Jon Sterling, started 16th Dec 2022

A preduploid is a deductive system in which every object is polarized,
i.e. either positive or negative. Because an object could be both positive *and*
negative, it is necessary to state the preduploid axiom using a propositional
truncation. This definition differs from that of Munch-Maccagnoni (who includes
in the definition of a preduploid a choice of polarization), who has suggested
the modified definition in private communication.

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import UF.PropTrunc
open import UF.FunExt

module Duploids.Preduploid (fe : Fun-Ext) (pt : propositional-truncations-exist) where

open PropositionalTruncation pt

open import MLTT.Spartan
open import UF.Base
open import UF.Equiv
open import UF.Sets-Properties
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
open import UF.Subsingletons-Properties

open import Categories.Category fe
open import Duploids.DeductiveSystem fe

module _ (๐““ : deductive-system ๐“ค ๐“ฅ) where
 open deductive-system ๐““
 open โŠข-properties ๐““
 open polarities ๐““

 is-polarized : (A : ob) โ†’ ๐“ค โŠ” ๐“ฅ ฬ‡
 is-polarized A = โˆฅ is-positive A + is-negative A โˆฅ

 being-polarized-is-prop : {A : ob} โ†’ is-prop (is-polarized A)
 being-polarized-is-prop = โˆฅโˆฅ-is-prop

 preduploid-axioms : ๐“ค โŠ” ๐“ฅ ฬ‡
 preduploid-axioms = (A : ob) โ†’ is-polarized A

 preduploid-axioms-is-prop : is-prop preduploid-axioms
 preduploid-axioms-is-prop =
  ฮ -is-prop fe ฮป _ โ†’
  being-polarized-is-prop

-- TODO: consider flattening the structure
record preduploid (๐“ค ๐“ฅ : Universe) : (๐“ค โŠ” ๐“ฅ)โบ ฬ‡ where
 constructor make
 field
  str : deductive-system ๐“ค ๐“ฅ
  ax : preduploid-axioms str

 underlying-deductive-system = str

 open deductive-system underlying-deductive-system hiding (str ; ax) public

 ob-is-polarized : (A : ob) โ†’ is-polarized str A
 ob-is-polarized = ax

module preduploid-as-sum (๐“ค ๐“ฅ : Universe) where
 to-sum : preduploid ๐“ค ๐“ฅ โ†’ ฮฃ str ๊ž‰ deductive-system ๐“ค ๐“ฅ , preduploid-axioms str
 to-sum ๐““ = let open preduploid ๐““ in str , ax

 from-sum : (ฮฃ str ๊ž‰ deductive-system ๐“ค ๐“ฅ , preduploid-axioms str) โ†’ preduploid ๐“ค ๐“ฅ
 from-sum ๐““ = make (prโ‚ ๐““) (prโ‚‚ ๐““)

 to-sum-is-equiv : is-equiv to-sum
 prโ‚ (prโ‚ to-sum-is-equiv) = from-sum
 prโ‚‚ (prโ‚ to-sum-is-equiv) _ = refl
 prโ‚ (prโ‚‚ to-sum-is-equiv) = from-sum
 prโ‚‚ (prโ‚‚ to-sum-is-equiv) _ = refl

 equiv : preduploid ๐“ค ๐“ฅ โ‰ƒ (ฮฃ str ๊ž‰ deductive-system ๐“ค ๐“ฅ , preduploid-axioms str)
 equiv = to-sum , to-sum-is-equiv
\end{code}

It is currently not totally clear what the correct statement of univalence for a
preduploid is, but one option (inspired by the identification of preduploids
with adjunctions) is to have two univalence conditions: one for thunkable maps
between positive objects and another for linear maps between negative objects.

\begin{code}
module _ (๐““ : preduploid ๐“ค ๐“ฅ) where
 open preduploid ๐““

 module preduploid-univalence where
  open polarities underlying-deductive-system
  open โŠข-properties underlying-deductive-system

  module _ (A B : ob) where
   module _ (f : A โŠข B) where
    is-thunkable-iso : ๐“ค โŠ” ๐“ฅ ฬ‡
    is-thunkable-iso = is-thunkable f ร— (ฮฃ g ๊ž‰ (B โŠข A) , is-inverse f g)

    is-linear-iso : ๐“ค โŠ” ๐“ฅ ฬ‡
    is-linear-iso = is-linear f ร— (ฮฃ g ๊ž‰ (B โŠข A) , is-inverse f g)

   thunkable-iso : ๐“ค โŠ” ๐“ฅ ฬ‡
   thunkable-iso = ฮฃ f ๊ž‰ A โŠข B , is-thunkable-iso f

   linear-iso : ๐“ค โŠ” ๐“ฅ ฬ‡
   linear-iso = ฮฃ f ๊ž‰ A โŠข B , is-linear-iso f

  ๏ผ-to-thunkable-iso : (A B : ob) โ†’ A ๏ผ B โ†’ thunkable-iso A B
  ๏ผ-to-thunkable-iso A .A refl =
   idn A , idn-thunkable A , idn A , idn-L _ _ _ , idn-L _ _ _

  ๏ผ-to-linear-iso : (A B : ob) โ†’ A ๏ผ B โ†’ linear-iso A B
  ๏ผ-to-linear-iso A B refl =
   idn A , idn-linear A , idn A , idn-L _ _ _ , idn-L _ _ _

  is-positively-univalent : ๐“ค โŠ” ๐“ฅ ฬ‡
  is-positively-univalent =
   (A B : ob)
   โ†’ is-positive A
   โ†’ is-positive B
   โ†’ is-equiv (๏ผ-to-thunkable-iso A B)

  is-negatively-univalent : ๐“ค โŠ” ๐“ฅ ฬ‡
  is-negatively-univalent =
   (A B : ob)
   โ†’ is-negative A
   โ†’ is-negative B
   โ†’ is-equiv (๏ผ-to-linear-iso A B)

  is-univalent : ๐“ค โŠ” ๐“ฅ ฬ‡
  is-univalent = is-positively-univalent ร— is-negatively-univalent
\end{code}

Several *categories* can be obtained from a given preduploid:

1. The category of negative objects and all maps.
2. The category of positive objects and all maps.
3. The category of negative objects and linear maps.
4. The category of positive objects and linear maps.

We define these below, and they will play a role in the structure theorem that
identifies duploids with adjunctions; it is also possible to consider the full
subcategories of a preduploid spanned by linear or thunkable maps. We have not
implemented these yet.

\begin{code}
module NegativesAndAllMaps (๐““ : preduploid ๐“ค ๐“ฅ) where
 module ๐““ = preduploid ๐““
 open polarities ๐““.underlying-deductive-system

 ob : ๐“ค โŠ” ๐“ฅ ฬ‡
 ob = ฮฃ A ๊ž‰ ๐““.ob , is-negative A

 hom : ob โ†’ ob โ†’ ๐“ฅ ฬ‡
 hom A B = prโ‚ A ๐““.โŠข prโ‚ B

 idn : (A : ob) โ†’ hom A A
 idn A = ๐““.idn (prโ‚ A)

 seq : (A B C : ob) โ†’ hom A B โ†’ hom B C โ†’ hom A C
 seq _ _ _ f g = ๐““.cut f g

 cat-data : category-structure (๐“ค โŠ” ๐“ฅ) ๐“ฅ
 cat-data = ob , hom , idn , seq

 module _ (open category-axiom-statements) where
  hom-is-set : statement-hom-is-set cat-data
  hom-is-set A B = ๐““.โŠข-is-set (prโ‚ A) (prโ‚ B)

  idn-L : statement-idn-L cat-data
  idn-L A B = ๐““.idn-L (prโ‚ A) (prโ‚ B)

  idn-R : statement-idn-R cat-data
  idn-R A B = ๐““.idn-R (prโ‚ A) (prโ‚ B)

  assoc : statement-assoc cat-data
  assoc A B C D f g h = prโ‚‚ B (prโ‚ A) f (prโ‚ C) (prโ‚ D) g h โปยน

  precat : precategory (๐“ค โŠ” ๐“ฅ) ๐“ฅ
  precat = make cat-data (hom-is-set , idn-L , idn-R , assoc)

module PositivesAndAllMaps (๐““ : preduploid ๐“ค ๐“ฅ) where
 module ๐““ = preduploid ๐““
 open polarities ๐““.underlying-deductive-system

 ob : ๐“ค โŠ” ๐“ฅ ฬ‡
 ob = ฮฃ A ๊ž‰ ๐““.ob , is-positive A

 hom : ob โ†’ ob โ†’ ๐“ฅ ฬ‡
 hom A B = prโ‚ A ๐““.โŠข prโ‚ B

 idn : (A : ob) โ†’ hom A A
 idn A = ๐““.idn (prโ‚ A)

 seq : (A B C : ob) โ†’ hom A B โ†’ hom B C โ†’ hom A C
 seq _ _ _ f g = ๐““.cut f g

 cat-data : category-structure (๐“ค โŠ” ๐“ฅ) ๐“ฅ
 cat-data = ob , hom , idn , seq

 module _ (open category-axiom-statements) where
  hom-is-set : statement-hom-is-set cat-data
  hom-is-set A B = ๐““.โŠข-is-set (prโ‚ A) (prโ‚ B)

  idn-L : statement-idn-L cat-data
  idn-L A B = ๐““.idn-L (prโ‚ A) (prโ‚ B)

  idn-R : statement-idn-R cat-data
  idn-R A B = ๐““.idn-R (prโ‚ A) (prโ‚ B)

  assoc : statement-assoc cat-data
  assoc A B C D f g h = prโ‚‚ C (prโ‚ D) h (prโ‚ A) (prโ‚ B) g f โปยน

  precat : precategory (๐“ค โŠ” ๐“ฅ) ๐“ฅ
  precat = make cat-data (hom-is-set , idn-L , idn-R , assoc)


module NegativesAndLinearMaps (๐““ : preduploid ๐“ค ๐“ฅ) where
 module ๐““ = preduploid ๐““
 open polarities ๐““.underlying-deductive-system
 open โŠข-properties ๐““.underlying-deductive-system

 ob : ๐“ค โŠ” ๐“ฅ ฬ‡
 ob = ฮฃ A ๊ž‰ ๐““.ob , is-negative A

 hom : ob โ†’ ob โ†’ ๐“ค โŠ” ๐“ฅ ฬ‡
 hom A B = ฮฃ f ๊ž‰ (prโ‚ A ๐““.โŠข prโ‚ B) , is-linear f

 idn : (A : ob) โ†’ hom A A
 prโ‚ (idn A) = ๐““.idn (prโ‚ A)
 prโ‚‚ (idn A) = idn-linear (prโ‚ A)

 seq : (A B C : ob) โ†’ hom A B โ†’ hom B C โ†’ hom A C
 prโ‚ (seq _ _ _ f g) = ๐““.cut (prโ‚ f) (prโ‚ g)
 prโ‚‚ (seq _ _ _ f g) = cut-linear (prโ‚ f) (prโ‚ g) (prโ‚‚ f) (prโ‚‚ g)

 cat-data : category-structure (๐“ค โŠ” ๐“ฅ) (๐“ค โŠ” ๐“ฅ)
 cat-data = ob , hom , idn , seq

 open category-axiom-statements

 module _ (A B : ob) (f g : hom A B) where
  to-hom-๏ผ : prโ‚ f ๏ผ prโ‚ g โ†’ f ๏ผ g
  to-hom-๏ผ h = to-ฮฃ-๏ผ (h , being-linear-is-prop _ _)

 hom-is-set : statement-hom-is-set cat-data
 hom-is-set A B =
  ฮฃ-is-set (๐““.โŠข-is-set (prโ‚ A) (prโ‚ B)) ฮป _ โ†’
  props-are-sets being-linear-is-prop

 idn-L : statement-idn-L cat-data
 idn-L A B f = to-hom-๏ผ A B _ _ (๐““.idn-L (prโ‚ A) (prโ‚ B) (prโ‚ f))

 idn-R : statement-idn-R cat-data
 idn-R A B f = to-hom-๏ผ A B _ _ (๐““.idn-R (prโ‚ A) (prโ‚ B) (prโ‚ f))

 assoc : statement-assoc cat-data
 assoc A B C D f g h =
  to-hom-๏ผ A D _ _
   (prโ‚‚ B (prโ‚ A) (prโ‚ f) (prโ‚ C) (prโ‚ D) (prโ‚ g) (prโ‚ h) โปยน)

 precat : precategory (๐“ค โŠ” ๐“ฅ) (๐“ค โŠ” ๐“ฅ)
 precat = make cat-data (hom-is-set , idn-L , idn-R , assoc)


module PositivesAndThunkableMaps (๐““ : preduploid ๐“ค ๐“ฅ) where
 module ๐““ = preduploid ๐““
 open polarities ๐““.underlying-deductive-system
 open โŠข-properties ๐““.underlying-deductive-system

 ob : ๐“ค โŠ” ๐“ฅ ฬ‡
 ob = ฮฃ A ๊ž‰ ๐““.ob , is-positive A

 hom : ob โ†’ ob โ†’ ๐“ค โŠ” ๐“ฅ ฬ‡
 hom A B = ฮฃ f ๊ž‰ (prโ‚ A ๐““.โŠข prโ‚ B) , is-thunkable f

 idn : (A : ob) โ†’ hom A A
 prโ‚ (idn A) = ๐““.idn (prโ‚ A)
 prโ‚‚ (idn A) = idn-thunkable (prโ‚ A)

 seq : (A B C : ob) โ†’ hom A B โ†’ hom B C โ†’ hom A C
 prโ‚ (seq _ _ _ f g) = ๐““.cut (prโ‚ f) (prโ‚ g)
 prโ‚‚ (seq _ _ _ f g) = cut-thunkable (prโ‚ f) (prโ‚ g) (prโ‚‚ f) (prโ‚‚ g)

 cat-data : category-structure (๐“ค โŠ” ๐“ฅ) (๐“ค โŠ” ๐“ฅ)
 cat-data = ob , hom , idn , seq

 open category-axiom-statements

 module _ (A B : ob) (f g : hom A B) where
  to-hom-๏ผ : prโ‚ f ๏ผ prโ‚ g โ†’ f ๏ผ g
  to-hom-๏ผ h = to-ฮฃ-๏ผ (h , being-thunkable-is-prop _ _)

 hom-is-set : statement-hom-is-set cat-data
 hom-is-set A B =
  ฮฃ-is-set (๐““.โŠข-is-set (prโ‚ A) (prโ‚ B)) ฮป _ โ†’
  props-are-sets being-thunkable-is-prop

 idn-L : statement-idn-L cat-data
 idn-L A B f = to-hom-๏ผ A B _ _ (๐““.idn-L (prโ‚ A) (prโ‚ B) (prโ‚ f))

 idn-R : statement-idn-R cat-data
 idn-R A B f = to-hom-๏ผ A B _ _ (๐““.idn-R (prโ‚ A) (prโ‚ B) (prโ‚ f))

 assoc : statement-assoc cat-data
 assoc A B C D f g h =
  to-hom-๏ผ A D _ _
   (prโ‚‚ C (prโ‚ D) (prโ‚ h) (prโ‚ A) (prโ‚ B) (prโ‚ g) (prโ‚ f) โปยน)

 precat : precategory (๐“ค โŠ” ๐“ฅ) (๐“ค โŠ” ๐“ฅ)
 precat = make cat-data (hom-is-set , idn-L , idn-R , assoc)


\end{code}