' y) οΌβ¨ (naturality/ (f x') (p' x') y)β»ΒΉ β©
fβ x' (Ξ·/ β y) β
Ο : (b : X / β) {x x' : X} β x β x' β fβ x b οΌ fβ x' b
Ο b {x} {x'} e = /-induction β (Ξ» y β /-is-set β) (Ξ΄ e) b
fβ : X / β β X / β β X / β
fβ d e = extension/ (Ξ» x β fβ x e) (Ο e) d
extensionβ/ : X / β β X / β β X / β
extensionβ/ = fβ
abstract
naturalityβ/ : (x y : X) β fβ (Ξ·/ β x) (Ξ·/ β y) οΌ Ξ·/ β (f x y)
naturalityβ/ x y =
fβ (Ξ·/ β x) (Ξ·/ β y) οΌβ¨ extension-triangle/ (Ξ» x β fβ x (Ξ·/ β y)) (Ο (Ξ·/ β y)) x β©
fβ x (Ξ·/ β y) οΌβ¨ naturality/ (f x) (p (βr x)) y β©
Ξ·/ β (f x y) β
\end{code}
We extend unary and binary prop-valued relations to the quotient.
\begin{code}
module extending-relations-to-quotient (fe : Fun-Ext) (pe : Prop-Ext) where
module _
{X : π€ Μ }
(β@(_β_ , βp , βr , βs , βt) : EqRel {π€} {π₯} X)
where
module _
(r : X β Ξ© π£)
(p : {x y : X} β x β y β r x οΌ r y)
where
extension-relβ : X / β β Ξ© π£
extension-relβ = mediating-map/ β (Ξ©-is-set fe pe) r p
extension-rel-triangleβ : extension-relβ β Ξ·/ β βΌ r
extension-rel-triangleβ = universality-triangle/ β (Ξ©-is-set fe pe) r p
module _ (r : X β X β Ξ© π£)
(p : {x y x' y' : X} β x β x' β y β y' β r x y οΌ r x' y')
where
abstract
private
p' : (x : X) {y y' : X} β y β y' β r x y οΌ r x y'
p' x {y} {y'} = p (βr x)
rβ : X β X / β β Ξ© π£
rβ x = extension-relβ (r x) (p' x)
Ξ΄ : {x x' : X} β x β x' β (y : X) β rβ x (Ξ·/ β y) οΌ rβ x' (Ξ·/ β y)
Ξ΄ {x} {x'} e y =
rβ x (Ξ·/ β y) οΌβ¨ extension-rel-triangleβ (r x) (p (βr x)) y β©
r x y οΌβ¨ p e (βr y) β©
r x' y οΌβ¨ (extension-rel-triangleβ (r x') (p (βr x')) y) β»ΒΉ β©
rβ x' (Ξ·/ β y) β
Ο : (q : X / β) {x x' : X} β x β x' β rβ x q οΌ rβ x' q
Ο q {x} {x'} e = /-induction β (Ξ» q β Ξ©-is-set fe pe) (Ξ΄ e) q
rβ : X / β β X / β β Ξ© π£
rβ = mediating-map/ β (Ξ -is-set fe (Ξ» _ β Ξ©-is-set fe pe)) rβ
(Ξ» {x} {x'} e β dfunext fe (Ξ» q β Ο q e))
Ο : (x : X) β rβ (Ξ·/ β x) οΌ rβ x
Ο = universality-triangle/ β (Ξ -is-set fe (Ξ» _ β Ξ©-is-set fe pe)) rβ
(Ξ» {x} {x'} e β dfunext fe (Ξ» q β Ο q e))
Ο : (x y : X) β rβ (Ξ·/ β x) (Ξ·/ β y) οΌ r x y
Ο x y = rβ (Ξ·/ β x) (Ξ·/ β y) οΌβ¨ happly (Ο x) (Ξ·/ β y) β©
rβ x (Ξ·/ β y) οΌβ¨ extension-rel-triangleβ (r x) (p' x) y β©
r x y β
extension-relβ : X / β β X / β β Ξ© π£
extension-relβ = rβ
extension-rel-triangleβ : (x y : X)
β extension-relβ (Ξ·/ β x) (Ξ·/ β y) οΌ r x y
extension-rel-triangleβ = Ο
\end{code}
For proving properties of an extended binary relation, it is useful to have a
binary and ternary versions of quotient induction.
\begin{code}
module _
(fe : Fun-Ext)
{X : π€ Μ }
(β : EqRel {π€} {π₯} X)
where
/-inductionβ : β {π¦} {P : X / β β X / β β π¦ Μ }
β ((x' y' : X / β) β is-prop (P x' y'))
β ((x y : X) β P (Ξ·/ β x) (Ξ·/ β y))
β (x' y' : X / β) β P x' y'
/-inductionβ p h =
/-induction β (Ξ» x' β Ξ -is-prop fe (p x'))
(Ξ» x β /-induction β (p (Ξ·/ β x)) (h x))
/-inductionβ : β {π¦} β {P : X / β β X / β β X / β β π¦ Μ }
β ((x' y' z' : X / β) β is-prop (P x' y' z'))
β ((x y z : X) β P (Ξ·/ β x) (Ξ·/ β y) (Ξ·/ β z))
β (x' y' z' : X / β) β P x' y' z'
/-inductionβ p h =
/-inductionβ (Ξ» x' y' β Ξ -is-prop fe (p x' y'))
(Ξ» x y β /-induction β (p (Ξ·/ β x) (Ξ·/ β y)) (h x y))
quotients-equivalent : (X : π€ Μ ) (R : EqRel {π€} {π₯} X) (R' : EqRel {π€} {π¦} X)
β ({x y : X} β x β[ R ] y β x β[ R' ] y)
β (X / R) β (X / R')
quotients-equivalent X (_β_ , βp , βr , βs , βt )
(_β'_ , βp' , βr' , βs' , βt') Ξ΅ = Ξ³
where
β = (_β_ , βp , βr , βs , βt )
β' = (_β'_ , βp' , βr' , βs' , βt')
i : {x y : X} β x β y β Ξ·/ β' x οΌ Ξ·/ β' y
i e = Ξ·/-identifies-related-points β' (lr-implication Ξ΅ e)
iβ»ΒΉ : {x y : X} β x β' y β Ξ·/ β x οΌ Ξ·/ β y
iβ»ΒΉ e = Ξ·/-identifies-related-points β (rl-implication Ξ΅ e)
f : X / β β X / β'
f = mediating-map/ β (/-is-set β') (Ξ·/ β') i
fβ»ΒΉ : X / β' β X / β
fβ»ΒΉ = mediating-map/ β' (/-is-set β) (Ξ·/ β) iβ»ΒΉ
a : (x : X) β f (fβ»ΒΉ (Ξ·/ β' x)) οΌ Ξ·/ β' x
a x = f (fβ»ΒΉ (Ξ·/ β' x)) οΌβ¨ I β©
f (Ξ·/ β x) οΌβ¨ II β©
Ξ·/ β' x β
where
I = ap f (universality-triangle/ β' (/-is-set β) (Ξ·/ β) iβ»ΒΉ x)
II = universality-triangle/ β (/-is-set β') (Ξ·/ β') i x
Ξ± : f β fβ»ΒΉ βΌ id
Ξ± = /-induction β' (Ξ» _ β /-is-set β') a
b : (x : X) β fβ»ΒΉ (f (Ξ·/ β x)) οΌ Ξ·/ β x
b x = fβ»ΒΉ (f (Ξ·/ β x)) οΌβ¨ I β©
fβ»ΒΉ (Ξ·/ β' x) οΌβ¨ II β©
Ξ·/ β x β
where
I = ap fβ»ΒΉ (universality-triangle/ β (/-is-set β') (Ξ·/ β') i x)
II = universality-triangle/ β' (/-is-set β) (Ξ·/ β) iβ»ΒΉ x
Ξ² : fβ»ΒΉ β f βΌ id
Ξ² = /-induction β (Ξ» _ β /-is-set β) b
Ξ³ : (X / β) β (X / β')
Ξ³ = qinveq f (fβ»ΒΉ , Ξ² , Ξ±)
\end{code}
We now define the existence of small and large quotients:
\begin{code}
set-quotients-exist large-set-quotients-exist : π€Ο
set-quotients-exist = general-set-quotients-exist (Ξ» π€ β π€)
large-set-quotients-exist = general-set-quotients-exist (_βΊ)
\end{code}
It turns out that quotients, if they exist, are necessarily
effective. This is proved the module Quotient.Effective. But we need
to include the definition here.
\begin{code}
are-effective : {β : Universe β Universe} β general-set-quotients-exist β β π€Ο
are-effective sq = {π€ π₯ : Universe} {X : π€ Μ }
(R : EqRel {π€} {π₯} X)
{x y : X}
β Ξ·/ R x οΌ Ξ·/ R y β x β[ R ] y
where
open general-set-quotients-exist sq
\end{code}