Andrew Sneap, 7 February 2021 \begin{code} {-# OPTIONS --safe --without-K --lossy-unification #-} open import UF.PropTrunc open import UF.FunExt open import UF.Subsingletons module Field.DedekindReals (fe : Fun-Ext) (pt : propositional-truncations-exist) (pe : Prop-Ext) where {- DedekindRealsField : Field-structure ℝ { 𝓤₀ } DedekindRealsField = ({!!} , {!!} , _♯_) , ℝ-is-set , {!!} , {!!} , {!!} , {!!} , {!!} , (0ℝ , 1ℝ) , ℝ-zero-apart-from-one , {!!} , {!!} , {!!} , {!!} DedekindRealsOrderedField : Ordered-field-structure { 𝓤₁ } { 𝓤₀ } { 𝓤₀ } ℝ DedekindRealsField DedekindRealsOrderedField = _<ℝ_ , {!!} , {!!} DedekindRealsOrderedField' : Ordered-Field 𝓤₁ { 𝓤₀ } { 𝓤₀ } DedekindRealsOrderedField' = (ℝ , DedekindRealsField) , DedekindRealsOrderedField DedekindRealsArchimedeanOrderedField : ArchimedeanOrderedField 𝓤₁ DedekindRealsArchimedeanOrderedField = DedekindRealsOrderedField' , I where I : (f : ℚ → ℝ) → (x y : ℝ) → Σ z ꞉ ℚ , x < f z × f z < y I f x y = {!!} -} \end{code}