Martin Escardo, 26 January 2018. Moved from the file TotallySeparated 22 August 2024. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.PropTrunc module Apartness.Examples (pt : propositional-truncations-exist) where open import Apartness.Definition open import MLTT.Spartan open import UF.SubtypeClassifier open PropositionalTruncation pt open Apartness pt \end{code} I don't think there is a tight apartness relation on Ω without constructive taboos. The natural apartness relation seems to be the following, but it isn't cotransitive unless excluded middle holds. \begin{code} _♯Ω_ : Ω 𝓤 → Ω 𝓤 → 𝓤 ̇ (P , i) ♯Ω (Q , j) = (P × ¬ Q) + (¬ P × Q) ♯Ω-irrefl : is-irreflexive (_♯Ω_ {𝓤}) ♯Ω-irrefl (P , i) (inl (p , nq)) = nq p ♯Ω-irrefl (P , i) (inr (np , q)) = np q ♯Ω-sym : is-symmetric (_♯Ω_ {𝓤}) ♯Ω-sym (P , i) (Q , j) (inl (p , nq)) = inr (nq , p) ♯Ω-sym (P , i) (Q , j) (inr (np , q)) = inl (q , np) ♯Ω-cotran-taboo : is-cotransitive (_♯Ω_ {𝓤}) → (p : Ω 𝓤) → p holds ∨ ¬ (p holds) ♯Ω-cotran-taboo c p = ∥∥-functor II I where I : (⊥ ♯Ω p) ∨ (⊤ ♯Ω p) I = c ⊥ ⊤ p (inr (𝟘-elim , ⋆)) II : (⊥ ♯Ω p) + (⊤ ♯Ω p) → (p holds) + ¬ (p holds) II (inl (inr (a , b))) = inl b II (inr (inl (a , b))) = inr b II (inr (inr (a , b))) = inl b \end{code} TODO. Show that *any* apartness relation on Ω gives weak excluded middle.