Martin Escardo, 12 Feb 2018. Moved from the file TotallySeparated 22 August 2024. We give a positive characterization of the negation of apartness. See also https://nforum.ncatlab.org/discussion/8282/points-of-the-localic-quotient-with-respect-to-an-apartness-relation/ \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.PropTrunc module Apartness.NegationOfApartness (pt : propositional-truncations-exist) where open import Apartness.Definition open import MLTT.Spartan open PropositionalTruncation pt open Apartness pt \end{code} The following positive formulation of ¬ (x ♯ y), which says that two elements have the same elements apart from them iff they are not apart, gives another way to see that it is an equivalence relation. As far as we know, this positive characterization of the negation of apartness is a new observation. Notice the irreflexivity is not use in the following, but irreflexivity is the only assumption about _♯_ used in the converse. \begin{code} elements-that-are-not-apart-have-the-same-apartness-class : {X : 𝓤 ̇ } (x y : X) (_♯_ : X → X → 𝓥 ̇ ) → is-apartness _♯_ → ¬ (x ♯ y) → ((z : X) → x ♯ z ↔ y ♯ z) elements-that-are-not-apart-have-the-same-apartness-class {𝓤} {𝓥} {X} x y _♯_ (p , _ , s , c) = g where g : ¬ (x ♯ y) → (z : X) → x ♯ z ↔ y ♯ z g n z = g₁ , g₂ where g₁ : x ♯ z → y ♯ z g₁ a = s z y (left-fails-gives-right-holds (p z y) b n) where b : (x ♯ y) ∨ (z ♯ y) b = c x z y a n' : ¬ (y ♯ x) n' a = n (s y x a) g₂ : y ♯ z → x ♯ z g₂ a = s z x (left-fails-gives-right-holds (p z x) b n') where b : (y ♯ x) ∨ (z ♯ x) b = c y z x a elements-with-the-same-apartness-class-are-not-apart : {X : 𝓤 ̇ } (x y : X) (_♯_ : X → X → 𝓥 ̇ ) → is-irreflexive _♯_ → ((z : X) → x ♯ z ↔ y ♯ z) → ¬ (x ♯ y) elements-with-the-same-apartness-class-are-not-apart {𝓤} {𝓥} {X} x y _♯_ i = f where f : ((z : X) → x ♯ z ↔ y ♯ z) → ¬ (x ♯ y) f φ a = i y (pr₁(φ y) a) \end{code}