Martin Escardo, 3rd November 2023.
The symmetric group on a set X, namely the group of automorphisms on X
under composition with the identity automorphism as the unit.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import UF.FunExt
module Groups.Symmetric (fe : Fun-Ext) where
open import Groups.Type
open import MLTT.Spartan
open import UF.Sets
open import UF.Equiv
open import UF.Equiv-FunExt
private
fe' : FunExt
fe' ๐ค ๐ฅ = fe {๐ค} {๐ฅ}
symmetric-group : (X : ๐ค ฬ ) โ is-set X โ Group ๐ค
symmetric-group X X-is-set =
Aut X ,
_โ_ ,
โ-is-set fe X-is-set ,
(ฮป ๐ ๐ ๐ โ (โ-assoc fe' ๐ ๐ ๐)โปยน) ,
๐๐ ,
โ-refl-left fe' ,
โ-refl-right fe' ,
(ฮป ๐ โ โ-sym ๐ , โ-sym-left-inverse fe' ๐ , โ-sym-right-inverse fe' ๐)
\end{code}