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Abstract

We show that the following instance of the principle of excluded middle
holds: any function on the one-point compactification of the natural num-
bers with values on the natural numbers is either classically continuous or
classically discontinuous. The proof doesn’t require choice and can be un-
derstood in any of the usual varieties of constructive mathematics. Classical
(dis)continuity is a weakening of the notion of (dis)continuity, where the ex-
istential quantifiers are replaced by negated universal quantifiers. We also
show that the classical continuity of all functions is equivalent to the negation
of WLPO. We use this to relate uniform continuity and searchability of the
Cantor space.

1 Introduction

Brouwer understood that all functions are continuous in his intuitionistic mathe-
matics [2, 11], but Bishop rejected Brouwer’s analysis [4]. What does it take to
accept continuity principles in constructive mathematics?

To identify the essence of the problem, we consider N-valued functions on the
simplest non-trivial space: the generic convergent sequence N,. This is the one-
point compactification of the discrete set of natural numbers N, which adds a new
point oo as the limit of the sequence of points n € N. It can be constructed as the
set of decreasing binary sequences, with the number n represented by the sequence
consisting of n ones followed by infinitely many zeros, and with co represented by
the sequence consisting of infinitely many ones.

We consider discrete-valued functions N, — N, for which continuity and uni-
form continuity are known to coincide [7, Proposition 5.3]. A result of Ishihara’s [10]
implies [7, Lemma 6.3] that

any strongly extensional f: No, — N s continuous or discontinuous.
The disjunction amounts to
In € NVm > n(f(m) = f(c0)) VVn € NIm > n(f(m) # f(o0)).

Ishihara’s proof, given in the context of Bishop mathematics, and for spaces more
general than N, and N, relies on countable choice.

In this work we avoid the axiom of choice and remove the assumption of strong
extensionality (that is, that the function reflects apartness). We avoid choice by
exploiting the fact that the set Ny, is searchable [7, Section 3] (see Section 2 below).
To remove the assumption of strong extensionality, we need to weaken the notion
of (dis)continuity. Define the classical ezistential quantifier by

Jz e X(P(z)) — —Va e X(-P(2)).



A possible informal reading of this is that there “must” exist some =z € X satisfying
the property P, but we don’t know how to construct any.
We say that a function f: Ny, — N is

1. classically continuous iff 3m € NVn > m(f(n) = f(c0)),
2. classically discontinuous iff Ym € N 3n > m(f(n) # f(c0)).

Notice that classical continuity is the negation of classical discontinuity, because a
doubly negated equality in N is equivalent to an equality. We prove the following
constructive instance of the principle of excluded middle:

Every function Noo — N is either classically continuous or classically
discontinuous.

We also show that:

The existence of some classically discontinuous function Noo — N s
equivalent to WLPO.

Recall WLPO (the weak limited principle of omniscience) asserts that it is decid-
able whether any given binary sequence is constantly one, which is equivalent to
the assertion that u = oo is decidable for any u € N,,. The fact that classical
continuity implies WLPO may be slightly surprising, because the notion of classical
discontinuity is devoid of constructive content, but the conclusion of WLPO is a
disjunction, which amounts to the decidability of the condition u = oo for u € N..
The above two facts together give that the negation of WLPO can be understood
as a continuity principle:

The classical continuity of all maps Noo — N is equivalent to = WLPO.
We also show that classically continuous functions have moduli of continuity in No:

If f: Noo — N is classically continuous, then there is v € Ny, distinct
from oo such that f(u) = f(c0) for all u > v.

We use this to conclude that if Markov’s Principle (MP) holds, then classical con-
tinuity implies continuity, and hence to deduce the following version of the KLST
Theorem [10]:

If MP and = WLPO hold, then all functions Noo — N are continuous.

Further analysis of (classical and constructive and uniform) continuity is contained
in the technical development.

Foundations. Our proofs can be understood in Bishop mathematics without any
choice axiom, in Martin-Lof type theory (either assuming that all quantifications
over functions implicitly refer to extensional functions, as in Bishop mathematics,
or, more conveniently, assuming the propositional axiom of function extensionality),
and indeed in any of the usual varieties of constructive mathematics [5], and also
in topos theory.

Related work. Hannes Diener [6] has independently and before us established com-
plementary results, published in the volume as this paper, in the generality of
functions of metric spaces rather than functions Ny, — N, but using choice, and
with methods of proof closer to those of Ishihara’s [10] rather than the searchability
of the set Ng.

Acknowledgements. 1 benefited from fruitful discussions with Hannes Diener, Paulo
Oliva and Chuangjie Xu, and from valuable feedback from the two anonymous
referees.



2 Preliminaries

We avoid the axiom of choice by exploiting the fact, proved in [7, Theorem 3.5],
that there is a functional
e: (Noo = 2) — N,

called a selection function for the set N, such that for all p: N, — 2,

p(e(p)) =1 <= Vu € Noo(p(u) = 1). (1)
Equivalently,

Ju € N (p(u) = 0) <= p(e(p)) = 0. (2)
We say that Ny, is searchable [7, Section 2]. This implies that, for every p: Nog — 2,

Ju € Noo(p(u) = 0) V Vu € N (p(u) = 1),
which is the principle of omniscience for the set N, and that
Fu € Noo (p(u) = 0) = Fu € N (p(u) = 0), (3)

which is Markov’s Principle for the set No,. Searchability also implies the existence
of functionals
E,A: (Noo »2)— 2 (4)

such that

constructed as

E(p) = p(e(p)), A(p) =1-E(1 -p).

The generic convergent sequence N, can be sensibly constructed in many iso-
morphic ways that are equally good, for example as the set of binary sequences
with at most one non-zero element. As discussed in the introduction, we adopt the
following construction:

Noo = {U S 2N | Vi e N(UZ Z Ui+1)}.
Then N, has points
n = lnow’
the sequence of n ones followed by infinitely many zeros, usually written simply n

by an abuse of notation, and

oo = 1%,
the constantly one sequence. The sequence n converges to oo in the usual metric on
the Cantor space 2V, and N is a closed subspace of 2V. In fact, it is the closure of
NU {oo} where N = {n | n € N}. The set NU {oo} has empty complement in N,
but is equal to Ny if and only if LPO holds [7, Section 3] (and hence not equal if
WLPO fails). However, Ny, \ N = {c0} always holds [7, Lemma 3.3]:

Vu € Noo(Vn € N(u #n) = u = o0). (5)

Here (#) denotes the negation of equality, rather than apartness as is customary
in Bishop mathematics. We use these and several other facts about N, from [7],
recalled below on demand. The selection function ¢: (No, — 2) — N is given by

e(p) = (i = minp(n)),

but we don’t need to work explicitly with this definition in calculations.



3 Classical continuity constructively

Our first lemma invokes twice the following instance of the principle of excluded
middle [7, Theorem 8.2], which holds for any p: Ny, — 2:

VYn € N(p(n) = 1) V =V¥n € N(p(n) = 1). (6)

This amounts to ¥n € N(p(n) = 1) V3n € N(p(n) = 0). The point is that, perhaps
surprisingly, the quantifications are over N rather than N,,. In order to emphasize
the distinction, we use m, n, 1, j, k to range over N and u, v, w to range over N,.

Lemma 3.1. For any q: Noo X Ngyg — 2,
¥m € N3n € N(g(m,n) = 0) VIm € NVn € N(g(m,n) = 1). (7)

Proof. For given u € N, define p,(v) = g(u,v). By (6) applied to p,, there is
p: Noo — 2 such that

pu) =1 <= —Vn € N(p,(n) =1).
By (6) applied to p, we conclude that
Ym—=vn(q(m,n) = 1)V =¥Ym-Vn(q(m,n) = 1),
which amounts to (7). O

The definition and basic properties of the natural order of N, and the function
max: N, X Ny = Ny, extending max: N x N — N can be found in [7, Section 5].
In the technical development we reduce quantifications of the form Ju > v(P(u))
or Yu > v(P(u)) to their equivalents Ju(P(max(u,v))) or Vu(P(max(u,v))).

Theorem 3.2. Every function f: Noo — N is either classically continuous or clas-
sically discontinuous.

Proof. By the decidability of equality of N, there is ¢: Ny, X Ny, — 2 such that
4u,0) =0 = f(max(u,v)) £ f(),

and hence we conclude, by (7), that

¥m € N3n € N(f(max(m,n)) # f(c0)) VIm € NVn € N(f(max(m,n)) = f(c0)),

which amounts to the conclusion of Theorem 3.2. O

If a proposition P is decidable, that is P V =P holds, then there is a number
[P] € 2 such that
[P]=0 < P

by considering the cases P and —P, as already used in the above proof. Hence if
P(z) is a decidable propositional function of z € X, then we can define a function
p: X — 2 such that

p(z) =0 > P(x)

by
p(x) = [P(z)].

In general the construction of the function p requires choice, because for each x the
value [P(z)] is defined by (logical) case analysis, but in general [P(xz)] is not defined
uniformly from x by a (mathematical) rule, unless one is working in a system such
as Martin-Lof type theory (in which choice is a theorem anyway).



But our simple uses don’t require choice, so that the construction can be re-
garded as a convenient notational device. For example, if

P(v) = Vu € Noo(f(max(u,v) = (o)),

then
p(v) = A(u = e(f(max(u, v), f(c0)))),

where A: (No, — 2) — 2 is defined in (4) and e: N x N — 2 is the characteristic
function of equality.
We showed in [7, Theorem 9.4] that, for any p: No, — 2,

e(p) = inf{u € N | p(u) = 0},

where the infimum of the empty set is of course co. It follows that, for any decidable
propositional function P(u) of a variable u € N,

e(u — [P(u)]) = inf{u € Noo | P(u)}.
Hence, by (2), if this set is inhabited then
g(u > [P(u)]) = least u € Ny, such that P(u).

Lemma 3.3. There is a functional F': (Noo — N) — Ny, such that for any map
f: Noo = N, the number F(f) is the least v € Ny with f(u) = f(o0) for all u > v.

Proof. Because, for any v € N, the proposition Vu € N (f(max(u,v) = f(o0)) is
decidable by the omniscience of N, and the decidability of equality of N, we can
define, using € as above,

F(f) =inf{v € Ny | Vu € Noo(f (max(u,v) = f(c0)))}.

Because the universally quantified equation holds for at least one v, namely v = oo,
the number F(f) has the required property. O

Notice that:
1. f is classically discontinuous iff F(f) = oo.
(Because f is classically discontinuous <= F(f) # n for every n € N.)

2. f is classically continuous iff F(f) # oo.

(Because this is the contra-positive of the previous equivalence.)

Hence the number F(f) can be thought of as the discontinuity degree of f. This
shows that we can replace the classical existential quantifier by the constructive one,
in the notion of classical continuity, provided we also replace the set N by N\ {oco}:

Corollary 3.4. A map f: Ny — N is classically continuous if and only if there is
v # 00 such that f(u) = f(oco) for allu > v.

Hence the discontinuity degree of a classically continuous function gives its N -
valued modulus of continuity. We observed in [7, Section 2] that MP is equivalent
to N \ {o0} = N, that is,

Vu € Noo(u # 0o = In € N(u = n)).
It follows that:

Corollary 3.5. If MP holds, then any classically continuous map f: Noo — N is
continuous.



The following lemma is applied to use any discontinuous function as an oracle
to decide the conclusion of WLPO, but it holds for arbitrary functions:

Lemma 3.6. For any function f: Noo — N there is G = G(f): Noo — Ny such
that, for all v € N,

G(v) > v, (8)

Ju>v(f(u) # f(00)) = f(G(v)) # f(o0). (9)
We refer to G(f) as the modulus of discontinuity of f.
Proof. First define g: Ny, — Ny, by

9(v) = e(u = [f(max(u, v)) # f(c0)]).

By (2), for any v € N, we have that

Fu € Noo (f (max(u,v)) # f(o0)) = f(max(g(v),v)) # f(c0). (10)

If we define
G(v) = max(g(v),v),

then (8) holds, and so does (9) by (10) combined with (3). O

It follows that f: No, — N is classically discontinuous iff for every n € N there
is u > n in Ny with f(u) # f(c0), namely u = G(n). We observed in [7, Section 2]
that WLPO amounts to Ny, = {00} U (N \ {o0}), that is

Vu € Noo(u = 00 V u # 00).

Theorem 3.7. The existence of a classically discontinuous function f: Ny — N
is equivalent to WLPO.

Proof. (=) If f is classically discontinuous then

Vn € N(f(G(n)) # f(o0)). (11)

By (8), we have G(o0) = 0o and hence f(G(o0)) = f(o0). This shows that u = oo
implies f(G(u)) = f(o0). Conversely, if f(G(u)) = f(oco) then u # n for every
n € N, because u = n contradicts (11), and hence u = oo by (5). This shows that,
for any u € Ny,

w=o0 <= f(Gu)) = f(c0).

Hence u = oo is decidable, because the right-hand side is decidable, as N has
decidable equality, which shows that WLPO holds.

(«<): If WLPO holds then one can define f(u) = 0 if u = oo, and f(u) = 1 if
x # 0o, which is clearly discontinuous. O

Corollary 3.8. All functions f: Ny — N are classically continuous if and only if
WLPO fails.

Proof. (=): If WLPO holds, then not every function is continuous by Theorem 3.7,
which contradicts the hypothesis, and hence WLPO must fail.

(«). Assume that WLPO fails and let f: Ny, — N. Then f is either classically
continuous or classically discontinuous by Theorem 3.2. The second case is ruled
out because it contradicts Theorem 3.7, and so the first must hold. O

Is Weak Markov’s Principle (WMP) [10] enough to deduce the same conclusion
in the following corollary?



Corollary 3.9. If MP and —~WLPO hold, then all functions f: Noo — N are

continuous.

We finish this section with a brief discussion of this in connection with sequence
convergence in the intrinsic topology, related to [1, Section 4]. Let X be any set,
and say that a sequence z: N — X converges to a limit z, if it can be extended
to a function @: No, — X that maps 0o to zo (cf. e.g. [7, Lemma 5.5]). We refer
to the collection of sequences No, — X as the intrinsic (sequential) topology of the
set X. A function : Ny, — X can be thought of as a converging sequence, that is,
a sequence x,, given together with its limit x.,. With this terminology, a sequence
is convergent if it can be extended to a converging sequence. All functions of any
two sets are automatically continuous in this topology, without postulating any
continuity axiom, in the sense that, for any f: X — Y, from a converging sequence
z: Noo — X with limit ., we get a converging sequence f o x: Noo — Y with
limit f(%s).

If excluded middle holds, or more generally if WLPO holds, then every sequence
N — X converges to any point of X, which amounts to saying that the intrinsic
topology of any set is indiscrete. On the other hand, if -~ WLPO holds, then the
convergent sequences in N are precisely the classically eventually constant ones, and
if additionally MP holds, then they are precisely the eventually constant ones, so
that we get the discrete sequential topology on N.

Conversely, if N is indiscrete, one can define a discontinuous map N, — N, for
example from the convergence of an alternating binary sequence to zero, and hence
WLPO holds. On the other hand, if N is intrinsically discrete then all functions
Ns — N are continuous and hence WLPO fails.

The last two paragraphs show that if WLPO and MP are left undecided (neither
they or they negation are postulated), then whether N is intrinsically (in)discrete
also remains undecided, and that the precise nature of the intrinsic topology of N
is tightly related to which way WLPO and MP are decided.

The intrinsic topology of the Baire space NV can be reduced to that of N. From
a converging sequence a: Ny, — NV, we get a sequence of converging sequences
é&: N — (N — N) defined by transposition as &(i)(u) = a(u)(2). Hence if the nat-
ural numbers have the discrete sequential topology, then the converging sequences
a: Ny, — NN are those that satisfy Vi InVj, k > n(a(i)(j) = a(i)(k)), which con-
stitute the usual sequential topology of the Baire space.

If S is a subset of a set X, from any converging sequence No, — S we get a
converging sequence N, — X by composition with the inclusion map S — X. One
may ask whether, conversely, any given converging sequence N, — X that happens
to have values in S necessarily correstricts to a converging sequence No, — S. This
amounts to asking whether the intrinsic topology of S coincides with the intrinsic
topology of X relativized to S. This would mean that every subset is a subspace
in the relative intrinsic topology. Perhaps counter-intuitively, this is not the case in
general. We give two examples. (1) Consider X = R and S = Q. Because Q has
decidable equality, if = WLPO and MP then Q is sequentially discrete by the above
discussion. But the rational sequence 1/2" intrinsically converges to the rational
number 0 and is not eventually constant. (2) Consider X = NY and S the subset of
eventually constant sequences of natural numbers. Then S is intrinsically discrete
if neg WLPO, and hence they don’t form a subspace of the Baire space.

An application of these ideas is developed in [8], which identifies the intrinsic
topology of a Martin-Lo6f universe a la Russell and uses it to show that the universe
satisfies the conclusion of Rice’s Theorem: it has no non-trivial decidable extensional
properties. More precisely, from a hypothetical such property, we derive WLPO,
by a reduction to discontinuity.



4 Searchability of 2" and uniform continuity

As is well known, Brouwer derived the following uniform continuity principle in his
conception of intuitionistic mathematics:

Vf:2¥ - N3In € NVa, B € 2§(a =, 8 = f(a) = f(B)).

Here @ =, 8 means that Vi < n(a; = ;). Continuing from the first sentence of the
introduction, a second reason why Bishop didn’t wish to accept continuity axioms
is that he wanted every theorem of constructive mathematics to be a theorem of
classical mathematics, but continuity violates excluded middle and many of its
classically interesting consequences.

It is interesting that Brouwer’s uniform continuity principle implies theorems
that belong to classical mathematics but are not provable in large fragments of
Bishop mathematics such as Heyting Arithmetic with finite types (HA®) and with
extensionality (of course it is difficult to say what is not provable in Bishop mathe-
matics, as its boundaries are deliberately left vague). One such theorem is that the
Cantor space is searchable, which can be regarded as folklore:

Lemma 4.1. The cantor space is searchable if
1. excluded middle holds, or
2. Brouwer’s uniform continuity principle holds.

(Moreover, in the second case, the selection function can be constructed so that
e(p) = inf{a € 2V | p(a) = 0} in the lexicographic order of the Cantor space.)

Proof. (1). In fact, more generally, any non-empty set X is searchable if EM holds.
By EM there is a € X. Given p: X — 2, by EM either there is b € X with
p(b) = 0 or not. If so, let e(p) = b, and otherwise, let €(p) = a. Then clearly
p(e(p)) =1 = Vz € X(p(x) = 1), because either the premise is false (if e(p) = b)
or the conclusion holds independently of the premise (if e(p) = a).

(2). For this argument we need to assume that the uniform continuity principle
states the existence of a modulus functional H: (2¥ — N) — N, or choice to get H.
Given p: 2V — 2, we first define a finite sequence s € 2™, where m = H(p),
by course-of-values induction on £ < m. If the sequence has been defined for all
i < k, we define s, = 0 if and only if there is a finite sequence t € 2 %=1 such
that p(spsi . ..sx—10t0¥) = 0. We now define ¢(p) = s0%, and the result holds by
construction. O

The non-provability of the searchability of the Cantor space in HA“ with ex-
tensionality is established in [9, Section 6]. Assuming that Bishop mathematics,
whatever it is, is to be compatible with classical mathematics, we have:

Metatheorem 4.2. In Bishop mathematics or in HAY with the axioms of exten-
stonality and choice, the searchability of the Cantor space doesn’t prove continuity
or uniform continuity principles.

Proof. Because all sets are searchable in classical mathematics but certainly not all
functions are continuous, and such systems cannot prove non-classical conclusions
from classical assumptions. O



However, we have a situation that may be puzzling at first sight. If the Cantor
space is searchable and all functions N, — N are continuous, then all functions
2N 3 N are uniformly continuous. The reason this may be surprising is that the
searchability of 2 doesn’t give continuity, as discussed above, but, together with the
simplest possible continuity assumption, which amounts to sequential continuity, it
gives uniform continuity, which is much stronger than continuity, which in turn is
much stronger than sequential continuity. Of course, what this means is that the
searchability of 2N is not to be taken lightly from a constructive point of view, as
expected.

Define (— | —): 2V x N, — 2N by

au=(i— min(oy, u;)).
Then a [co =a and a [ n = apay ...a,_10¥. Also define
a=yp <= alu=p0u,
which then extends the equivalence relation =,, defined earlier so that
A= B <= a=p.

Theorem 4.3. If the Cantor space is searchable and all functions p: Noo — 2 are
continuous, then all functions f: 2% — N are uniformly continuous.

Proof. Given f: 2N — N define p: N, — 2, using the searchability of 2V, by

p(u) = [y e2V(f(v) = fly Tw)]

By the continuity of p, there is n € N with p(m) = p(oc0) for all m > n. But
p(o0) = 0, and hence p(m) = p(c0) is equivalent to

vy € 2%(f(a) = f(y I m)).

If « =, 8 then a | n = (8 [ n, and considering m = n and the two special cases
v = a and v = B, we conclude that f(a) = f(a [ n) = f(8 | n) = f(B8), which
shows that f is uniformly continuous. O

But we can do better than that: we can define a modulus of uniform continuity
functional, and we can address the evident classical version of uniform continuity.

Lemma 4.4. If the Cantor space is searchable, then there is a functional
H: (2¥ - N) = N

such that for any map f: 2% — N the number H(f) is the least v € Ny, such that
Va,f e 2M(a =, 8 = f(a)= f(B))

Proof. Extending the proof of Theorem 4.3, define
H(f) = Fuw [ty € 27(f(7) = f(y [ w)),
where F' is constructed in Lemma 3.3. O
Hence:
1. H(f) = oo if and only if f is not uniformly continuous.
2. H(f) f oo if and only if f is uniformly continuous.

3. H(f) # oo if and only if f is classically uniformly continuous.



Because = WLPO implies the classical continuity of all maps N, — 2, we conclude
by Lemma 3.3 that:

Corollary 4.5. If the Cantor space is searchable and —WLPO holds, then all
functions 2N — N are classically uniformly continuous.

And of course further assuming MP we can remove the classicality in the con-
clusion. Combining this observation with Lemma 4.1, we get:

Corollary 4.6. If MP and —=WLPO hold, then the Cantor space is searchable if
and only if all functions 2N — N are uniformly continuous

This method of getting uniform continuity from the searchability of 2V and
from the continuity of maps N,, — N is reminiscent of Bauer and Lesnik’ proof of
their Theorem 4.4 and Corollary 4.5 in [1], although they refer to compactness and
(uniform) bars rather than searchability.

We conclude this section with some remarks and questions about continuity.
Starting from the functional F': (No, — N) — N, of Lemma 3.3 used above, if
we assume Markov’s Principle, then F(f) € N, and without any assumption one
can map N into N. Hence, assuming also = WLPO, we get a modulus of continuity
functional, without using choice:

JF: (N = N) = NVf: Noo = NVm > F(f)(f(m) = f(c0)). (12)

(By the same token, we get a functional H: (2% — N) — N under the same as-
sumptions.) The continuity principle (12) implies - WLPO, but we conjecture that
it doesn’t imply MP. Does it imply Weak Markov’s Principle [10]? Apparently it
is not quite equivalent to the continuity of all f: N, — N, because it addition-
ally seems to incorporate some amount of choice (but not more than that coming
from MP). Of course, if choice is available, this condition is equivalent to the con-
tinuity of all functions No, — N. By search bounded by F(f), one can assume
w.l.o.g. that F(f) is minimal with the above property, in which case F satisfies:

F(f) =0 if Vu € Noo (f(u) = f(o0)),
F(f) = F(fosucc)+1 otherwise,
where succ: Ny, — N is the successor function succ(u) = u + 1. These two

equations can be considered as computation rules, because the condition is decidable
by the omniscience of No,, which are a special case of Kohlenbach’s bar recursion [3].
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