Martin Escardo & Chuangjie Xu, 2015 One of Brouwer's continuity principles is the following All functions ₂ℕ → ℕ are uniformly continuous whose logical formulation is ∀ (f : ₂ℕ → ℕ , ∃ m : ℕ , ∀ α,β : ₂ℕ , α =[m] β → f α = f β where α =[m] β expresses that the sequences α and β agree up to the first m positions. \begin{code} {-# OPTIONS --safe --without-K #-} module ContinuityAxiom.UniformContinuity where open import ContinuityAxiom.ExitingTruncations open import ContinuityAxiom.Preliminaries open import MLTT.Spartan open import MLTT.Two-Properties open import UF.DiscreteAndSeparated open import UF.FunExt open import UF.Subsingletons \end{code} If function extensionality is available, then for any f : ₂ℕ → ℕ, the type UC(f) = Σ n : ℕ , ∀(α β : ₂ℕ) → α =⟦ n ] β → f α = f β has a propositional truncation, using the main lemma, because the type family A(f) : ℕ → Set, defined by A(f,n) = (α β : ₂ℕ) → α =⟦ n ] β → f α = f β, satisfies (1) A(f,n) is a proposition for all n (using funext), and (2) if A(f,n) holds then A(f,m) is decidable for all m < n. \begin{code} A : (₂ℕ → ℕ) → ℕ → Set A f n = (α β : ₂ℕ) → α =⟦ n ⟧ β → f α = f β A-is-prop : Fun-Ext → (f : ₂ℕ → ℕ) → ∀ n → is-prop (A f n) A-is-prop fe f n p q = dfunext fe (λ α → dfunext fe (λ β → dfunext fe (λ e → ℕ-is-set (p α β e) (q α β e)))) A-≤-is-decidable : ∀(f : ₂ℕ → ℕ) → ∀ n → A f n → ∀ m → m ≤ n → is-decidable (A f m) A-≤-is-decidable f 0 a _ _ = inl (λ α β _ → a α β =⟦zero⟧) A-≤-is-decidable f (succ n) a m r = cases c₀ c₁ (Lemma[n≤m+1→n≤m+n=m+1] r) where c₀ : m ≤ n → is-decidable (A f m) c₀ r' = cases sc₀' sc₁' claim where claim : is-decidable ((s : ₂Fin n) → f (cons s 0̄) = f (cons s 1̄)) claim = Lemma[₂Fin-decidability] n (λ s → f (cons s 0̄) = f (cons s 1̄)) (λ s → ℕ-is-discrete (f (cons s 0̄)) (f (cons s 1̄))) sc₀ : ((s : ₂Fin n) → f (cons s 0̄) = f (cons s 1̄)) → (α β : ₂ℕ) → α =⟦ n ⟧ β → f α = f β sc₀ efs α β en = cases ssc₀ ssc₁ (𝟚-is-discrete (α n) (β n)) where ssc₀ : α n = β n → f α = f β ssc₀ e = a α β (=⟦succ⟧ en e) ssc₁ : ¬ (α n = β n) → f α = f β ssc₁ ne = cases sssc₀ sssc₁ Lemma[b=₀+b=₁] where s : ₂Fin n s = take n α sssc₀ : α n = ₀ → f α = f β sssc₀ eα₀ = claim₁ ∙ (efs s) ∙ claim₃ ⁻¹ where eβ₁ : β n = ₁ eβ₁ = Lemma[b≠₀→b=₁] (λ eβ₀ → ne (eα₀ ∙ eβ₀ ⁻¹)) claim₀ : α =⟦ succ n ⟧ cons s 0̄ claim₀ = =⟦succ⟧ (Lemma[=⟦]-cons-take] n) (eα₀ ∙ (Lemma[cons-take-0] n)) claim₁ : f α = f (cons s 0̄) claim₁ = a α (cons s 0̄) claim₀ claim₂ : β =⟦ succ n ⟧ cons s 1̄ claim₂ = =⟦succ⟧ (Lemma[=⟦]-=⟦]-take] n en) (eβ₁ ∙ (Lemma[cons-take-0] n)) claim₃ : f β = f (cons s 1̄) claim₃ = a β (cons s 1̄) claim₂ sssc₁ : α n = ₁ → f α = f β sssc₁ eα₁ = claim₁ ∙ (efs s)⁻¹ ∙ claim₃ ⁻¹ where eβ₀ : β n = ₀ eβ₀ = Lemma[b≠₁→b=₀] (λ eβ₁ → ne (eα₁ ∙ eβ₁ ⁻¹)) claim₀ : α =⟦ succ n ⟧ (cons s 1̄) claim₀ = =⟦succ⟧ (Lemma[=⟦]-cons-take] n) (eα₁ ∙ (Lemma[cons-take-0] n)) claim₁ : f α = f (cons s 1̄) claim₁ = a α (cons s 1̄) claim₀ claim₂ : β =⟦ succ n ⟧ (cons s 0̄) claim₂ = =⟦succ⟧ (Lemma[=⟦]-=⟦]-take] n en) (eβ₀ ∙ (Lemma[cons-take-0] n)) claim₃ : f β = f (cons s 0̄) claim₃ = a β (cons s 0̄) claim₂ sc₀' : (∀(s : ₂Fin n) → f (cons s 0̄) = f (cons s 1̄)) → is-decidable (∀(α β : ₂ℕ) → α =⟦ m ⟧ β → f α = f β) sc₀' ps = A-≤-is-decidable f n (sc₀ ps) m r' sc₁ : ¬ (∀(s : ₂Fin n) → f (cons s 0̄) = f (cons s 1̄)) → ¬ (∀(α β : ₂ℕ) → α =⟦ m ⟧ β → f α = f β) sc₁ fs pn = fs (λ s → pn (cons s 0̄) (cons s 1̄) (Lemma[cons-=⟦]-≤] s r')) sc₁' : ¬ (∀(s : ₂Fin n) → f (cons s 0̄) = f (cons s 1̄)) → is-decidable (∀(α β : ₂ℕ) → α =⟦ m ⟧ β → f α = f β) sc₁' fs = inr (sc₁ fs) c₁ : m = succ n → is-decidable (A f m) c₁ e = inl (transport (A f) (e ⁻¹) a) \end{code} Therefore, the truncation of UC(f) exists and hence we have two formulations of the uniform continuity principle: \begin{code} UC : Set UC = (f : ₂ℕ → ℕ) → ∥Σ (\(n : ℕ) → (α β : ₂ℕ) → α =⟦ n ⟧ β → f α = f β) ∥ CH-UC : Set CH-UC = (f : ₂ℕ → ℕ) → Σ \(n : ℕ) → (α β : ₂ℕ) → α =⟦ n ⟧ β → f α = f β \end{code} Moreover, the above types are logically equivalent. \begin{code} Theorem : CH-UC ↔ UC Theorem = (λ ch-uc f → ΣA→∥ΣA∥ (A-≤-is-decidable f) (ch-uc f)) , (λ uc f → ∥ΣA∥→ΣA (uc f)) \end{code}