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Abstract

For partially ordered sets that are continuous in the sense of D. S. Scott, the way-
below relation is crucial. It expresses the approximation of an ideal element by its finite
parts. We present explicit characterizations of the way-below relation on spaces of contin-
uous functions from topological spaces into continuous posets. Although it is well-known
in which cases these function spaces are continuous posets, such characterizations were
lacking until now.
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The notion of a continuous partially ordered set in the sense of D. S. Scott [7, 2, 1], or
continuous domain for short, is rooted in the fundamental idea of approximating ideal objects
by their finitary parts.

Technically speaking, one considers directed complete posets; that is, partially ordered
sets L in which every directed subset D has a least upper bound, denoted by

∨↑D. An
element c is said to be a finitary approximation of a ∈ L (one also says that c is relatively
compact in or simply way-below a), and one writes c ¿ a, if for any directed subset D of L,
the condition a ≤ ∨↑D implies c ≤ d for some d ∈ D. If for every a ∈ L there is a directed
set D of finitary approximants c ¿ a such that a =

∨↑D, then L is called a continuous
domain or simply a continuous poset. The basic references for the theory are [2, 1].

The notion of approximation in the previous paragraph is phrased in purely order theo-
retical terms. It can be viewed as topological convergence with respect to the Scott topology.
This is the topology on a directed complete poset for which the closed sets are those lower
sets which are closed for the formation of directed joins. In the case of a continuous domain,
the sets of the form

↑↑c = {a ∈ L : c ¿ a} , c ∈ L ,
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form a base for the Scott open sets. In this paper, continuous domains are always considered
as topological spaces endowed with the Scott topology. With respect to this topology, a
continuous domain L is sober and locally compact (in the sense that every point has a base
of compact neighbourhoods), but far from being a Hausdorff space [2, II.1.20]. Note that
compactness does not include the Hausdorff property in this paper.

As the relation c ¿ a is basic for the whole theory, it is important to characterize it in
simple terms in concrete situations. Often this turns out to be more complicated than one
might expect. A striking example is the probabilistic power domain over a continuous domain
where an explicit characterization of the way-below relation relies on the Ford-Fulkerson
Theorem [6, 5]. Another good test case is that of function spaces. It is well known that the
space [X → L] of all continuous functions from a locally compact topological space X into a
continuous lattice L with the pointwise ordering is a continuous lattice [2, II.4.6].

In the Compendium [2], one finds two characterizations of the way-below relation in these
function spaces: Firstly, in I.1.21.1, in the special case where X is a compact Hausdorff space
and L the extended real line, secondly for the general case in II.4.20. While in the special
case they are correct except for the last one, the characterizations in II.4.20 are correct for X
Hausdorff. As a counterexample one may use the function space [L → L] with L the unit
interval endowed with the Scott topology induced by its natural order. With respect to this
topology, L is indeed locally compact, but strongly non-Hausdorff, because a Scott open set
containing the bottom element is necessarily the whole of L. As the example of the function
space [L → L] is crucial for the whole theory, it is essential to admit non-Hausdorff spaces
for X.

We establish characterizations of the way-below relation on function spaces that might
be those that were intended in the Compendium. The conditions in the Compendium are
modelled too closely on the Hausdorff case. Nevertheless, for many results we need additional
conditions on X that will not be surprising for the experts. We shall ask the space X to be
locally compact and coherent. The last condition needs some explanation.

In any topological space X we may consider those sets which are intersections of open
sets. Such sets are called saturated. In the Hausdorff setting this notion is superfluous, as all
sets are saturated. A space is called coherent if it is sober and the intersection of any two
compact saturated subsets is compact.

Before we proceed to the heart of the subject, let us discuss the generality in which we
wish to place ourselves. Let X be a topological space, whose lattice of open sets will be
denoted by O(X), and L be a directed complete poset (endowed with the Scott topology).
The set [X → L] of continuous functions f : X → L is directed complete with respect to
the pointwise ordering. Let us assume that L has a smallest element. For [X → L] to be a
continuous domain, it is firstly necessary for the lattice O(X) to be continuous. Indeed, as the
two-element lattice 2 is a continuous retract of L, the function space [X → 2] is a continuous
retract of [X → L], and [X → 2] is canonically isomorphic to O(X). The spaces X for which
O(X) is continuous are called core compact. They only slightly generalize locally compact
spaces as for sober spaces core compactness is equivalent to local compactness [2, V.5.6].
Thus, the reader may restrict his attention to locally compact spaces X. For [X → L] to be
continuous, it is secondly necessary for L to be a continuous domain, as L is a continuous
retract of the function space. In order to see this, identify the elements of L with constant
functions, choose a fixed element a ∈ X and evaluate all functions at a in order to obtain
L as a retract of [X → L]. If we want [X → L] to be continuous for every locally compact
space X, then L has to be a continuous L-domain; that is, a continuous domain in which
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every principal ideal is a lattice [1]. As L-domains are technically more involved, we first
restrict our attention to bounded complete continuous domains; that is, continuous domains
with least upper bounds of upper bounded subsets.

In summary, we shall consider function spaces [X → L] where X is a core compact space
and L a bounded complete continuous domain.

In the first section we approach the way-below relation on these function spaces in terms
of interpolating step functions. In the second section co-step functions are used instead. In
the third section we present our main characterizations of the way-below relation. In the last
section we show how to generalize the results to L-domains.

1 Step functions and the continuity of function spaces

Through the whole paper, X denotes a core compact space, O(X) the lattice of open subsets
of X, and L a bounded complete continuous domain.

The set [X → L] of all continuous functions g : X → L is a bounded complete domain
with respect to the pointwise order induced by L. For U ∈ O(X) and s ∈ L, the continuous
map (U↘s) : X → L defined by

(U↘s)(x) =

{
s if x ∈ U ,
⊥ otherwise.

is called a single-step function. A finite family (Ui↘si), i = 1, . . . , n, of single-step functions
is bounded iff the set {si : x ∈ Ui} is bounded for each x ∈ X. A step function is a join of a
bounded finite collection of single-step functions.

Lemma 1 The following conditions hold for all g ∈ [X → L]:

(a) For every U ∈ O(X) and every s ∈ L such that U ¿ g−1(↑↑s), we have that (U↘s) ¿ g.

(b) For every finite family Ui ∈ O(X) and si ∈ L such that Ui ¿ g−1(↑↑si) for i = 1, . . . , n,
we have that

∨n
i=1(Ui↘si) ¿ g.

(c) g =
∨{(U↘s) : U ¿ g−1(↑↑s)}.

Proof: (a) Let U ∈ O(X) and s ∈ L with U ¿ g−1(↑↑s), and let H be a directed subset of
[X → L] with g ≤ ∨↑H. For every x ∈ g−1(↑↑s), we then have that s ¿ g(x) ≤ ∨↑

h∈H h(x).
Hence there is some hx ∈ H with s ¿ hx(x). Since x ∈ h−1

x (↑↑s) and x is arbitrary, we have
that g−1(↑↑s) ⊆ ⋃↑

h∈H h−1(↑↑s). Since U ¿ g−1(↑↑s), we conclude that U ⊆ h−1(↑↑s) for some
h ∈ H. If x ∈ U then (U↘s)(x) = s ≤ h(x). Otherwise (U↘s)(x) = ⊥ ≤ h(x). Therefore
(U↘s) ≤ h.

(b) As the hypotheses imply that the family (Ui↘si) , i = 1, . . . , n, is bounded by g, it
has a join. Since (Ui↘si) ¿ g for each i, by (a) we conclude that

∨n
i=1(Ui↘si) ¿ g.

(c) Since O(X) is a continuous lattice, s ¿ g(x) iff x ∈ g−1(↑↑s) iff x ∈ U ¿ g−1(↑↑s) for
some U ∈ O(X). Therefore

∨
{(U↘s) : U ¿ g−1(↑↑s)}(x) =

∨
{s : ∃U.x ∈ U ¿ g−1(↑↑s)} =

∨
{s : s ¿ g(x)} = g(x),

because L is continuous.
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Let S(g) be the set of step functions of the type considered in Lemma 1(b). Then f ¿ g
for all f ∈ S(g) by Lemma 1(b), S(g) is directed, and g =

∨↑ S(g) by Lemma 1(c). We have
thus established

Proposition 2 [X → L] is a bounded complete continuous domain with a basis consisting of
step functions.

The preceding proposition yields a first characterization of the way-below relation on function
spaces via interpolating step functions:

Corollary 3 Let f, g ∈ [X → L]. Then f ¿ g iff there are finitely many Ui ∈ O(X), si ∈ L
with Ui ¿ g−1(↑↑si), for i = 1, . . . , n, such that f ≤ ∨n

i=1(Ui↘si).

The following consequence, unfortunately, is not sufficient to characterize the way-below re-
lation on [X → L]:

Corollary 4 If f ¿ g then f(x) ¿ g(x) for all x ∈ X.

Proof: With the notation of the preceding corollary, we have that

f(x) ≤
n∨

i=1

(Ui↘si)(x) =
∨

x∈Ui

si.

But x ∈ Ui implies si ¿ g(x). Therefore
∨

x∈Ui
si ¿ g(x).

While the preceding results are well-known [2] [1], the following is new. We are going
to show that the converse of Lemma 1(a) does not hold in general. More precisely, we shall
characterize those situations in which the converse of Lemma 1(a) holds. This is of interest
because Corollary 3 reduces the characterization of the way-below relation to step functions.
We first need two concepts.

A core-compact space X is called stable if U ¿ V and U ¿ V ′ together imply U ¿ V ∩V ′

for all U, V, V ′ ∈ O(X). Note that, for locally compact sober spaces, stability is equivalent to
coherence by [8, Prop. 1].

We call a poset L tree-like if it has a least element and if the principal ideals ↓x = {y ∈
L : y ≤ x}, x ∈ L, are chains. This condition is very strong. But note that all complete
linearly ordered sets like the unit interval or the extended real line are tree-like.

Proposition 5 The condition

(U↘s) ¿ g implies U ¿ g−1(↑↑s)
holds for all U ∈ O(X), s ∈ L \ {⊥} and g ∈ [X → L] if and only if X is stable or L is
tree-like.

Proof: ‘If’: Let (U↘s) ¿ g with s 6=⊥. By Corollary 3, there are Ui ∈ O(X) and si ∈ L
with Ui ¿ g−1(↑↑si), i = 1, . . . , n and (U↘s) ≤ ∨n

i=1(Ui↘si) ¿ g. For each x ∈ U , let
Ix = {i : x ∈ Ui} and Vx =

⋂
i∈Ix

Ui. Then we have that

s = (U↘s)(x) ≤
n∨

i=1

(Ui↘si)(x) =
∨

i∈Ix

si.
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By definition, Vx ⊆ Ui ¿ g−1(↑↑si) holds for any i ∈ Ix. Hence, if X is stable, we conclude
that

Vx ¿
⋂

i∈Ix

g−1(↑↑si) = g−1(
⋂

i∈Ix

↑↑si) = g−1(↑↑
∨

i∈Ix

si) ⊆ g−1(↑↑s).

If, on the other hand, the lower set ↓∨
i∈Ix

si is a chain, then there is an index i0 ∈ Ix such
that si0 =

∨
i∈Ix

si, and again we conclude that

Vx ⊆ Ui0 ¿ g−1(↑↑si0) = g−1(↑↑
∨

i∈Ix

si) ⊆ g−1(↑↑s).

Therefore g−1(↑↑s) À ⋃
x∈U Vx ⊇ U , because there are only finitely many distinct Vx.

‘Only if’: Assume that X is not stable and that L is not tree-like. Then there are
U, V1, V2 ∈ O(X) satisfying U ¿ V1, V2 and U 6¿ V1∩V2, and incomparable bounded elements
b1, b2 ∈ L. As L is bounded complete, the supremum b1 ∨ b2 exists. By continuity of L, there
are c1 ¿ b1 and c2 ¿ b2 such that c := c1∨c2 is neither below b1 nor below b2 (but way-below
b1 ∨ b2, of course). This situation is illustrated in the following Hasse diagram:

b1 ∨ b2

¡¡ @@
b1 c1 ∨ c2

wwww
b2

¡¡ @@
c1

wwww
c2

wwww

Let g = (V1↘b1) ∨ (V2↘b2). Then

g−1(↑↑c) = g−1(↑↑(c1 ∨ c2)) = g−1(↑(b1 ∨ b2)) = V1 ∩ V2 6À U.

We conclude the proof by showing that (U↘c) ¿ g. Let G ⊆ [X → L] be a directed set
with g ≤ ∨↑ G. Since suprema are calculated pointwise, for any x ∈ V1 there is a gx ∈ G
with gx(x) À c1. By continuity of gx, there is an open set Ux with gx(Ux) ⊆ ↑↑c1. Since V1

is covered by {Ux : x ∈ V1} and U ¿ V1, there is a finite subcover {Ux1 , . . . , Uxn} of U . Let
h1 ∈ G be an upper bound of {gx1 , . . . , gxn}. For any y ∈ U ∩ Uxi we have that

h1(y) ≥ gxi(y) ∈ gxi(Uxi) ⊆ ↑↑c1

Hence h1(U) ⊆ ↑↑c1. In the same fashion we construct h2 ∈ G with h2(U) ⊆ ↑↑c2. Therefore
any upper bound h ∈ G of h1 and h2 is above (U↘c), because h(U) ⊆ ↑↑c1 ∩ ↑↑c2 = ↑↑c.

2 Way-below via co-step functions

In Corollary 3 we established a characterization of the way-below relation via interpolating
step functions. These step functions are continuous with respect to the given topology on X
and the Scott topology on L. They correspond to lower semicontinuous step functions in
classical analysis. Step functions of another type, corresponding to upper semicontinuous
step functions in classical analysis, produce an elegant alternative characterization of the
way-below relation.
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Through this section we restrict ourselves to the case in which X is locally compact and
sober. Notice that in the presence of sobriety, local compactness and core-compactness are
equivalent conditions.

Let Q(X) denote the collection of compact saturated subsets of X. The co-compact
topology of X is the topology generated by all complements of compact saturated sets. If X
is coherent, these and the empty set are exactly the co-compact open sets.

In analogy to single-step functions, we define the function 〈K↘t〉 : X → L by

〈K↘t〉(x) =

{
t if x ∈ K,
⊥ otherwise,

for every K ∈ Q(X) and t ∈ L. The join of a bounded finite family of such functions exists
if there is a function above them. We call

∨n
i=1〈Ki↘ti〉 a co-step function. It is continuous

with respect to the co-compact topologies on X and L.

Proposition 6 Let f, g ∈ [X → L]. Then f ¿ g if and only if there is a co-step function k
such that f(x) ≤ k(x) ¿ g(x) for all x ∈ X.

Proof: ‘If’: Let k =
∨n

i=1〈Ki↘ti〉 with Ki ∈ Q(X). Since k(x) ¿ g(x), we have that
Ki ⊆ g−1(↑↑ti) =

⋃
h¿g h−1(↑↑ti). So we need only finitely many functions way-below g, say

hi,1, . . . , hi,ni , such that Ki ⊆
⋃ni

j=1 h−1
i,j (↑↑ti). Hence, the function 〈Ki↘ti〉 is below

∨ni
j=1 hi,j ,

and therefore f ≤ k ≤ ∨
i,j hi,j ¿ g, because the index set for the supremum is finite.

‘Only if’: There is a step function
∨n

i=1(Ui↘ti) between f and g such that Ui ¿ g−1(↑↑ti)
for each i. So we can choose Ki ∈ Q(X) such that Ui ⊆ Ki ⊆ g−1(↑↑ti). This yields
(Ui↘ti)(x) ≤ 〈Ki↘ti〉(x) ¿ g(x) for all x ∈ X. Hence,

∨n
i=1〈Ki↘ti〉 is the desired function.

The following gives an application of the above characterization:

Proposition 7 Let X be a locally compact, compact and coherent space, let L and L′ be
bounded complete continuous domains, and let f, g ∈ [X → L], and f ′, g′ ∈ [L → L′]. If
f ¿ g and f ′ ¿ g′ then f ′ ◦ f ¿ g′ ◦ g.

Proof: By Proposition 6, we obtain a co-step function k =
∨n

i=1〈Ki↘ti〉 between f and g.
By Corollary 4, f ′ ¿ g′ implies f ′(y) ¿ g′(y). Hence we have that for all x ∈ X,

f ′(f(x)) ≤ f ′(k(x)) ¿ g′(k(x)) ≤ g′(g(x)).

As we shall verify below, f ′ ◦ k is a co-step function. Therefore f ′ ◦ f ¿ g′ ◦ g by another
application of Proposition 6.

For I ⊆ {1, . . . , n}, define KI :=
⋂

i∈I Ki, sI :=
∨

i∈I ti and I(x) := {i ∈ {1, . . . , n} : x ∈
Ki} for all x ∈ X. We shall show that

f ′ ◦ k =
∨

y∈X

〈KI(y)↘f ′(tI(y))〉,(1)

concluding f ′ ◦ k is indeed a co-step function. Note that the sets KI are compact, because
X is a coherent and compact space (K∅ = X), and that the supremum in (1) is taken over a
finite set. The functions f ′ and I 7→ tI are monotone, and so is I 7→ f ′(tI). Hence, we only
need the largest I such that x ∈ KI in order to evaluate the right hand side of (1) at the
point x. This is I = I(x), therefore the right hand side at x equals f ′(tI(x)). By definition
of k, this is (f ′ ◦ k)(x).
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3 Main characterizations of the way-below relation

We now approach the main result of this paper, consisting of three characterizations of the
way-below relation on the function space [X → L]. Two of them reduce the way-below
relation on the function space to the way-below relation on L, and the other reduces the
way-below relation on the function space to the way-below relation on O(X).

The support of f ∈ [X → L] is defined to be the open set

supp f := {x ∈ X : f(x) 6= ⊥}.

Notice that supp f ¿ X simply means that supp f is contained in a compact subset. The
patch topology of X is the join of the original and the co-compact topology; that is, the
collection O(X) ∪ {X \Q : Q ∈ Q(X)} is a subbase for the patch open sets. The sets of the
form V \Q with V ∈ O(X) and Q ∈ Q(X) constitute a base for the patch open sets. More
details can be found in [2, V.5.11 and VII.3.6] and [4, Sec. 4].

Theorem 8 Let X be a locally compact space and L be a bounded complete continuous do-
main. If X is coherent then the following statements are equivalent for all f, g ∈ [X → L]:

1. f ¿ g.

2. (a) supp f ¿ X and

(b) there are finitely many Vi ∈ O(X), Qi ∈ Q(X), ti ∈ L, for i = 1, . . . , n, such that

(i) ti ¿ g(v) for all v ∈ Vi,
(ii) f(w) ≤ ti for all w /∈ Qi,
(iii) X =

⋃n
i=1 Vi\Qi.

3. There are patch open sets Wi ⊆ X, ti ∈ L, for i in some index set I, and Q ∈ Q(X)
such that

(a) supp f ⊆ Q ⊆ ⋃
i Wi,

(b) f(x) ≤ ti ¿ g(x) for all x ∈ Wi.

4. There exist Vi ∈ O(X), Qi ∈ Q(X) and ti ∈ L, i = 1, . . . , n, such that

(a) Vi ¿ g−1(↑↑ti)
(b) f(x) ≤ ti for all x /∈ Qi

(c) supp f ⊆ ⋃n
i=1 Vi \Qi.

If X is just sober then the implications (4) ⇒ (1) ⇒ (2) ⇒ (3) hold.

Proof: Condition (2) implies (3), because Wi := Vi \ Qi, i = 1, . . . , n, is a patch open
cover of X. The implications (1)⇒(2), (3)⇒(1), (2)⇒(4) and (4)⇒(1) will be established in
Lemmas 9, 12, 13 and 14, respectively.

In the following, f and g are arbitrary members of [X → L]. As a shorthand, we write f ¿2 g,
f ¿3 g, or f ¿4 g if statement (2), (3) or (4) of the theorem above is satisfied respectively.
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Lemma 9 f ¿ g implies f ¿2 g.

Proof: By proposition 6, there is a co-step function k =
∨m

j=1〈Kj↘sj〉 above f and point-
wise way-below g. This yields condition 2(a) of Theorem 8, because supp f ⊆ ⋃m

j=1 Kj .
We now construct Vx ∈ O(X), Qx ∈ Q(X) and tx ∈ L, for each x ∈ X, in such a way
that condition 2(b) holds and the set {(Vx, Qx, tx) : x ∈ X} is finite. Let tx = k(x) and
Vx = g−1(↑↑tx). It is clear that Vx is a neighbourhood of x such that condition 2(b)(i) holds.
Let Qx =

⋃
x/∈Kj

Ki. Since x /∈ Qx, item 2(b)(iii) also holds. In order to see that 2(b)(ii)
holds, notice that if w /∈ Qx then w ∈ Kj implies x ∈ Kj . Hence w /∈ Qx implies

f(w) ≤ k(w) =
∨

w∈Kj

sj ≤
∨

x∈Kj

sj = k(x) = tx .(2)

Therefore condition 2(b) holds.

Without the assumption of coherence, counterexamples to the converse of Lemma 9 exist even
if L is almost trivial:

Remark 10 If X contains an open set which is not compact and which is the intersection
of a finite non-empty family of compact saturated sets, and if L has more than one element,
then there are functions f, g ∈ [X → L] satisfying f ¿2 g but not f ¿ g.

Proof: Let O be open, not compact, and O =
⋂n

i=2 Qi for Qi ∈ Q(X). Take a, b ∈ L with
⊥< b ¿ a. The functions g := (O↘a) and f := (O↘b) satisfy f ¿2 g, because we can take
V1 = O, Q1 = ∅, t1 = b and Vi = X, ti =⊥, for i = 2, . . . , n. Since O is not compact, there
is a directed family {Oj}j of open proper subsets of O covering O. Therefore we have that
g = (O↘a) =

∨
j(Oj↘a) and (Oj↘a) 6≥ (O↘b) = f , contradicting f ¿ g.

Example 11 Let X = N ∪ {a1, a2,⊥} be partially ordered by ⊥< ai < n, for i = 1, 2 and
n ∈ N. Then X fulfills the conditions of Remark 10, as one sees by taking Qi = ↑ai, for
i = 1, 2, and O = N.

Lemma 12 If X is coherent then f ¿3 g implies f ¿ g.

Proof: We may assume that every Wi in condition (3) of Theorem 8 is a non-empty basic
patch open set Wi = Vi \Qi with Vi ∈ O(X) and Qi ∈ Q(X). Since ti ¿ g(x) for all x ∈ Wi,
we have that Wi ⊆ Vi ∩ g−1(↑↑ti). And since for every x ∈ Wi we can choose a Vi,x ∈ O(X)
such that x ∈ Vi,x ¿ Vi ∩ g−1(↑↑ti), we have that Wi =

⋃
x∈Wi

Vi,x \ Qi and Vi,x ¿ g−1(↑↑ti).
Moreover, since any compact saturated subset of a coherent space is patch compact [8], we
need only finitely many of the patch open sets Vi,x \Qi, say Vik,xk

\Qik with k = 1, . . . , n, to
cover Q ⊇ supp f . If x ∈ Vik,xk

\Qik then f(x) ≤ tik . Therefore we have a step function

f ≤
n∨

k=1

(Vik,xk
↘tik)

which is way-below g by Lemma 1(b).

Lemma 13 If X is coherent then f ¿2 g implies f ¿4 g.

Proof: Let Wi = Vi \ Qi and copy literally step 2 and 3 of the proof of Lemma 12. This
does not change the Qi’s, and so the condition f(x) ≤ ti for all x /∈ Qi still holds.
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Lemma 14 f ¿4 g implies f ¿ g.

Proof: Let Vi, Qi and ti, i = 1, . . . , n as in statement (4) of Theorem 8. By Lemma 1(b),
the step function s :=

∨n
i=1(Vi↘ti) is way-below g. If x ∈ supp f then there is an i0 such that

x ∈ Vi0 \Qi0 . This implies that f(x) ≤ ti0 ≤ s(x). Therefore f ≤ s ¿ g.

This concludes the proof of Theorem 8.
A continuous function h : Y → X between locally compact spaces is defined to be proper

if h−1(Q) is compact for every Q ∈ Q(X) (see [3]). The following generalizes Corollary 4:

Corollary 15 Let Y be locally compact and coherent, and let h ∈ [Y → X] be a proper map.
Then f ¿ g implies f ◦ h ¿ g ◦ h.

Proof: Let Wi, ti and Q be as in Theorem 8 (3) and let Pi = h−1(Wi). This yields
(f ◦ h)(y) ≤ ti ¿ (g ◦ h)(y) for all y ∈ Pi. We have that

supp(f ◦ h) = h−1(supp f) ⊆ h−1(Q) ⊆ h−1(
⋃

i

Wi) =
⋃

i

Pi.

Also, the set h−1(Q) is compact saturated because h is proper. Since proper maps are patch
continuous, the sets Pi are patch open. Therefore statement (3) of Theorem 8 holds.

The following is a complement to Theorem 8:

Proposition 16 The condition

f ¿ g implies f ¿4 g

holds for all f, g ∈ [X → L] if and only if X is coherent or L is tree-like.

Proof: ‘If’: By Theorem 8, we only need to consider the case of tree-like L. If f ′ ¿ g then
there is a step function f satisfying f ′ ≤ f ¿ g. In order to establish f ′ ¿4 g, it is enough
to show that f ¿4 g. By definition of step function, f(X) is a finite set and Ot := f−1(↑t) is
open for each t ∈ f(X). Also, we have that

(Ot↘t) ≤
∨

s∈f(X)

(Os↘s) = f ¿ g

for each t ∈ f(X). By Proposition 5, Ot ¿ g−1(↑↑t) follows. Hence, there are Kt ∈ Q(X) and
Ut ∈ O(X) for each t ∈ f(X) with

Ot ⊆ Kt ⊆ Ut ¿ g−1(↑↑t).

Let Qt =
⋃{Ks : s 6≤ t, s ∈ f(X)} for each t ∈ f(X). Then we have that Qt ∈ Q(X),

Ut ¿ g−1(↑↑t), and f(x) ≤ t for each t ∈ f(X) and each x /∈ Qt.
We claim that supp f ⊆ ⋃

t∈f(X) Ut \ Qt. Since L is tree-like, s 6≤ t implies that either
s > t or {s, t} is unbounded. The sets g−1(↑↑s) and g−1(↑↑t) are disjoint in the latter case.
Hence Ut ∩Ks = ∅. We thus conclude that

Ut \Qt = Ut \
⋃
{Kr : r > t, r ∈ f(X)}

⊇ Ut \
⋃
{Ur : r > t, r ∈ f(X)} =: Ũt
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for each t ∈ f(X). If t is maximal in f(X) then Ũt equals Ut. By order induction,⋃{Ũr : r ≥ t, r ∈ f(X)} =
⋃{Ur : r ≥ t, r ∈ f(X)} for each t ∈ f(X). Therefore

supp f is covered by the sets Ũt, and so it is also covered by the sets Ut \Qt.

‘Only if’: Assume that neither L is tree-like and nor X is coherent. As mentioned just
before Proposition 5, the latter implies that X is not stable. By Proposition 5, there are
g ∈ [X → L], U ∈ O(X) and s ∈ L satisfying (U↘s) ¿ g and U 6¿ g−1(↑↑s).

Assume that (U↘s) ¿4 g, and let Ui ∈ O(X), Qi ∈ Q(X), and ti ∈ L, i = 1, . . . , n, as in
the definition of ¿4. Thus, for each x ∈ U there is an index ix such that x ∈ Uix \Qix . Hence

s = (U↘s)(x) ≤ tix and g−1(↑↑tix) À Uix .

This yields g−1(↑↑s) ⊇ g−1(↑↑tix) À Uix . Since the set {ix : x ∈ U} is finite, it follows that
g−1(↑↑s) À ⋃

x∈U Uix ⊇ U , a contradiction to the choice of g, U , and s.

4 Generalization to L-domains

The main results established so far remain true if we generalize the bounded complete con-
tinuous domain L to a continuous L-domain with a least element. Recall that an L-domain
is a directed complete poset in which every principal ideal ↓a is a complete lattice. In this
section we sketch the necessary modifications.

The cost of the generalization is at least the burden of bookkeeping where suprema are
calculated. If L is an L-domain and a is an upper bound of M ⊆ L, then

∨a M denotes
the supremum of M in the lattice ↓a. In particular, if (Ui↘si), i = 1, . . . , n, are single-step
functions below g ∈ [X → L], then their supremum in ↓g is written

∨g
i=1,...,n(Ui↘si) and it

is given by ∨g

i=1,...,n

(Ui↘si)(x) =
∨g(x)

x∈Ui

si.

In the following, L will be a continuous L-domain, X a locally compact sober space, and f
and g arbitrary members of [X → L].

Proposition 17 [X → L] is a continuous L-domain with a base consisting of step functions.

Proof: Just add the label ‘g’ or ‘g(x)’ to the supremum signs in the proofs leading to
Proposition 2.

Proposition 18 f ¿ g in the function space [X → L] if and only if there is a co-step
function k with f(x) ≤ k(x) ¿ g(x) for all x ∈ X.

The only non-trivial modification in the proof of Theorem 8 lies in Lemma 9. In order to
illustrate this, let us consider the poset of Example 11. If L is this poset then L is an L-domain
whose identity function id: L → L is a compact element in the function space and therefore
a supremum of finitely many step functions:

id =
∨id

i=1,2

(↑ai↘ai).

Note that this is an example of a step function having an infinite image. Fortunately, this
space is not coherent, and so it is ruled out by the conditions of the theorem. A second
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(unavoidable) complication is that inequality (2) in the proof of Lemma 9 is not true for
L-domains: the supremum on the left would be calculated in ↓g(w) while the one on the right
would be below g(x), and there is no reason why they should be comparable. We thus need
a more subtle argumentation.

Lemma 19 Let a and b be upper bounds of a subset M of L. If
∨a M and

∨b M have an
upper bound then they are equal.

Lemma 20 If X is coherent then f ¿ g implies f ¿2 g.

Proof: This is a refinement of the proof of Lemma 9. By Proposition 18, we can find
a co-step function k =

∨g
i=1,...,n〈Ki↘si〉 such that f(x) ≤ k(x) ¿ g(x) for all x ∈ X.

For each y ∈ X, the set g−1(↑↑k(y)) is a neighbourhood of y. Since X is locally compact,
we can choose By ∈ O(X) and Cy ∈ Q(X) such that y ∈ By ⊆ Cy ⊆ g−1(↑↑k(y)). Let
I(z) = {i ∈ {1, . . . , n} : z ∈ Ki} and KI =

⋂
i∈I Ki. We first assume that X is compact. In

this case the set KI , for I ⊆ {1, . . . , n}, is compact because X is coherent. Hence, there are
finitely many elements of KI , say yI

1 , . . . , yI
m, such that

⋃m
j=1 ByI

j
covers KI . For each z ∈ X,

choose
γ(z) ∈ {yI(z)

1 , . . . , yI(z)
m }

such that z ∈ Bγ(z). This defines a function γ : X → X satisfying I(γ(z)) ⊇ I(z). Note that
{I(z) : z ∈ X} and {γ(z) : z ∈ X} are finite sets. Let tx = k(γ(x)), Vx = Bγ(x), and

Qx =
⋃

i/∈I(x)

Ki ∪
⋃
{Cγ(z) : x /∈ Cγ(z), z ∈ X}.

We claim that f(w) ≤ tx if w /∈ Qx. In order to prove this, we show that k(x) ≤ k(γ(x)) and
then that k(w) ≤ k(x). Since I(x) ⊆ I(γ(x)) and x ∈ Bγ(x) ⊆ g−1(↑↑k(γ(x))),

∨g(x)

i∈I(x)

si = k(x) ≤ g(x)

and ∨g(γ(x))

i∈I(x)

si ≤
∨g(γ(x))

i∈I(γ(x))

si = k(γ(x)) ≤ g(x).

By Lemma 19, the leftmost terms of the inequalities are identical and we thus have that
k(x) ≤ k(γ(x)). By definition of Qx, we have that x ∈ Cγ(w) and I(w) ⊆ I(x). This implies
that ∨g(w)

i∈I(w)

si = k(w) ≤ k(γ(w)) ≤ g(x)

and ∨g(x)

i∈I(w)

si ≤
∨g(x)

i∈I(x)

si = k(x) ≤ g(x).

Again, both suprema (of {si : i ∈ I(w)}) are equal, and therefore k(w) ≤ k(x).
If X is not compact then there is a ŷ such that I(ŷ) = ∅ and k(ŷ) =⊥. Let Bŷ = Cŷ = X

and γ(u) = ŷ for each u /∈ ⋃n
i=1 Ki. Since Cŷ is not used to built any Qx, the above argument

goes through with the constructions extended in this way.

Theorem 21 Theorem 8 generalizes from bounded complete continuous domains to contin-
uous L-domains.
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