Martin Escardo, 10th June 2025.
We prove that Ω has at most two automorphisms, which seems to be due
to Freyd [1]. Our proof is not based on [1], though.
[1] Peter Freyd. Choice and well-ordering. Annals of Pure and Applied
Logic 35 (1987) 149-166.
https://doi.org/10.1016/0168-0072(87)90060-1
https://core.ac.uk/download/pdf/81927529.pdf
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan
open import MLTT.Plus-Properties
open import UF.Equiv hiding (_≅_)
open import UF.FunExt
open import UF.Logic
open import UF.Subsingletons
open import UF.SubtypeClassifier hiding (Ω)
module Higgs.AtMostTwoAutomorphismsOfOmega
{𝓤 : Universe}
(fe : Fun-Ext)
(pe : propext 𝓤)
where
open import Higgs.InvolutionTheorem fe pe
open import Higgs.AutomorphismsOfOmega fe pe
open Conjunction
open Implication fe
open Universal fe
open import UF.PropTrunc
module _ (pt : propositional-truncations-exist) where
open Disjunction pt
open PropositionalTruncation pt hiding (_∨_ ; ∨-elim)
ℍ-has-at-most-two-elements-lemma
: (x y : ℍ)
→ ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥
ℍ-has-at-most-two-elements-lemma
x@(p@(P , i) , p-is-ws)
y@(q@(Q , j) , q-is-ws)
= II
where
QP : ∥ Q + (Q → P) ∥
QP = widespread-gives-widespread' pt p p-is-ws q
PQ : ∥ P + (P → Q) ∥
PQ = widespread-gives-widespread' pt q q-is-ws p
I : (Q + (Q → P))
→ (P + (P → Q))
→ (𝕥 = x) + (x = y) + (y = 𝕥)
I (inl q) _ = inr (inr (to-ℍ-=' y 𝕥 ((λ _ → ⋆) , (λ _ → q))))
I (inr _) (inl p) = inl (to-ℍ-=' 𝕥 x ((λ _ → p) , (λ _ → ⋆)))
I (inr qp) (inr pq) = inr (inl (to-ℍ-=' x y (pq , qp)))
II : ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥
II = ∥∥-functor₂ I QP PQ
\end{code}
And so ℍ has at most two elements, in the sense that among any three
elements of ℍ, two of them are equal.
\begin{code}
ℍ-has-at-most-two-elements
: (x y z : ℍ)
→ ∥ (z = x) + (x = y) + (y = z) ∥
ℍ-has-at-most-two-elements x y z
= V
where
I : ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥
I = ℍ-has-at-most-two-elements-lemma x y
II : ∥ (𝕥 = y) + (y = z) + (z = 𝕥) ∥
II = ℍ-has-at-most-two-elements-lemma y z
III : ∥ (𝕥 = z) + (z = x) + (x = 𝕥) ∥
III = ℍ-has-at-most-two-elements-lemma z x
IV : (𝕥 = x) + (x = y) + (y = 𝕥)
→ (𝕥 = y) + (y = z) + (z = 𝕥)
→ (𝕥 = z) + (z = x) + (x = 𝕥)
→ (z = x) + (x = y) + (y = z)
IV (inl a) (inl b) _ = inr (inl (a ⁻¹ ∙ b))
IV (inl _) (inr (inl b)) _ = inr (inr b)
IV (inl a) (inr (inr b)) _ = inl (b ∙ a)
IV (inr (inl a)) (inl _) _ = inr (inl a)
IV (inr (inr _)) (inl b) (inl c) = inr (inr (b ⁻¹ ∙ c))
IV (inr (inr _)) (inl _) (inr (inl c)) = inl c
IV (inr (inr _)) (inl b) (inr (inr c)) = inr (inl (c ∙ b))
IV (inr (inl a)) (inr _) _ = inr (inl a)
IV (inr (inr _)) (inr (inl b)) _ = inr (inr b)
IV (inr (inr a)) (inr (inr b)) _ = inr (inr (a ∙ b ⁻¹))
V : ∥ (z = x) + (x = y) + (y = z) ∥
V = ∥∥-functor₃ IV I II III
\end{code}
We have the following corollary.
\begin{code}
Aut-Ω-has-at-most-two-elements
: (f g h : Aut Ω)
→ ∥ (h = f) + (f = g) + (g = h) ∥
Aut-Ω-has-at-most-two-elements f g h
= II
where
ϕ = ⌜ ℍ-to-Aut-Ω-equivalence ⌝⁻¹
ϕ-lc = equivs-are-lc ϕ ⌜ ℍ-to-Aut-Ω-equivalence ⌝⁻¹-is-equiv
I : ∥ (ϕ h = ϕ f) + (ϕ f = ϕ g) + (ϕ g = ϕ h) ∥
I = ℍ-has-at-most-two-elements (ϕ f) (ϕ g) (ϕ h)
II : ∥ (h = f) + (f = g) + (g = h) ∥
II = ∥∥-functor (+functor₂ ϕ-lc ϕ-lc ϕ-lc) I
\end{code}
By the above development, the assertion that Aut Ω is a singleton (or
equivalently a proposition, because it is pointed) is a stronger
principle than the negation of the law of excluded middle.