Martin Escardo, 3rd November 2023. The symmetric group on a set X, namely the group of automorphisms on X under composition with the identity automorphism as the unit. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module Groups.Symmetric (fe : Fun-Ext) where open import Groups.Type open import MLTT.Spartan open import UF.Sets open import UF.Equiv open import UF.Equiv-FunExt private fe' : FunExt fe' ๐ค ๐ฅ = fe {๐ค} {๐ฅ} symmetric-group : (X : ๐ค ฬ ) โ is-set X โ Group ๐ค symmetric-group X X-is-set = Aut X , _โ_ , โ-is-set fe X-is-set , (ฮป ๐ ๐ ๐ โ (โ-assoc fe' ๐ ๐ ๐)โปยน) , ๐๐ , โ-refl-left fe' , โ-refl-right fe' , (ฮป ๐ โ โ-sym ๐ , โ-sym-left-inverse fe' ๐ , โ-sym-right-inverse fe' ๐) \end{code}