Martin Escardo, Paulo Oliva, 2023 with many additions Decemnber 2024 (Strong, wild) monads on types. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.Equiv open import UF.FunExt module Games.Monad where record Monad : Type₁ where constructor monad field functor : Type → Type η : {X : Type} → X → functor X ext : {X Y : Type} → (X → functor Y) → functor X → functor Y ext-η : {X : Type} → ext (η {X}) ∼ 𝑖𝑑 (functor X) unit : {X Y : Type} (f : X → functor Y) → ext f ∘ η ∼ f assoc : {X Y Z : Type} (g : Y → functor Z) (f : X → functor Y) → ext (ext g ∘ f) ∼ ext g ∘ ext f private T = functor map : {X Y : Type} → (X → Y) → T X → T Y map f = ext (η ∘ f) map-id : {X : Type} → map (𝑖𝑑 X) ∼ 𝑖𝑑 (T X) map-id = ext-η map-∘ : funext₀ → {X Y Z : Type} (f : X → Y) (g : Y → Z) → map (g ∘ f) ∼ map g ∘ map f map-∘ fe f g t = map (g ∘ f) t =⟨ refl ⟩ ext (λ x → η (g (f x))) t =⟨ by-unit ⟩ ext (λ x → ext (λ y → η (g y)) (η (f x))) t =⟨ by-assoc ⟩ ext (λ x → η (g x)) (ext (λ x → η (f x)) t) =⟨ refl ⟩ (map g ∘ map f) t ∎ where by-unit = ap (λ - → ext - t) (dfunext fe (λ x → (unit (λ y → η (g y)) (f x))⁻¹)) by-assoc = assoc (λ x → η (g x)) (λ x → η (f x)) t map-∘₃ : funext₀ → {X Y Z T : Type} (f : X → Y) (g : Y → Z) (h : Z → T) → map (h ∘ g ∘ f) ∼ map h ∘ map g ∘ map f map-∘₃ fe f g h t = map (h ∘ g ∘ f) t =⟨ by-functoriality ⟩ (map (h ∘ g) ∘ map f) t =⟨ again-by-functoriality ⟩ (map h ∘ map g) (map f t) =⟨ refl ⟩ (map h ∘ map g ∘ map f) t ∎ where by-functoriality = map-∘ fe f (h ∘ g) t again-by-functoriality = ap (λ - → (- ∘ map f) t) (dfunext fe (map-∘ fe g h)) μ : {X : Type} → T (T X) → T X μ = ext id ext-is-μ-map : funext₀ → {X Y : Type} (f : X → T Y) → ext f ∼ μ ∘ map f ext-is-μ-map fe f tt = ext f tt =⟨ by-unit ⁻¹ ⟩ ext (ext id ∘ η ∘ f) tt =⟨ by-assoc ⟩ (ext id ∘ ext (η ∘ f)) tt =⟨ refl ⟩ (μ ∘ map f) tt ∎ where by-unit = ap (λ - → ext (- ∘ f) tt) (dfunext fe (unit id)) by-assoc = assoc id (η ∘ f) tt μ-assoc : funext₀ → {X : Type} → μ {X} ∘ map (μ {X}) ∼ μ {X} ∘ μ {T X} μ-assoc fe ttt = (μ ∘ map μ) ttt =⟨ (ext-is-μ-map fe μ ttt)⁻¹ ⟩ ext μ ttt =⟨ refl ⟩ ext (ext id ∘ id) ttt =⟨ assoc id id ttt ⟩ ext id (ext id ttt) =⟨ refl ⟩ (μ ∘ μ) ttt ∎ η-natural : {X Y : Type} (h : X → Y) → map h ∘ η {X} ∼ η {Y} ∘ h η-natural h x = map h (η x) =⟨ refl ⟩ ext (λ x → η (h x)) (η x) =⟨ unit (λ x → η (h x)) x ⟩ η (h x) ∎ μ-natural : funext₀ → {X Y : Type} (h : X → Y) → map h ∘ μ {X} ∼ μ {Y} ∘ map (map h) μ-natural fe h tt = (map h ∘ μ) tt =⟨ refl ⟩ ext (η ∘ h) (ext id tt) =⟨ by-assoc ⁻¹ ⟩ ext (ext (η ∘ h)) tt =⟨ by-unit ⁻¹ ⟩ ext (λ t → ext id (η (ext (η ∘ h) t))) tt =⟨ again-by-assoc ⟩ ext id (ext (λ t → η (ext (η ∘ h) t)) tt) =⟨ refl ⟩ (μ ∘ map (map h)) tt ∎ where by-assoc = assoc (λ x → η (h x)) id tt by-unit = ap (λ - → ext - tt) (dfunext fe (λ t → unit id (ext (η ∘ h) t))) again-by-assoc = assoc id (λ x → η (ext (η ∘ h) x)) tt η-unit₀ : {X : Type} → μ {X} ∘ η {T X} ∼ id η-unit₀ t = μ (η t) =⟨ refl ⟩ ext id (η t) =⟨ unit id t ⟩ t ∎ η-unit₁ : funext₀ → {X : Type} → μ {X} ∘ map (η {X}) ∼ id η-unit₁ fe t = μ (map η t) =⟨ refl ⟩ ext id (ext (η ∘ η) t) =⟨ by-assoc ⟩ ext (λ x → ext id (η (η x))) t =⟨ by-unit ⟩ ext η t =⟨ ext-η t ⟩ t ∎ where by-assoc = (assoc id (λ x → η (η x)) t)⁻¹ by-unit = ap (λ - → ext - t) (dfunext fe (λ x → unit id (η x))) _⊗_ : {X : Type} {Y : X → Type} → T X → ((x : X) → T (Y x)) → T (Σ x ꞉ X , Y x) t ⊗ f = ext (λ x → map (λ y → x , y) (f x)) t open Monad public tensor : (𝕋 : Monad) {X : Type} {Y : X → Type} → functor 𝕋 X → ((x : X) → functor 𝕋 (Y x)) → functor 𝕋 (Σ x ꞉ X , Y x) tensor 𝕋 = _⊗_ 𝕋 syntax tensor 𝕋 t f = t ⊗[ 𝕋 ] f 𝕀𝕕 : Monad 𝕀𝕕 = record { functor = id ; η = id ; ext = id ; ext-η = λ x → refl ; unit = λ f x → refl ; assoc = λ g f x → refl } 𝕀𝕕⊗ : {X : Type} {Y : X → Type} (x : X) (f : (x : X) → (Y x)) → x ⊗[ 𝕀𝕕 ] f = x , f x 𝕀𝕕⊗ x f = refl \end{code} If we want to call a monad T, then we can use the following module: \begin{code} module T-definitions (𝕋 : Monad) where T : Type → Type T = functor 𝕋 ηᵀ : {X : Type} → X → T X ηᵀ = η 𝕋 extᵀ : {X Y : Type} → (X → T Y) → T X → T Y extᵀ = ext 𝕋 extᵀ-η : {X : Type} → extᵀ (ηᵀ {X}) ∼ 𝑖𝑑 (T X) extᵀ-η = ext-η 𝕋 unitᵀ : {X Y : Type} (f : X → T Y) → extᵀ f ∘ ηᵀ ∼ f unitᵀ = unit 𝕋 assocᵀ : {X Y Z : Type} (g : Y → T Z) (f : X → T Y) → extᵀ (extᵀ g ∘ f) ∼ extᵀ g ∘ extᵀ f assocᵀ = assoc 𝕋 mapᵀ : {X Y : Type} → (X → Y) → T X → T Y mapᵀ = map 𝕋 mapᵀ-id : {X : Type} → mapᵀ (𝑖𝑑 X) ∼ 𝑖𝑑 (T X) mapᵀ-id = map-id 𝕋 mapᵀ-∘ : funext₀ → {X Y Z : Type} (f : X → Y) (g : Y → Z) → mapᵀ (g ∘ f) ∼ mapᵀ g ∘ mapᵀ f mapᵀ-∘ = map-∘ 𝕋 ηᵀ-natural : {X Y : Type} (f : X → Y) → mapᵀ f ∘ ηᵀ ∼ ηᵀ ∘ f ηᵀ-natural = η-natural 𝕋 μᵀ : {X : Type} → T (T X) → T X μᵀ = μ 𝕋 μᵀ-natural : funext₀ → {X Y : Type} (h : X → Y) → mapᵀ h ∘ μᵀ {X} ∼ μᵀ {Y} ∘ mapᵀ (mapᵀ h) μᵀ-natural = μ-natural 𝕋 ηᵀ-unit₀ : {X : Type} → μᵀ {X} ∘ ηᵀ {T X} ∼ id ηᵀ-unit₀ = η-unit₀ 𝕋 ηᵀ-unit₁ : funext₀ → {X : Type} → μᵀ {X} ∘ mapᵀ (ηᵀ {X}) ∼ id ηᵀ-unit₁ = η-unit₁ 𝕋 _⊗ᵀ_ : {X : Type} {Y : X → Type} → T X → ((x : X) → T (Y x)) → T (Σ x ꞉ X , Y x) _⊗ᵀ_ = _⊗_ 𝕋 \end{code} For some results, we need our monad to satisfy the condition extᵀ-const defined below. Ohad Kammar pointed out to us that this condition is equivalent to the monad being affine. We include his proof here. References given by Ohad Kammar and Alex Simpson: [1] Anders Kock, Bilinearity and Cartesian closed monads, Math. Stand. 29 (1971) 161-174. https://users-math.au.dk/kock/BCCM.pdf [2] https://www.denotational.co.uk/publications/kammar-plotkin-algebraic-foundations-for-effect-dependent-optimisations.pdf [3] https://www.denotational.co.uk/publications/kammar-ohad-thesis.pdf [4] Gavin Wraith mentions affine theories in his lecture notes form 1969 (Prop. 3.5 here: https://www.denotational.co.uk/scans/wraith-algebraic-theories.pdf) [5] Bart Jacobs' "Semantics of weakening and contraction". https://doi.org/10.1016/0168-0072(94)90020-5 \begin{code} module _ (𝕋 : Monad) where open T-definitions 𝕋 is-affine : Type is-affine = is-equiv (ηᵀ {𝟙}) ext-const' : Type → Type₁ ext-const' X = {Y : Type} (u : T Y) → extᵀ (λ (x : X) → u) ∼ λ (t : T X) → u ext-const : Type₁ ext-const = {X : Type} → ext-const' X affine-gives-ext-const' : Fun-Ext → is-affine → ext-const' 𝟙 affine-gives-ext-const' fe a {Y} u t = γ where f = λ (x : 𝟙) → u I : f ∘ inverse (ηᵀ {𝟙}) a ∼ extᵀ f I s = (f ∘ inverse ηᵀ a) s =⟨ I₀ ⟩ extᵀ f (ηᵀ (inverse ηᵀ a s)) =⟨ I₁ ⟩ extᵀ f s ∎ where I₀ = (unitᵀ f (inverse ηᵀ a s))⁻¹ I₁ = ap (extᵀ f) (inverses-are-sections ηᵀ a s) γ : extᵀ f t = u γ = extᵀ f t =⟨ (ap (λ - → - t) (dfunext fe I))⁻¹ ⟩ (f ∘ inverse (ηᵀ {𝟙}) a) t =⟨ refl ⟩ u ∎ affine-gives-ext-const : Fun-Ext → is-affine → ext-const affine-gives-ext-const fe a {X} {Y} u t = γ where g : X → T Y g _ = u f : T 𝟙 → T Y f _ = u h : 𝟙 → T Y h _ = u k : X → T 𝟙 k = ηᵀ {𝟙} ∘ unique-to-𝟙 I : extᵀ h = f I = dfunext fe (affine-gives-ext-const' fe a u) γ = extᵀ g t =⟨ refl ⟩ extᵀ (f ∘ k) t =⟨ ap (λ - → extᵀ (- ∘ k) t) (I ⁻¹) ⟩ extᵀ (extᵀ h ∘ k) t =⟨ assocᵀ h k t ⟩ extᵀ h (extᵀ k t) =⟨ ap (λ - → - (extᵀ k t)) I ⟩ f (extᵀ k t) =⟨ refl ⟩ u ∎ ext-const-gives-affine : ext-const → is-affine ext-const-gives-affine ϕ = γ where η⁻¹ : T 𝟙 → 𝟙 η⁻¹ t = ⋆ I : η⁻¹ ∘ ηᵀ ∼ id I ⋆ = refl II : ηᵀ ∘ η⁻¹ ∼ id II t = (ηᵀ ∘ η⁻¹) t =⟨ refl ⟩ ηᵀ ⋆ =⟨ (ϕ {𝟙} (ηᵀ ⋆) t)⁻¹ ⟩ extᵀ (λ x → ηᵀ ⋆) t =⟨ refl ⟩ extᵀ ηᵀ t =⟨ extᵀ-η t ⟩ t ∎ γ : is-equiv (ηᵀ {𝟙}) γ = qinvs-are-equivs ηᵀ (η⁻¹ , I , II) \end{code} Monad algebras. \begin{code} record Algebra (𝕋 : Monad) (A : Type) : Type₁ where field structure-map : functor 𝕋 A → A aunit : structure-map ∘ η 𝕋 ∼ id aassoc : structure-map ∘ ext 𝕋 (η 𝕋 ∘ structure-map) ∼ structure-map ∘ ext 𝕋 id open T-definitions 𝕋 private α = structure-map extension : {X : Type} → (X → A) → T X → A extension f = α ∘ mapᵀ f _extends_ : {X : Type} → (T X → A) → (X → A) → Type g extends f = g ∘ ηᵀ ∼ f extension-property : {X : Type} (f : X → A) → (extension f) extends f extension-property f x = (extension f ∘ ηᵀ) x =⟨ refl ⟩ α (mapᵀ f (ηᵀ x)) =⟨ ap α (ηᵀ-natural f x) ⟩ α (ηᵀ (f x)) =⟨ aunit (f x) ⟩ f x ∎ is-hom-from-free : {X : Type} → (T X → A) → Type is-hom-from-free h = h ∘ μᵀ ∼ α ∘ mapᵀ h extension-is-hom : funext₀ → {X : Type} (f : X → A) → is-hom-from-free (extension f) extension-is-hom fe f tt = (extension f ∘ μᵀ) tt =⟨ refl ⟩ (α ∘ mapᵀ f ∘ μᵀ) tt =⟨ ap α (μᵀ-natural fe f tt) ⟩ (α ∘ μᵀ ∘ mapᵀ (mapᵀ f)) tt =⟨ (aassoc (mapᵀ (mapᵀ f) tt))⁻¹ ⟩ (α ∘ mapᵀ α ∘ mapᵀ (mapᵀ f)) tt =⟨ ap α ((mapᵀ-∘ fe (mapᵀ f) α tt)⁻¹) ⟩ (α ∘ mapᵀ (α ∘ mapᵀ f)) tt =⟨ refl ⟩ (α ∘ mapᵀ (extension f)) tt ∎ at-most-one-extension : funext₀ → {X : Type} (g h : T X → A) → g ∘ ηᵀ ∼ h ∘ ηᵀ → is-hom-from-free g → is-hom-from-free h → g ∼ h at-most-one-extension fe g h g-h-agreement g-is-hom h-is-hom tt = g tt =⟨ refl ⟩ (g ∘ id) tt =⟨ by-unit₁ ⁻¹ ⟩ (g ∘ μᵀ ∘ mapᵀ ηᵀ) tt =⟨ by-g-is-hom ⟩ (α ∘ mapᵀ g ∘ mapᵀ ηᵀ) tt =⟨ by-functoriality ⁻¹ ⟩ (α ∘ mapᵀ (g ∘ ηᵀ)) tt =⟨ by-agreement ⟩ (α ∘ mapᵀ (h ∘ ηᵀ)) tt =⟨ by-functoriality-again ⟩ (α ∘ mapᵀ h ∘ mapᵀ ηᵀ) tt =⟨ by-h-is-hom ⁻¹ ⟩ (h ∘ μᵀ ∘ mapᵀ ηᵀ) tt =⟨ by-unit₁-again ⟩ h tt ∎ where by-unit₁ = ap g (ηᵀ-unit₁ fe tt) by-g-is-hom = g-is-hom (mapᵀ ηᵀ tt) by-functoriality = ap α (mapᵀ-∘ fe ηᵀ g tt) by-agreement = ap (λ - → (α ∘ mapᵀ -) tt) (dfunext fe g-h-agreement) by-functoriality-again = ap α (mapᵀ-∘ fe ηᵀ h tt) by-h-is-hom = h-is-hom (mapᵀ ηᵀ tt) by-unit₁-again = ap h (ηᵀ-unit₁ fe tt) extension-uniqueness : funext₀ → {X : Type} (f : X → A) (h : T X → A) → h extends f → is-hom-from-free h → extension f ∼ h extension-uniqueness fe f h h-extends-f h-is-hom = at-most-one-extension fe (extension f) h e (extension-is-hom fe f) h-is-hom where e : extension f ∘ ηᵀ ∼ h ∘ ηᵀ e tt = (extension f ∘ ηᵀ) tt =⟨ extension-property f tt ⟩ f tt =⟨ (h-extends-f tt)⁻¹ ⟩ (h ∘ ηᵀ) tt ∎ open Algebra public module _ (𝕋 : Monad) where open T-definitions 𝕋 free : funext₀ → (X : Type) → Algebra 𝕋 (T X) free fe X = record { structure-map = μᵀ ; aunit = ηᵀ-unit₀ ; aassoc = μ-assoc 𝕋 fe } is-hom : {A B : Type} (𝓐 : Algebra 𝕋 A) (𝓑 : Algebra 𝕋 B) → (A → B) → Type is-hom 𝓐 𝓑 h = h ∘ α ∼ β ∘ mapᵀ h where α = structure-map 𝓐 β = structure-map 𝓑 monad-extension-is-hom : (fe : funext₀) {X Y : Type} (f : X → T Y) → is-hom (free fe X) (free fe Y) (extᵀ f) monad-extension-is-hom fe {X} {Y} f tt = (extᵀ f ∘ μᵀ) tt =⟨ by-ext-is-μ-map ⟩ (μᵀ ∘ mapᵀ f ∘ μᵀ) tt =⟨ extension-is-hom (free fe Y) fe f tt ⟩ (μᵀ ∘ mapᵀ (μᵀ ∘ mapᵀ f)) tt =⟨ again-by-ext-is-μ-map ⁻¹ ⟩ (μᵀ ∘ mapᵀ (extᵀ f)) tt ∎ where by-ext-is-μ-map = ext-is-μ-map 𝕋 fe f (μᵀ tt) again-by-ext-is-μ-map = ap (λ - → (μᵀ ∘ mapᵀ -) tt) (dfunext fe (ext-is-μ-map 𝕋 fe f)) hom-∘ : funext₀ → {A B C : Type} (𝓐 : Algebra 𝕋 A) (𝓑 : Algebra 𝕋 B) (𝓒 : Algebra 𝕋 C) → (f : A → B) → (g : B → C) → is-hom 𝓐 𝓑 f → is-hom 𝓑 𝓒 g → is-hom 𝓐 𝓒 (g ∘ f) hom-∘ fe 𝓐 𝓑 𝓒 f g f-is-hom g-is-hom t = g (f (α t)) =⟨ ap g (f-is-hom t) ⟩ g (β (mapᵀ f t)) =⟨ g-is-hom (mapᵀ f t) ⟩ γ (mapᵀ g (mapᵀ f t)) =⟨ ap γ ((mapᵀ-∘ fe f g t)⁻¹) ⟩ γ (mapᵀ (g ∘ f) t) ∎ where α = structure-map 𝓐 β = structure-map 𝓑 γ = structure-map 𝓒 extension-assoc : {A : Type} (𝓐 : Algebra 𝕋 A) → funext₀ → {X Y : Type} (g : Y → A) (f : X → T Y) → extension 𝓐 (extension 𝓐 g ∘ f) ∼ extension 𝓐 g ∘ extᵀ f extension-assoc {A} 𝓐 fe {X} {Y} g f = extension-uniqueness 𝓐 fe ϕ h h-extends-ϕ h-is-hom where ϕ : X → A ϕ = extension 𝓐 g ∘ f h : T X → A h = extension 𝓐 g ∘ extᵀ f h-extends-ϕ : h ∘ ηᵀ ∼ ϕ h-extends-ϕ x = (h ∘ ηᵀ) x =⟨ refl ⟩ (extension 𝓐 g ∘ extᵀ f ∘ ηᵀ) x =⟨ ap (extension 𝓐 g) (unitᵀ f x) ⟩ (extension 𝓐 g ∘ f) x =⟨ refl ⟩ ϕ x ∎ h-is-hom : is-hom (free fe X) 𝓐 h h-is-hom = hom-∘ fe (free fe X) (free fe Y) 𝓐 (extᵀ f) (extension 𝓐 g) (monad-extension-is-hom fe f) (extension-is-hom 𝓐 fe g) \end{code} If we want to call an algebra (literally) α, we can use this module: \begin{code} module α-definitions (𝕋 : Monad) (A : Type) (𝓐 : Algebra 𝕋 A) where open T-definitions 𝕋 α : T A → A α = structure-map 𝓐 α-unitᵀ : α ∘ ηᵀ ∼ id α-unitᵀ = aunit 𝓐 α-assocᵀ : α ∘ extᵀ (ηᵀ ∘ α) ∼ α ∘ extᵀ id α-assocᵀ = aassoc 𝓐 α-assocᵀ' : α ∘ mapᵀ α ∼ α ∘ μᵀ α-assocᵀ' = α-assocᵀ α-extᵀ : {X : Type} → (X → A) → T X → A α-extᵀ = extension 𝓐 α-extᵀ-unit : {X : Type} (f : X → A) → α-extᵀ f ∘ ηᵀ ∼ f α-extᵀ-unit = extension-property 𝓐 α-extᵀ-assoc : funext₀ → {X Y : Type} (g : Y → A) (f : X → T Y) → α-extᵀ (α-extᵀ g ∘ f) ∼ α-extᵀ g ∘ extᵀ f α-extᵀ-assoc = extension-assoc 𝕋 𝓐 α-curryᵀ : {X : Type} {Y : X → Type} → ((Σ x ꞉ X , Y x) → A) → (x : X) → T (Y x) → A α-curryᵀ q x = α-extᵀ (curry q x) \end{code} TODO. Define monad morphism (for example overline is a monad morphism from J to K).