Martin Escardo, 10th June 2025. We prove that Ω has at most two automorphisms, which seems to be due to Freyd [1]. Our proof is not based on [1], though. [1] Peter Freyd. Choice and well-ordering. Annals of Pure and Applied Logic 35 (1987) 149-166. https://doi.org/10.1016/0168-0072(87)90060-1 https://core.ac.uk/download/pdf/81927529.pdf \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import MLTT.Plus-Properties open import UF.Equiv hiding (_≅_) open import UF.FunExt open import UF.Logic open import UF.Subsingletons open import UF.SubtypeClassifier hiding (Ω) module Higgs.AtMostTwoAutomorphismsOfOmega {𝓤 : Universe} (fe : Fun-Ext) (pe : propext 𝓤) where open import Higgs.InvolutionTheorem fe pe open import Higgs.AutomorphismsOfOmega fe pe open Conjunction open Implication fe open Universal fe open import UF.PropTrunc module _ (pt : propositional-truncations-exist) where open Disjunction pt open PropositionalTruncation pt hiding (_∨_ ; ∨-elim) ℍ-has-at-most-two-elements-lemma : (x y : ℍ) → ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥ ℍ-has-at-most-two-elements-lemma x@(p@(P , i) , p-is-ws) y@(q@(Q , j) , q-is-ws) = II where QP : ∥ Q + (Q → P) ∥ QP = widespread-gives-widespread' pt p p-is-ws q PQ : ∥ P + (P → Q) ∥ PQ = widespread-gives-widespread' pt q q-is-ws p I : (Q + (Q → P)) → (P + (P → Q)) → (𝕥 = x) + (x = y) + (y = 𝕥) I (inl q) _ = inr (inr (to-ℍ-=' y 𝕥 ((λ _ → ⋆) , (λ _ → q)))) I (inr _) (inl p) = inl (to-ℍ-=' 𝕥 x ((λ _ → p) , (λ _ → ⋆))) I (inr qp) (inr pq) = inr (inl (to-ℍ-=' x y (pq , qp))) II : ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥ II = ∥∥-functor₂ I QP PQ \end{code} And so ℍ has at most two elements, in the sense that among any three elements of ℍ, two of them are equal. \begin{code} ℍ-has-at-most-two-elements : (x y z : ℍ) → ∥ (z = x) + (x = y) + (y = z) ∥ ℍ-has-at-most-two-elements x y z = V where I : ∥ (𝕥 = x) + (x = y) + (y = 𝕥) ∥ I = ℍ-has-at-most-two-elements-lemma x y II : ∥ (𝕥 = y) + (y = z) + (z = 𝕥) ∥ II = ℍ-has-at-most-two-elements-lemma y z III : ∥ (𝕥 = z) + (z = x) + (x = 𝕥) ∥ III = ℍ-has-at-most-two-elements-lemma z x IV : (𝕥 = x) + (x = y) + (y = 𝕥) → (𝕥 = y) + (y = z) + (z = 𝕥) → (𝕥 = z) + (z = x) + (x = 𝕥) → (z = x) + (x = y) + (y = z) IV (inl a) (inl b) _ = inr (inl (a ⁻¹ ∙ b)) IV (inl _) (inr (inl b)) _ = inr (inr b) IV (inl a) (inr (inr b)) _ = inl (b ∙ a) IV (inr (inl a)) (inl _) _ = inr (inl a) IV (inr (inr _)) (inl b) (inl c) = inr (inr (b ⁻¹ ∙ c)) IV (inr (inr _)) (inl _) (inr (inl c)) = inl c IV (inr (inr _)) (inl b) (inr (inr c)) = inr (inl (c ∙ b)) IV (inr (inl a)) (inr _) _ = inr (inl a) IV (inr (inr _)) (inr (inl b)) _ = inr (inr b) IV (inr (inr a)) (inr (inr b)) _ = inr (inr (a ∙ b ⁻¹)) V : ∥ (z = x) + (x = y) + (y = z) ∥ V = ∥∥-functor₃ IV I II III \end{code} We have the following corollary. \begin{code} Aut-Ω-has-at-most-two-elements : (f g h : Aut Ω) → ∥ (h = f) + (f = g) + (g = h) ∥ Aut-Ω-has-at-most-two-elements f g h = II where ϕ = ⌜ ℍ-to-Aut-Ω-equivalence ⌝⁻¹ ϕ-lc = equivs-are-lc ϕ ⌜ ℍ-to-Aut-Ω-equivalence ⌝⁻¹-is-equiv I : ∥ (ϕ h = ϕ f) + (ϕ f = ϕ g) + (ϕ g = ϕ h) ∥ I = ℍ-has-at-most-two-elements (ϕ f) (ϕ g) (ϕ h) II : ∥ (h = f) + (f = g) + (g = h) ∥ II = ∥∥-functor (+functor₂ ϕ-lc ϕ-lc ϕ-lc) I \end{code} By the above development, the assertion that Aut Ω is a singleton (or equivalently a proposition, because it is pointed) is a stronger principle than the negation of the law of excluded middle.