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Abstract. We construct a continuous model of Gédel’s system T and its
logic HA“ in which all functions from the Cantor space 2" to the natural
numbers are uniformly continuous. Our development is constructive, and
has been carried out in intensional type theory in Agda notation, so that,
in particular, we can compute moduli of uniform continuity of T-definable
functions 2 — N. Moreover, the model has a continuous Fan functional
of type (2" — N) — N that calculates moduli of uniform continuity. We
work with sheaves, and with a full subcategory of concrete sheaves that
can be presented as sets with structure, which can be regarded as spaces,
and whose natural transformations can be regarded as continuous maps.
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1 Introduction

Godel’s system T has a well-known topological models in which all integer-valued
functions on the Cantor space are uniformly continuous:

V2N 5 N.GneN.Va,6e€2V. a=, 8 = f(a) = f(B),

where a =,, 8 means Vi < n. a; = ;. These models include Kleene—Kreisel
functionals [19], compactly generated spaces [19], limit spaces [20], equilogical
spaces [3], sequential spaces [12], and QCB spaces [12]. However, even though
these models are introduced for the purposes of computability theory, they are
developed within a classical meta-theory.

The purpose of this paper is to develop such a topological model in a weak
constructive meta-theory, without explicit reference to computability, but with
computability in mind. In fact, we conjecture that our model is classically equiv-
alent to the model of Kleene—Kreisel spaces. Our continuous model of system T
consists of certain C-spaces, which can be seen as sheaves (see below), and is
developed in Section 2. Like the above models, this model has a Fan functional
of type (2 — N) — N that continuously calculates moduli of uniform conti-
nuity (Section 3). Importantly, we do not rely on the Fan Theorem [5] or any
such principle to construct the Fan functional. In particular, we recover the well-
known fact that the T-definable functions 2V — N are uniformly continuous [5]
by defining a logical relation between the set-theoretical and continuous models
(Section 4). To model the logic HA® extended with the above uniform continuity



axiom, we realize the logical operations by continuous functions in our model
(Section 5). We also discuss how our results can be extended to give a continuous
model of dependent types (Section 7).

As mentioned above, we develop this in a weak constructive meta-language,
which does not incorporate constructively contentious axioms such as continuity
principles, Fan Theorem, Bar Induction, or Church’s Thesis [5]. In this presenta-
tion we deliberately leave the details of the meta-language unexplained, relying
on the readers’ ability to recognize constructive arguments. One possible formal
constructive meta-language for our development is intensional Martin-Lof type
theory (MLTT), and, in fact, we have developed the main results of this paper
in Agda [6] (Section 6). Because MLTT has a computational interpretation, our
model can be used to compute moduli of uniform continuity of system T de-
finable functions 2N — N. More importantly, our model can be used to extract
computational content from proofs in HA” extended with the above uniform
continuity axiom.

Our model is a sheaf topos, with a full subcategory of concrete sheaves [2]
that can be presented as sets with structure, which can be regarded as spaces,
and whose natural transformations can be regarded as continuous maps. The
underlying category of our site is the monoid of uniformly continuous endomaps
of the Cantor space, with a natural coverage consisting of families of concatena-
tion maps. The coverage axiom amounts precisely to the uniform continuity of
the elements of our monoid. Our development of this topos is fairly standard,
but we have taken care of making sure the arguments are presented in a form
suitable for a formalization in a predicative type theory, and this is one of the
main contributions of this work.

Our work builds upon Johnstone’s paper On a topological topos (1979), Four-
man’s papers Continuous truth and Notions of choice sequence (1982), van der
Hoeven and Moerdijk’s paper Sheaf models for choice sequences (1984), Bauer
and Simpson’s unpublished work Continuity begets continuity (2006), and Co-
quand and Jaber’s paper A note on forcing and type theory (2010) and A com-
putational interpretation of forcing in type theory (2012).

Johnstone, Fourman, van der Hoeven and Moerdijk’s work with sheaf toposes
over different sites. Johnstone’s site is the monoid of continuous endo-functions
of the one-point compactification of the discrete natural numbers with the canon-
ical Grothendieck topology. A full subcategory of Johnstone’s topological topos
is that of sequential topological spaces, which is cartesian closed. A bigger full
subcategory, which is locally cartesian closed, is that of Kuratowski limit spaces.
The concrete sheaves, or spaces, in our model correspond to the Kuratowski
limit spaces in Johnstone’s construction, and are also related to Spanier’s quasi-
topological spaces [22], as we discuss in the body of the paper. Bauer and Simp-
son’s work can be seen as taking place in the topological topos.

Fourman works with a site whose underlying category is the semilattice of
finite sequences of natural numbers under the prefix order, and van der Hoeven
and Moerdijk work with a site whose underlying category is the monoid of con-
tinuous endomaps of the Baire space, and they relate their work to Fourman'’s.



Coquand and Jaber’s forcing model instead uses the semilattice of finite bi-
nary sequences under the prefix order as the underlying category of the site,
modelling the idea of a generic infinite binary sequence. They iterate their con-
struction in order to be able to model the Fan functional, and our model can be
regarded as accomplishing this iteration directly (personal communication with
Coquand).

2 Sheaves and Spaces

2.1 Sheaves and Natural Transformations

Recall that a presheaf on a small category C is a functor C°? — Set. When C is
a one-object category, i.e. a monoid, this can be formulated in terms of monoid
actions [18, §I.1]. A presheaf on a monoid (C, o,id) amounts to a set P with an
action

((pt)y—»p-t): PxC—P

such that for all p € P and t,u € C

p-id=p, p-(tou)=(p-t)-u.

A natural transformation of presheaves (P,-) and (Q,-) amounts to a function
¢: P — @ that preserves the action, i.e.

d(p-t)=(op) -t

We work with the monoid C of uniformly continuous endo-maps on the Can-
tor space 2N, that is, the functions ¢: 2N — 2N such that

vmeN. IneN.Va,8€2Y. a=,8 = tla)=n,t(B).

Notice that any continuous function 2N — 2V is uniformly continuous, assuming
classical logic or the Fan Theorem. Because we do not assume such principles, we
need to explicitly require uniform continuity in the definition of the monoid C.
Our site is the monoid C equipped with the countable coverage J consisting
of the finite covering families
(consg)sean

for all natural numbers n, where 2" is the set of binary sequences of length n
and cons, : 2V — 2N is the concatenation map:

cons; (@) = sa.

It is easy to verify that, for any n € N and for any s € 2", the concatenation
map consg is uniformly continuous and so cons, € C.

The coverage axiom specialized to our situation amounts to saying that for
allt € C,

VvmeN. In e N. Vs € 2" ' € C. Is’ € 2™. tocons, = consg ot’.  (7)

It is routine to show that:



Lemma 1. A map t: 2N — 2N satisfies (1) iff it is uniformly continuous.

Thus, not only does the coverage axiom hold, but also it amounts to the fact
that the elements of the monoid C are the uniformly continuous functions. Notice
that every covering family is jointly surjective. Because the maps in each cov-
ering family have disjoint images, we do not need to consider the compatibility
condition in the definition of sheaf:

Lemma 2. A presheaf (P,-) is a sheaf iff for every n € N and every family
(ps € P)scan, there is a unique amalgamation p € P such that, for all s € 2",

P - CONSg = Ps.
Notice also that, by induction, it is enough to consider the case n = 1:

Lemma 3. A presheaf (P,-) is a sheaf iff for any two po,p1 € P, there is a
unique p € P such that

p - consy = Po and p - cons; = pj.

This construction gives a full subcategory Shv(C, [7) of the category of presheaves,
consisting of the sheaves over the site (C, J).

2.2 Spaces and Continuous Maps

An important example of a sheaf is the monoid C itself with function composition
as the action. Given tg,t; € C, the amalgamation ¢: 2N — 2N is simply

t(a) = toy(An.apg1).

We say a presheaf is concrete if its action is function composition. Then all the
elements in a concrete presheaf (P, o) must be maps from the Cantor space to
some set X. Concrete sheaves admit a more concrete description as the set X
with the additional structure given by the maps in P. We denote the full sub-
category of concrete sheaves by CShv(C, 7).

Concrete sheaves can be regarded as spaces, and their natural transforma-
tions as continuous maps. More precisely, they are analogous to Spanier’s quasi-
topological spaces [22], which have the category of topological spaces and con-
tinuous maps as a full subcategory. One advantage of quasi-topological spaces
over topological spaces, which is the main reason for Spanier’s introduction of
the notion of quasi-space, is that continuous maps of quasi-spaces form a carte-
sian closed category. This category serves as a model of system T and HA* that
validates the uniform continuity principle, assuming classical logic in the meta-
language. Our concrete sheaves can be seen as analogues of quasi-topological
spaces, admitting a constructive treatment.

A quasi-topology on a set X assigns to each compact Hausdorff space K a
set P(K, X) of functions K — X such that:

(1) All constant maps are in P(K, X).



(2) If t: K’ — K is continuous and p € P(K, X), then pot € P(K’, X).
(3) If (t;: K; — K)er is a finite, jointly surjective family and p: K — X is a
map with pot; € P(K;, X) for every i € I, then p € P(K, X).

A quasi-topological space is a set endowed with a quasi-topology, and a contin-
uous map of quasi-spaces (X, P) and (Y, Q) is a function f: X — Y such that
fop € Q(K,Y) whenever p € P(K, X). For example, every topological space X
is a quasi-topological space with the quasi-topology P such that P(K, X) is the
set of continuous maps K — X, and this construction gives the full embedding
of topological spaces into quasi-topological spaces.

This definition can be modified by considering just one compact Hausdorff
space, the Cantor space, rather than all compact Hausdorff spaces, and by re-
stricting the jointly surjective finite families of continuous maps to the covering
families (consg)scan considered in the previous section. We call the resulting
objects C-spaces.

Definition 1. A C-space is a set X equipped with a C-topology P, i.e. a col-
lection of maps 2N — X, called probes, satisfying the following conditions:

(1) All constant maps are in P.

(2) (Presheaf condition) If p € P andt € C, thenpot € P.

(3) (Sheaf condition) For any n € N and any family (ps € P)scan, the unique
map p: 2V — X defined by p(sa) = ps(a) is in P.

A continuous map of C-spaces (X, P) and (Y,Q) is a map f: X — Y with
fop € Q whenever p € P. We write C-Space for the category of C-spaces and
continuous maps. The above three conditions are called the probe axioms.

Notice that the sheaf condition is equivalent to

(3) If p: 2N — X is a map such that there exists n € N with p o consy € P for
all s € 2", then p € P.

The idea is that we “topologize” the set X by choosing a designated set P of
maps 2V — X that we want, and hence declare, to be continuous. For example,
if X already has some form of topology, e.g. a metric, we can take P to be
the set of continuous functions 2 — X with respect to this topology and the
natural topology of the Cantor space. Of course we have to make sure the sheaf
condition is satisfied.

As mentioned earlier, C-spaces provide a more concrete description of con-
crete sheaves in the following sense. Given a C-space (X, P), the C-topology P
together with function composition is a concrete sheaf. Conversely, if (P,0) is a
concrete sheaf, then all maps in P should have the same codomain.

Proposition 1. The two categories C-Space and CShv(C,J) are naturally
equivalent.

By virtue of this equivalence, C-Space can also be viewed as a full subcate-
gory of Shv(C, 7). Moreover, C-spaces are closed under products and form an
exponential ideal.



To improve the readability, we abbreviate X for the space (|X|, Probe(X))
where | X| stands for the underlying set and Probe(X) for the collection of probes,
i.e. the C-topology on |X|, and we often write X to mean |X| by an abuse of
notation.

2.3 The Cartesian Closed Structure of C-Space

C-spaces have several convenient categorical properties, the first of which is
cartesian closedness.

Theorem 1. The category C-Space of is cartesian closed.

Proof. Any singleton set 1 = {%} with the unique map 2% — 1 as the only probe
is a C-space as well as a terminal object in C-Space.

Given C-spaces (X, P) and (Y, Q), their product is the cartesian product
X XY equipped with the collection R of probes defined by the condition that
r: 28 5 X xYisin Riff mpor € P and m or € Q, where my and 7 are the
projections. We have to verify that R satisfies the probe axioms and that this
has the universal property of a categorical product in C-Space, i.e. continuity
of projection functions and its universal property, but this is routine.

Given C-spaces (X, P) and (Y, Q), their exponential is the set YX of con-
tinuous maps X — Y equipped with the collection R of probes defined by the
condition that r: 28 — YX is in R iff for any t € C and p € P the map
Aa.r(ta)(pa) is in Q. Again, we have to verify that the probe axioms are sat-
isfied and that this has the universal property of an exponential in C-Space,
which involves some subtleties regarding the coverage axiom. a

Theorem 2. The category C-Space has finite coproducts.

Proof. The empty set equipped with the empty collection of probes is a C-space
and an initial object in C-Space.

Binary coproducts can be constructed as follows: given C-spaces (X, P) and
(Y, Q), their coproduct is the disjoint union X + Y equipped with the collection
R of probes defined by the condition that r: 2 — X +Y is in R iff there exists
n € N such that for all s € 2" either there exists p € P with r(conssa) = ing(pa)
for all a € 2N or there exists ¢ € Q with r(consya) = inj(qa) for all a € 2V, We
have to verify that the probe axioms are satisfied and that this has the required
universal property. a

2.4 Discrete C-spaces and Natural Numbers Object

We say that a C-space X is discrete if for every C-space Y, all functions X — Y
are continuous. A map p: 2¥ — X into a set X is called locally constant iff

IneN.Va,p 2. a=, 8 = pla)=pB).



Lemma 4. Let X be any set.

(1) The locally constant functions 2N — X form a C-topology on X .
(2) For any C-topology P on X, every locally constant function 2 — X is in P.

In other words, the locally constant maps 2N — X form the smallest C-topology
on the set X. Moreover:

Lemma 5. A C-space is discrete iff the probes on it are precisely the locally
constant functions.

We thus refer to the collection of locally constant maps 2 — X as the discrete
C-topology on X. In particular, when the set X is 2 or N, the locally constant
functions amount to the uniformly continuous functions. Hence we have a dis-
crete two-point space 2 and a discrete space N of natural numbers, which play
an important role in our model:

Theorem 3. In the category C-Space:

1. The coproduct of two copies of the terminal space 1 is the discrete two-point
space 2.
2. The discrete space of natural numbers is the natural numbers object.

Proof. The universal properties of 2 and N can be constructed in the same way
as in the category Set, because the unique maps g and h in the diagrams below
are continuous by the discreteness of N and 2:

0 | | |
) | h g

v v go v g1
1T>X7>X X

3 The Fan Functional

The monoid C can be regarded as a one-object category C with the object 2V and
the morphisms all uniformly continuous maps 2N — 2V, The Yoneda embedding
y: C — C-Space satisfies
y(2) = (2.0),

where (2N, C) is the C-space corresponding to the concrete sheaf (C,o) given as
an example in the previous section.

In a cartesian closed category with a natural numbers object N and a finite
coproduct 2 = 1 + 1, call their exponential 2 the Cantor space. With this
terminology, we have that y(2") is precisely the Cantor space in C-Space, i.e.

y(2V) = 2",

where in the left-hand side 2V is the only object of the monoid C and in the
right-hand side 2V is the exponential of the two discrete spaces N and 2. Since



all maps N — 2 are continuous by the discreteness of N, the underlying set of
the exponential 2V is precisely the Cantor space 2" (space of all maps N — 2).
Of course one has to verify that

r € C < Vit e C.Vp e Probe(N). Aa.r(ta)(pa) € Probe(2),

i.e. the two C-topologies are the same, which is routine.
As the category C has only one object 2, the Yoneda Lemma amounts to
the following.

Lemma 6 (Yoneda). For any C-space X, a map 2~ — X is a probe on X iff
1t 18 continuous.

By the Yoneda Lemma, we get that the continuous maps from the Cantor
space in C-Space to the natural numbers object are in natural bijection with
the uniformly continuous maps 2 — N of the meta-language used to define the
model:

Corollary 1. Writing [2Y,N]c_space for the set of continuous maps 2 — N,
and cts(2Y,N) for the set of uniformly continuous maps 2 — N, we have

[2Na N]C—Space = CtS(2N, N)

Moreover, the topology on [2V, N]c-space is discrete:
Lemma 7. The exponential N2" is a discrete C-space.

Proof. Given a probe p: 2V — NZN, we want to show that it is locally constant.
By the construction of exponentials in Section 2, we know that for all ¢, € C,

Aa.p(ta)(ra) € Probe(N),
i.e. Aa.p(ta)(ra) it is uniformly continuous. In particular, we can take
t(a)(i) = ag; and r(a)(i) = agit1,

which are both uniformly continuous, and define ¢(a) = p(ta)(ra). From the
proof of uniform continuity of ¢, we get its modulus n. (NB. Here we are implicitly
using choice, but this is not a problem in intensional type theory. In a setting
without choice, we would need to define uniform continuity by explicitly requiring
a modulus.) Now define a map join: 2 x 2N — 2N by

join(a, 8)(2i) =
join(e, B)(2i +1) = ;.

Given o, o/, 8 € 2Y with a =, o, we have

p(a)(B8) = p(t(join(a, £)))(r(join(a, 8))) (by the definitions of ¢, r,join)

= ¢(join(a, B)) (by the definition of q)
= ¢(join(c’, B)) (join(e, B) =2, join(a’, B),2n > n)
=p(a’)(B).

Hence p is locally constant and therefore N2" is discrete. ad



Theorem 4. There is a Fan functional
fan: N2' & N
in C-Space that continuously calculates moduli of uniform continuity.

Proof. Given a continuous map f: 2 — N, i.e. an element of N2N, we know
f is uniformly continuous as f = f oidyn € Probe(N) by the continuity of f.
Then we can get a modulus n from the proof of its uniform continuity. From
this n we can compute the smallest modulus of f as follows. We define a function
Imod: (2¥ —N)—N—N by induction on its second argument:

Imod f 0 =0
lmod f (n+1) if (Vs € 2™, f(s0¢) = f(s1¢)) then (Imod f n) else (n + 1).

With a proof by induction, we can show that lmod f n is the smallest modulus
if n is a modulus of f. Hence, we define

fan(f) = Imod f n.

According to the previous lemma, the space N2" is discrete and hence this func-
tional is continuous. a

4 Uniform Continuity of T-definable Functions

Now we recover a well known result, using a logical relation between the set-
theoretical and the C-Space models of Godel’s system T.

Recall that system T is a simply typed lambda calculus with a ground type N
for natural numbers and a primitive recursor rec: o — o —N— o for every type o.
For our purpose of formulating the uniform continuity principle, we add the
binary type 2 as another ground type and a case function if: c>0—2—0
for every T type o. Such a system can be interpreted in a cartesian closed
category with a natural numbers object N and a coproduct 2 (or 1 + 1) of two
copies of the terminal object. Specifically, types are interpreted as objects: N is
interpreted as N, the type 2 as 2, product types as products, and function types
as exponentials. Contexts are interpreted inductively as products. And a term in
context is interpreted as a morphism from the interpretation of its context to the
one of its type. Finally, rec and if are interpreted using the universal properties
of N and 2.

Both the categories Set and C-Space are cartesian closed and have a natural
numbers objects and a coproduct 1 4 1; thus, they give models of system T.
Throughout this paper, we use the semantic braces [—] for the interpretation,
and add Set and C-Space as subscripts to distinguish which model we are
working with. Now we apply the logical relations technique to understand the
relationship between these two models.



Definition 2. The logical relation R over the set-theoretical and C-Space mod-
els is defined by

1. If 0 is a T type, then Ry C [0]set X [0]c-space is defined by induction on
type o as follows:
(a) R,(a,a’) iff a = a', where ¢ is the ground type 2 or N;
(b) Raﬂ'r(fa f/) iff, for any a € HU]]Set and any a € [[J]]C—Space; ifRJ(a,a’)
then R, (f(a), f'(a')).

2. If I' = z1:01,...,xn:0, is a context, then Rp C [I']set X [I']c-space S
defined by Rr(a,a’) iff Ry, (a;,al) for alli <n.

3. Gwen f =[I'Ft:7T]get and f' = [I'Ft: T]c-space; R(f, f') iff, for any
ac [[F]]Set and any a’ € HF]]C—Spacey Zf RF(aaa,) then R‘r(f(a)a f/<a/))'

With a proof by induction on types as usual, we can easily show that the
interpretations of any T term in these two models are related.

Lemma 8. If '+t :7, then R([I'F t: 7]get, [ Ft: 7]c-space)-

We say that an element = € [0 ]set in the set-theoretical model is T-definable
if it is the interpretation of some closed T term, i.e. there exists a closed term
t: o such that z = [t]set.

Theorem 5. Any T-definable function 2 — N is uniformly continuous.

Proof. If f: 2 — N interprets the term f : (N—2)—N, then f is related to
the (uniformly) continuous map [f]c.space: 2" — N according to the above
lemma. By the definition of the logical relation, f is uniformly continuous. O

5 A Continuous Realizability Semantics of HA®

Recall that HA® has equations between system T terms of the same type as
atomic propositions, quantifiers that range over elements of (the interpretation
of) system T types, and logical connectives A, = (the connectives V and —
are definable from the other connectives). For technical convenience, we add a
singleton type 1 and binary product types to the inductive definition of system T
types. Throughout this section, we use o, 7 to range over T types, bold lower case
letters f,x,m,t,u to range over T terms, and ¢, 1) to range over HA® formulas.

With the above definition, the uniform continuity principle can be formulated
in HA® by the following

Vf:(N=2)—=N. In:N. Vo, B:N=2. o =, B = fla) = £(B) (UcC)

where o =,, B is short for Vi:N. ¢ < n = a(i) = B(¢). Here we can define the
relation ¢ < n by 3m:N. suc(i+m) = n where addition + is inductively defined
in T.

To any HA” formula ¢ we associate a type |¢| of potential realizers. Then
a continuous realizer of a formula I' F ¢ is a pair

(e7q) € ﬂ|90| ]]C—Space X HF]]C-Space'

We call this a continuous realizability semantics. In the following, semantic brack-
ets without explicit decorations refer to the C-space interpretation.



Definition 3 (Continuous realizability). The types of potential realizers of
HA® formulas are given inductively as follows:

1. |[t=u] = 1,

2. lp A = |p| x [¢¥],
3 o= = ol = [v],
4. |Vx:0. @] = o— |y,
5. |Fx:0. ¢ = o x |p].

Let I" be a context and q € [I']. The relation
(e,q) realizes I' - ¢
1s defined by induction on formulas as follows:

1. (%,q) realizes 't =wu iff [[Ft:o)(q) =[T"+ w:0o](q), where o is the
type of the terms t and w,
2. (e,q) realizes I' & oo A p1 iff (mi(e),q) realizes I' & ; for all i € {0,1},

where e € [|¢o|] x [[¢1]],
3. (e,q) realizes I' b @ = v iff for all a € [|¢]|] with (a,q) realizing I' - ¢,

the pair (e(a), q) realizes I' 1), where e € [ || ]][[W‘ I
4. (e,q) realizes I' =Nz 0. ¢ iff for all a € [o], the pair (e(a), (g, a)) realizes

Iz:ob g, where e € [|¢] }][[0]] and (g,a) € [Iz:0],
5. (e,q) realizes I' + 3x:0. ¢ iff (m1(e), (g, mo(e))) realizes I',x:0 = ¢, where

e€ o]l x[lel]
We say a closed HAY formula ¢ is realizable if there exists e € [ |¢|] such that
(e, %) realizes - .

The main result of this paper is that our model validates the uniform conti-
nuity principle in the following sense.

Theorem 6. The uniform continuity principle (UC) can be realized by the Fan
functional.

Proof. If (e, x) realizes UC, then e is a continuous map
N2 S Nx @2V 52V 5 (N (Nx1) > 1) > 1).
By Definition 3, given any continuous f: 2N — N, the pair (e(f), (x, f)) realizes
f:(N=2)=N F In:N.Va,3:N=2. (a =, 8= fla) = f(3)).

We define the first component of e(f) to be fan(f), i.e. the modulus of uniform
continuity of f. Given n = fan(f), we want that (w1 (e(f)), (x, f,n)) realizes

f:(N=2)=N,n:N F Va,3:N=2. (=, 8= fla) = f(9)).

Given o, 8 € 2V with a =, 3, it is easy to verify that there exists a continuous
map €' : N — (N x 1) — 1 such that (¢/, (x, f,n, o, B)) realizes

f:(N=2)=N,n:N,a:N—2 3:N=2 + a=, (.



According to the definition of [—], we have

[[FFf(Ol) : N]](*’fvnvaaﬁ) :f(a)

and
[I"F f(B) : N](x, f,n,a, B) = f(B)

where I' = f:(N—=2)—=>N,n:N,a:N—2,3:N—2. As n is the modulus of f, we
have f(a) = f(B) and hence

[[FF f(a) : N]](*v.ﬂnvaaﬂ) = [[F}_ f(ﬁ) : NH(*’fanaavﬁ)'
Thus, (%, (%, f,n,a, 3)) realizes I' - f(a) = f(B3). O

6 Construction of the Model in Intensional Type Theory

The above results have been deliberately developed in such a way to be routinely
formalizable in intensional type theory. However, certain details require a closer
look. We work with an intensional type theory with a universe, > -types, []-
types, identity types and standard base types such as natural numbers, booleans,
unit type and empty type.

We considered three approaches, which we developed in Agda notation [6],
and are available at [24]. In the first approach, which is probably the simplest
and most readable, we assumed the axiom of function extensionality,

oI 1 (fozgx>—>fzg,

X,Y: Type f,g: X—=Y z: X

where = is the identity type. This approach has two drawbacks. One of them
is that, because this axiom does not come with a computational interpretation,
it is in principle useless for extracting computational content. In ealier stages
of this work, we conjectured that the axiom of extensionality occurs only in
computationally irrelevant contexts.

In order to attempt to verify that this is indeed the case, in our second
approach, we made use of Agda’s irrelevant fields [7], and postulated extension-
ality within such an irrelevant context. With this second approach, the Agda
type checker proved our conjecture false. However, by refining the notion of
C-topology, we were able to make it true, and our constructions and proofs
type-checked. We needed to add the following condition:

(4) Any map extensionally equivalent to a probe is also a probe.

And we also needed to add more steps in each case the construction of a space
was performed.

However, a second drawback remains in the two approaches considered above:
they do not seem to allow a construction of the Fan functional. To define a
continuous Fan functional in the model (Section 3), we derive its continuity by



showing that its domain, the space N2N7 is discrete, i.e. by showing that any
probe p: 2N — N2 is locally constant. We can find an n € N and show that
for any a,a’ € 2 with a =, o/, the two maps p(a),p(a’): 2N — N are equal
using functional extensionality. However, this does not allow us to conclude that
their proofs of continuity are also equal, in order to conclude p(«) = p(a’), and
the proofs of continuity cannot be put in an irrelevant field because they are
computationally relevant, at least not without further thought.

In our third and last, fully successful, approach, instead of assuming any
form of extensionality or irrelevant fields, we slightly adjusted the definition of
C-space. Now a C-topology is defined on a set equipped with an equivalence
relation, that is, on a setoid. With this, we can define a notion of equality of
continuous functions that ignores continuity proofs, and the Fan functional can
be implemented as discussed in the previous sections. We remark that the probe
axiom (4) mentioned above is still needed.

This third approach works well, and does not need to assume any non-
standard axiom for intensional type theory. However, the drawback is that the
proofs are much less readable than in the first two approaches. It would be desir-
able to find an approach that avoids setoids and addresses the equality problem
for continuous functions by hiding information in the definition of continuity
without losing computational information to obtain a more concise formaliza-
tion.

At the moment we formalized everything discussed above, including the Fan
functional, the set and continuous interpretations of system T, their logical re-
lation, and the proof that the set-theoretical definable functions 2V — N are
uniformly continuous, but excluding the definition of HA* and its interpreta-
tion, which is under development.

7 Future Work

Both the category of sheaves and its full subcategory of C-spaces are locally
cartesian closed. For the second category, an exponential in a slice category
C-Space/X is constructed in the same way as the one in the slice category
Set/ X, with a suitable construction of the topology on its domain (see [2, Propo-
sition 43]). Thus, rather than giving a realizability interpretation of UC, we can
understand its quantifiers as [] and >, and interpret them using the locally
cartesian closed structure [21,10, 15, 11]. With a cursory calculation to be fully
verified in future work, we can show that the Fan functional (modulo some type
isomorphisms) is an element of the interpretation of UC. Hence our development
seems to generalize from system T to dependent types. We have not considered
the interpretation of universes with our continuous model so far.

As mentioned in the introduction, we conjecture that the system T model
consisting of C-spaces is classically equivalent to the model of Kleene—Kreisel
functionals, and hence can be seen as a constructive development of that model.
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