Andrew Sneap, 7 February 2021 In this file I prove that the rationals are an ordered field. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan renaming (_+_ to _∔_) open import Notation.Order open import Field.Axioms open import Rationals.Type open import Rationals.Addition open import Rationals.Multiplication open import Rationals.Negation open import Rationals.Order module Field.Rationals where _#_ : (x y : ℚ) → 𝓤₀ ̇ x # y = ¬ (x = y) 0ℚ#1ℚ : 0ℚ # 1ℚ 0ℚ#1ℚ = ℚ-zero-not-one RationalsField : Field-structure ℚ { 𝓤₀ } RationalsField = (_+_ , _*_ , _#_) , ℚ-is-set , ℚ+-assoc , ℚ*-assoc , ℚ+-comm , ℚ*-comm , ℚ-distributivity , (0ℚ , 1ℚ) , 0ℚ#1ℚ , ℚ-zero-left-neutral , ℚ+-inverse , ℚ-mult-left-id , ℚ*-inverse RationalsOrderedField : Ordered-field-structure { 𝓤₀ } { 𝓤₀ } { 𝓤₀ } ℚ RationalsField RationalsOrderedField = _<_ , ℚ<-addition-preserves-order , ℚ<-pos-multiplication-preserves-order RationalsOrderedField' : Ordered-Field 𝓤₀ { 𝓤₀ } { 𝓤₀ } RationalsOrderedField' = (ℚ , RationalsField) , RationalsOrderedField