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Abstract

A construction by Hofmann and Streicher gives an interpretation of a type-
theoretic universe U in any Grothendieck topos, assuming a Grothendieck
universe in set theory. Voevodsky asked what space U is interpreted as in
Johnstone’s topological topos. We show that its topological reflection is indis-
crete. We also offer a model-independent, intrinsic or synthetic, description of
the topology of the universe: It is a theorem of type theory that the universe
is sequentially indiscrete, in the sense that any sequence of types converges
to any desired type, up to equivalence. As a corollary we derive Rice’s The-
orem for the universe: it cannot have any non-trivial, decidable, extensional
property, unless WLPO, the weak limited principle of omniscience, holds.

1 Introduction

A construction by Hofmann and Streicher [15] gives an interpretation of a type-
theoretic universe U in any Grothendieck topos, assuming a Grothendieck universe
in set theory. Voevodsky asked us what space U is interpreted as in Johnstone’s
topological topos [9]. We show that its topological reflection is indiscrete.

This answer is perhaps shocking at first sight: one would maybe expect a rather
elaborate and interesting topology for the universe, but it turns out to be trivial
in this model. Perhaps the topological topos, lacking univalence [16], falls short of
giving an informative interpretation of the universe in type theory, or perhaps the
Hofmann—Streicher interpretation of the universe is at fault.

None of these is the case. It is a theorem of type theory that the universe is
intrinsically indiscrete: Any sequence X,, of types in the universe converges to any
desired type X, up to equivalence. We work with the notion of equivalence from
homotopy type theory [16], denoted by ~. Type equivalence is logically equivalent
to the existence of back and forth maps that pointwise compose to the identities,
but is defined in a subtler way.

A convergent sequence is defined as a map from the one-point compactifica-
tion Ny of the discrete type N, constructed as the type of decreasing binary se-
quences. The idea is that the points n = 17™0“ are thought to converge to the
point co = 1¢. This is in the spirit of synthetic topology, but we don’t need to
postulate any axiom, as opposed to the usual situations in synthetic topology [2] or
other synthetic theories, to prove this.

The crucial observation is that the point at infinity is not detachable, without
excluded middle or similar constructive taboo, from the finite points. In particular,
we cannot define a function No, — X by case analysis on whether the argument
is 0o or not, as this amounts to the weak limited principle of omniscience WLPO [7].



We say that a sequence x: N — X converges to a point z., : X if it extends to a
function Ny, — X that maps 0o to z4. All functions automatically preserve limits
of convergent sequences, or are sequentially continuous, by composition. If WLPO
holds, then any sequence converges to any point, rendering all types indiscrete.
From a topological point of view, WLPO violates traditional continuity axioms,
and, from a computational point of view, it gives an oracle for solving the Halting
Problem, which shows that WLPO fails to be constructive [4].

The above type-theoretic theorem then is that for any sequence X : N — U
of types and any type X : U, there is A : Noo — U such that 4,, ~ X,, and
Ay ~ X, which can be formulated as saying that any sequence X,, converges
to any desired type X, up to equivalence. If the univalence axiom holds, then
of course X, converges to X, on the nose, as the univalence axiom implies that
equivalent types are equal. We do not assume univalence, but we do need to assume
the axiom of functional extensionality (any two pointwise equal functions are equal,
which is a consequence of univalence) to prove some basic properties of the type Ny.

In order to relate the results proved inside type theory to the counterexample as
given by the topological topos, let us first recall the definition of the latter and some
its properties as relevant for this work. To build the topological topos, one starts
with the monoid of continuous endomaps of the one-point compactification Ny, of
the discrete natural numbers, and then takes sheaves for the canonical topology of
this monoid considered as a category. The category of sequential topological spaces
is fully embedded into the topological topos. Their subobjects are precisely the
Kuratowski limit spaces (sets equipped with convergent sequences subject to suit-
able axioms), which form a locally cartesian closed subcategory of the topological
topos, and an exponential ideal. The image of the Yoneda embedding is N.. It is
well-known, and easy to check, that in any topological space, and also in any limit
space X, the convergent sequences are precisely the continuous maps N, — X.
Although the topological topos hosts the sequential topological spaces and the Ku-
ratowki limit spaces, many of its objects are not (limit or topological) spaces, in-
cluding the subobject classifier and the interpretation of the type-theoretic universe
following [15]. However, the limit spaces and the sequential topological spaces form
two different full reflective subcategories of the topological topos.

When the above theorem in type theory is interpreted in the topological topos,
it gives that the quotient of U by ~ is indiscrete. But, as discussed above, U itself
is indiscrete, and this can be formulated by saying that all maps into the Sierpiriski
space (open-subobject classifier) are constant. This also gives that all maps from
U to the two-point discrete space are constant, which is a form of Rice’s Theorem
for the universe, saying that all decidable predicates on U are trivial. We also
formulate and prove this internally in type theory: if a non-trivial, extensional,
decidable property exists, then WLPO holds.

Notice that the simplicial sets model of univalence does validate WLPO since it
actually validates classical logic. It remains as an open question whether univalence
is consistent with continuity principles that entail the negation of WLPO.

In Section 2, we prove in type theory that the universe is indiscrete in the
above sense, and then derive a version of Rice’s Theorem for the universe from
this. In Section 3, we look at this from a semantical point of view. In realizability
models and in the topos of reflexive graphs, the functions from the universe to the
booleans need not be extensional, but nevertheless they are all constant. The same
phenomenon takes place in Johnstone’s topological topos, and, moreover, even the
functions from the universe to the Sierpiniski space are all constant.



2 Some theorems of type theory

We work in an intensional Martin-Lof type theory with I, ¥, Id (identity type), O
(empty type), 1 (unit type), 2 (booleans, with elements written 0, 1), and N (nat-
ural numbers) and a universe U closed under these operations [13]. In particular,
we reason without assuming Streicher’s eliminator K, i.e. without uniqueness of
identity proofs (UIP) [8]. But we use function extensionality as an axiom (any two
pointwise equal functions are equal), as explained in the introduction. The uni-
valence axiom [16] is not needed, but we briefly emphasize some of its immediate
consequences for this work.

We reason informally, but rigorously, as in the homotopy type theory book [16].
Formal counter-parts of our proofs are available at [5]. We denote the identity
type by “=", and we refer to it as simply equality. A type is a proposition iff
any two of its elements are equal, and it is a set iff the equality of any two of its
points is a proposition. Sometimes we write function types X — Y in exponential
notation YX. The canonical maps r =y — Ax — Ay and z = y — f(z) = f(y)
are written transport and ap f.

2.1 The indiscreteness of the universe

The relation x > y in 2 can be defined as * = 0 — y = 0. Because any equality
in a type with decidable equality is a proposition, by Hedberg’s Theorem, function
extensionality gives that x > y is also a proposition. Hence, by a further application
of function extensionality, the type

IsDecreasing o« = H(ai > @it1)
N

is a proposition too. Define, as in the introduction,

Ny = Z IsDecreasing a.

:2N

In view of the previous remarks, this is a set. Moreover, the projection e : Ny, — 2N
is an embedding in the sense of [16]: the map ape : x =y — e(z) = e(y) is an
equivalence. The points n, 0o : Ny, mentioned in the introduction can be defined
by providing evident accompanying witnesses in the types (IsDecreasing 1"0%) and
(IsDecreasing 1¢). We assume the definition of convergence up to equivalence given
in the introduction.

Theorem 2.1 (Universe indiscreteness) Any sequence X : N — U of types
converges to any desired type Y, up to equivalence.

Hence univalence implies that X converges to Y on the nose.
Proof We first claim that X, converges to 1. Define A : Ny, — U by

A=Tx7
7:N

Then

Ao =[x =[xP = ]2~ 1.
J:N 7:N

7:N

To see that A,, ~ X,, for any n : N, define maps

P A S X, Y



o(f) = [f(n)(refln),
Y(x) = Nj:NAp:n=j transportp'z,

where p’ : n = j is the path derived from p : n = j using the fact that the inclusion
n— n: N — N is an embedding, which in turn uses the fact that the type
(IsDecreasing «) is a proposition for any « : 2V. Now

d((x)) = transport(refl n)’z = transport(refin) = x,

where the second last step uses the fact that N is an set to get (refln)’ = refln. For
the other direction we have that

b(6(f)) () (p) = transport p' (f(n)(refin)) "= £(5)(p).

To prove the wish, we first claim that, for any ¢: n = j,

transport ¢(fn(refln)) = fj(ap(An.n)q).

This is immediate when ¢ = refl n, and hence the claim follows by path induction
(Martin-Lof’s elimination rule J for identity types). Using the fact that N, is a
set, we know that

ap(An.n)p’ = p,

from which the wish follows considering ¢ = p’. Therefore A, ~ X,,, and so X,
converges to 1 as claimed.

Next we claim that the constant sequence 1 converges to Y. Define B : Ny, — U
by

By =Y'=>.
Then, for any n : N,
B, = Y» = ~Y®~1,
B, = Y= ~ylay,

again using the fact that Ny, is a set to deduce that (oo = 00) ~ 1, which concludes
the proof of the claim.
To complete the proof of the theorem, define C' : Ny, — U by

O’L = Yi:OO X HX;:l = Bz X Az
3N

Then, for any n : N,

Cp=B, xA,~1xX,~X,,
Coo =Boo X Ao =Y x 1Y,

which shows that X, converges to Y up to equivalence. O

2.2 Rice’s Theorem for the universe

As a corollary of the universe indiscreteness theorem, we get an internal version of
Rice’s Theorem for the universe. We say that a function P: U — 2 is extensional if
X ~Y implies P(X) = P(Y). Of course all maps P: U — 2 are extensional under
univalence.



The weak limited principle of omniscience WLPO is usually formulated as
Vp:N—=2.(vn:Np(n)=1)V-Vn:Npn)=1.

In type theory it becomes

I (o) (1)

p:N—2

Under function extensionality, this is a proposition, and it is easy to check that,
again using function extensionality, it is equivalent to

H T =00 + T # o0.

z:Noo

If we deny WLPO on the grounds that it contradicts some basic continuity or
computability assumptions, then our version of Rice’s Theorem amounts to saying
that the universe cannot have any non-trivial, extensional, decidable property. But
Martin-Lof type theory does not prove or disprove WLPO, because WLPO is refuted
by realizability models and validated by the classical set-theoretic model. Hence
we formulate the theorem as follows, where say that P is mon-trivial if there are
X,Y : U with P(X) # P(Y).

Theorem 2.2 (Rice’s Theorem for the universe) If there is a non-trivial ex-
tensional P: U — 2, then WLPO holds.

Proof Let X,Y : U such that P(X) = 0 and P(Y) = 1. From these data we
construct a function p: Ny, — 2 such that

p(oo) =1 and p(n)=0 foralln:N (1)

as follows. We first apply Theorem 2.1 to the constant sequence An. X : N — U and
to the type Y : U, to get C': Ny, — U such that

Co~Y and C,~X foralln:N.

We can then let p = PoC so that (1) holds by the extensionality of P. Now, using p,
we can decide x = 0o by case analysis on p(z), which amounts to WLPO. (]

Corollary 2.3 If there is P: U — 2 such that P(X) = 0 if and only if X is
inhabited, then WLPO holds.

Proof Any such predicate is extensional, and so Rice’s Theorem applies to it. (]

This amounts to an internal version of the well known meta-theoretical fact that
there is no algorithm that decides whether any given closed type (proposition) is
inhabited by a closed term (has a proof).

The above version of Rice’s Theorem for the universe remains valid when type
theory is extended with any kind of postulated axiom, e.g. Univalence, Church’s
Thesis, Brouwerian continuity axioms, Markov principle, to name a few of the
contentious axioms that one may wish to consider in constructive mathematics [3, 4],
simply because when we add more axioms, the old theorems remain valid.

One possible reaction to Rice’s Theorem for the universe is that this is to be
expected: after all, there are no elimination rules for the universe, as it is not induc-
tively defined. But our arguments show that, even if there were, Rice’s Theorem for
the universe would still hold, which justifies the lack of elimination rules, at least if
one wishes to retain the compatibility of type theory with extensionality.



In the model of simplicial sets, which validates univalence, there are non-trivial,
extensional functions U — 2 as e.g. the inhabitedness predicate. In the topological
topos, which validates continuity axioms, such a map U — 2 doesn’t exist, because
continuity contradicts WLPO. Hence, in any model satisfying both univalence and
continuity axioms, if such a model exists, the existence of a non-trivial predicate
U — 2 is impossible, again because WLPO fails.

2.3 Failure of total separatedness

Thorsten Altenkirch, Thomas Anberrée and Nuo Li asked whether for every defin-
able A : U and for any two distinct elements of A, there is a function A — 2 that
separates them. If one thinks of 2-valued maps as characteristic functions of clopen
sets in a topological view of types, which is compatible with the topological topos
interpretation, then their question amounts to asking whether the definable types
are totally separated (see e.g. [10]), that is, whether the clopens separate the points.
This logical version of the topological notion is investigated in [6]. The above tech-
nical ingredients (chiefly using identity types as exponents in the construction of
types with certain desired properties) can be used to give a negative answer to their
question.

We begin with a construction that explodes a given point a of a type X into
two copies ag and a;. Let

E.(X) =) 2=

z: X
and define s : 2 - X — E,(X) by

s(n)(z) = (z, A\g.n).

Then the maps s(0),s(1) : X — E,(X) are both sections of the first projection.
For any z : X and n : 2 write

Tn = 5(n)(z),
so that, in particular, a,, is defined from a, which gives the desired two new copies
ag and a; of a : X in E,(X), as we show below.
Lemma 2.4 xzg=x1 for all x # a.

Proof We have (A\¢ : x = a.0) = (Aq : © = a.1) by function extensionality, as
the type = a is empty by assumption. Applying Af : 2%=%.(z, f) to this, we get
(z,2q.0) = (z, Aq.1), which amounts to xg = 7. O

Lemma 2.5 The points ag and ai are distinct.
Proof Define p: E,(X) = U by

pla, f)= > fla)=1.
Then
plag) = pla,;rg.0)= > (0=1)=(a=a)x (0=1)~0,

q:a=a

plar) = pla,dgl)= Y (1=l =(@=a)x(1=1)=(@=a)

q:a=a

Hence if ag and a; were equal then the empty type © would be equivalent to the
inhabited type (a = a). O



Lemma 2.6 If there is p: E,(X) — 2 with p(ag) # p(a1), then x # a is decidable
for every x : X.

Proof Define f: X — 2 by f(x) = p(zo) @ p(x1) where @ is addition modulo
two. By the assumption on p and Lemma 2.4, we have

r=a— f(z)=1, x#a— f(xr)=0,
whose contra-positives are respectively
f(x)=0—=2#a, flx)=1—= —(z #a).

Hence we can decide x # a by case analysis on the value of f(z). O

We can then answer the question by Altenkirch et al. as follows:

Theorem 2.7 There is a type A with two distinct elements such that if any func-
tion A — 2 separates them, then WLPO holds.

Proof Take X = 2N and a = \i.1, and let A = E,(X) with ag,a; constructed
from a as above. Then —=(z # a) — = = a for all x : X. To see this, assume
—(z # a). If (i) # a(i) then x # a, and hence we must have x(i) = a(i) because
the type 2 has decidable equality. Hence z = a by function extensionality. From this
it follows that if there is p : E,(X) — 2 with p(ag) # p(a1), then, by Lemma 2.6, it
is decidable for all z : X whether = a, which amounts to WLPO. O

Altenkirch et al. originally formulated their question at the meta-level, as follows:
Is it the case that for every definable type X and for any two provably distinct closed
terms of type X there is a closed term of type X — 2 separating them? The above
gives a negative answer to that, because an inhabitant of WLPO is not definable.
Moreover, we can remove the assumption of function extensionality for the meta-
level question: such a function is not definable with function extensionality, but
without function extensionality there are fewer terms, and hence such a function
remains not definable in the absence of function extensionality.

2.4 A characterization of Rice’s Condition for the universe

As observed above, if excluded middle, which is consistent with type theory, and
valid in the model of simplicial sets, is postulated, one can define an extensional
predicate P : U — 2, with two different values, even in the absence of elimination
rules, for instance P(X) = 0 iff X is inhabited. What our version of Rice’s Theorem
for the universe says is that, conversely, the assumption of such a P gives a non-
provable instance of excluded middle. This can be strengthened. After we publicly
presented the above version of Rice’s Theorem for the universe in the conference
Mathematical Foundations of Programming Semantics in Bristol, UK, 2012, Alex
Simpson proved the following, included with his permission:

Theorem 2.8 (Alex Simpson (2012), personal communication) The follow-
ing are logically equivalent:

(1) (Rice’s Condition) There is a non-trivial, extensional P:U — 2.

(2) (Weak excluded middle) =A + ——A for every A: U.

Proof (ft): Trivial: define P(X) = 0 if =X and P(X) = 1 if -—X. This is
clearly extensional, and non-trivial because P(0) = 0 and P(1) = 1.
(J): Let X,Y : U with P(X) =0 and P(Y) =1, and define

QA)=-Ax X +-—AxY.

Then, by the extensionality of P, and by function extensionality,



(a) if =A then Q(A) ~ X and thus P(Q(A)) =0,
(b) if A then Q(A) ~Y and thus P(Q(A)) = 1.

The contra-positives of these two implications are respectively

PQ(A) =1 = -4
P(Q(A) =0 — -A.

Hence we can decide —A by case analysis on the value of P(Q(A)). O

3 The unverse in some categorical models

We have shown above in Theorem 2.2 that WLPO follows from the existence of a
predicate p : U — 2 which is extensional in the sense that p(a) = p(b) whenever
E(a) = E(b). Since for most universes U isomorphic elements are not equal it
is interesting to show that all definable 2-valued predicates on a universe U are
constant.

This holds already for the well-known realizability models of type theory (see
e.g. [14]) where types are interpreted as assemblies over a partial combinatory al-
gebra A and the universe U is interpreted as V(PER(A)), i.e. the assembly whose
underlying set is the collection PER(A) of partial equivalence relations on A and
every element is realized by all elements of A. For this reason all realizable maps
from U to 2 are constant (since 2 is modest, i.e. realizers determine realized objects
uniquely).

But there are also universes U in Grothendieck toposes £ (over Set) such that
U is connected in the sense that every morphism p : U — 2 in £ is constant. It
has been shown in [15] how to construct universes U in Grothendieck toposes &
from a Grothendieck universe /. For sake of convenience we recall the construction
from [15].

Let C be a small category then in C = Set® one can define a universe U as
follows

U@ =uC/hH* U5 I1)(A) = Ao (5,)°

where I is a Grothendieck universe!. In order to endow U with the structure of a
universe we have to consider the object F in C which is defined as

E(I) = {(A,a) | A€ U(I),a € Alidr)}  E(u)((4,a)) = (U(u)(A), A(u = id;)(a))

for/ € Candu:J — I in C. We write py; or simply p for the natural transformation
from E to U which sends (A, a) to A.?2 The point of this construction now is that all
maps in C with fibres in & can be obtained as pullback of py; along some (typically
non-unique) map to U.

1 Actually, much weaker closure properties are sufficient for our purposes. It suffices that I/ is
closed under dependent sums and products and contains N. In most cases C will be a category
internal to U but this is only needed for having all representable objects in the universe U (defined
from U).

2The second clause in the definition of E is motivated by the “fibration of pointed objects”
for a category B with finite limits. Its objects over I € B are pairs (s,a) where a : A — I and
s: I — A with aos = id;. A morphism from (¢,b) over J to (s,a) over I is a pair (u, f) of



As observed in [15] this construction can be adapted® to a sheaf topos £ =
Sh(C,J) in a fairly simple way. Let i : & < C be the inclusion of sheaves into
presheaves and a its left adjoint which is known to preserves finite limits.* From
this it follows that a(py) is a universe in £.

3.1 A connected universe in the topos of graphs

As a first application of the universe construction considered above we apply it to
the topos of (irreflexive) graphs. Let G be the category with two objects V' and
E whose only nontrivial morphisms are s,t : V. — E. Obviously G is the topos
of irreflexive graphs. Let U be some Grothendieck universe. This gives rise to
a universe U in G where U(V) = U, U(E) is the set of spans sx : X — Xj ,
tx: X - X1 inU and U(s)(sx,tx) = Xo and U(¢t)(sx,tx) = X1, respectively.

In this universe isomorphic elements are typically not equal. But, nevertheless,
the object U is connected since for Xo, X; € U(V) we have U (s)(mg ", w0 =
Xo and U(t)(zg @™, 7;0%1) = X;. Thus, all maps from U to 2 = A(2) are
constant.

3.2 A connected universe in Johnstone’s topological topos

In [9] P. T. Johnstone’s introduced the so-called topological topos T. We will show
that 7 hosts a universe U for which all morphism U — 2 = A(2) are constant
(where A AT : T — Set is the unique geometric morphism from 7 to Set).

We first recall the definition of T (see also [11] and in particular [9] for more
detailed information). Let M be the monoid of continuous endomaps of N, the
one-point-compactification of N. A map u in M is called singular iff its image is
finite. One easily shows that non-singular maps send oo to co. On M we consider
the Grothendieck topology J consisting of sieves (i.e. right ideals in M) S such that

(1) all constant maps are in .S and

(2) for every infinite subset A of N there is a non-singular f € M whose image is
a subset of AU {oc0}.

In [9] it is shown that the ——-separated object of T are those objects X in 7 where
x = 2’ whenever X (c)(z) = X(c)(«') for all constant ¢ € M. The latter objects
correspond to limit spaces (called “subsequential spaces” in [9]), i.e. sets X endowed
with a notion of convergence as given by a relation —x between sequence in A and
elements of X satisfying the requirements

morphisms in B such that

u
—_—

~

t s

J
B—I.
bl

J
commutes. Such a morphism is over u. The fibration of pointed objects is given by first projection
to B. We get the above E when instantiating B by C and then restricting along Yoneda.

3As pointed out in loc.cit. a requirement for this to work is that small maps are stable under
sheafification which, however, is satisfied in case of sheaf toposes since if all fibres of a map f are
isomorphic to a cardinal in U then this also holds for the sheafification a(f) of f.

4Such an adjunction a 4 i is known as a localization of C. It is known that (see e.g. [11]) that
Grothendieck toposes over Set are precisely the localizations of presheaf toposes.
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_
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(1) for all x € X the constant sequence (x) converges to
(2) if (x,) converges to y then all subsequence of (z,) also converge to y

(2) if (z,,) is a sequence such that all its subsequences contain a subsequence
converging to y then (x,) converges to y.

Notice that the subobject classifier 21 will not correspond to a limit space because
equality on Q7 is not ——-closed (since otherwise 7 would be boolean, which it
isn’t!). Since Q7 is a subobject of the universe U (induced by a Grothendieck
universe U) it follows that U also doesn’t correspond to a limit space.

In M the universe U is given by the set of contravariant functors from M/« to
U. For u € M the action U(u) is given by precomposition with 3%. The presheaf
E over M has underlying set {(A,a) | A € U(x),a € A(idy_ )} and the action of M
on E is given by E(u)((4,a)) = (U(u)(A), A(u % idy_)(a)). The universe in M is
given by py : E — U sending (A, a) to A. The universe in the topological topos T
is obtained by sheafifying py, i.e. a(py) where a is the left adjoint to the inclusion
of T into M.

Theorem 3.1 In the topological topos the universe a(U) is connected, i.e. every
f:a(U) = A(2) is constant.

Proof Since A(2) is a sheaf it suffices to show that in M every map f : U — A(2)
is constant where U is the universe in M.

Recall that A(2) consists of all continuous maps from Ny, to the discrete space
2 on which M acts by precomposition.

For every A € U let A, be the constant presheaf on M /* with value A. Obviously,
for every u € M we have U(u)A. = A.. Thus, by naturality of f we have that
f(A) = f(U)A:) = f(Ae) ou for all w € M from which it follows that f(A.) is
constant.

Let A € U and o € N,. We write ¢, for the constant map with value . We
define A, as the presheaf over M/x with A,(cy) = A, An(u) =0 for u € M\ {c,}
and A(u : ca—cq) = idy4 for all u € M. Obviously, we have U(c,)(Aq) = A¢ and
Ul(cp)(Aq) = 0, for B # a.

Thus, for a, 8 € Ny, with a # 3 we have

f(Ac) = f(U(ca)(An)) = f(Aa) oca and  f(0.) = f(U(cp)(Aa)) = f(Aa) o cp

from which it follows that f(A.) = f(0.) since otherwise f(A,) were not continuous
(at ).

Suppose F' € U and o € No. Then U(c,)(F) = A, for a unique A € Y. Thus,
we have f(F)ocq = f(U(ca)(F)) = f(A:) = f(0.). Since this holds for all @ € Ny,
it follows that f(F) = f(0.) for all F' € U.

Thus, we have shown that f is constant as desired. O

Recall from [9] that every limit space X may be identified with the object y(X) of
T consisting of continuous maps from N, to X on which M acts by precomposition.
Notice that A(2) is nothing but y(2) where 2 is the discrete space with two elements.
Let 3 be the Sierpinski space with two elements 1 and T whose only non-trivial
open subset is {T}. Maps X — y(X) in T correspond to sequentially open subsets
of the reflection of X to limit spaces which motivates calling an object X of T
indiscrete iff all morphisms from X to y(X) are constant. Next we show that

Theorem 3.2 In the topological topos the universe a(U) is indiscrete.

Proof  Since y(X) is a sheaf it suffices to show that in M every map f : U — y(%)
is constant where U is the universe in M.
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For every A € U let A, be the constant presheaf on M /* with value A. Obviously,
for every u € M we have U(u)A. = A.. Thus, by naturality of f we have f(A.) =
fU(u)Ae) = f(Ac) ou for all uw € M from which it follows that f(A.) is constant.

Let A € U and a € Ny,. We write ¢, for the constant map with value . We
define A, as the presheaf over M/x with A,(cq) = A4, Aq(u) = 0 for u € M\ {c,}
and A(u : co—¢o) = ida for all uw € M. Obviously, we have U(c,)(A) = A, and
U(Cﬁ)(Aa) = 0. for B # a.

Thus, for a, f € Ny, with a # 5 we have

f(A:) = f(U(ca)(An)) = f(Aa) 0o and f((bc) = f(U(Cﬁ)(Aa)) = f(Aa) o ]

from which it follows that f(A.) = f(0.) since otherwise f(A,) were not continuous
(at ).

Suppose F' € U and « € Ny,. Then U(cy)(F) = A, for a unique A € Y. Thus,
we have f(F)ocy = f(U(ca)(F)) = f(Ac) = f(0.). Since this holds for all v € Ny
it follows that f(F) = f(0.) for all F € U.

Thus, we have shown that f is constant as desired. ([l

We conclude by observing that analogous results hold in some realizability mod-
els of type theory since they host a type ¥ which behaves very much like the
Sierpiriski space (see e.g. [12]). Since this X is always modest and the universe U is
of the form V(PER(A)) all maps from U to ¥ will be constant. In case of function
realizability (see [17]) the modest sets of the ensuing topos host a full reflective
subcategory QCB,, which is equivalent to a full subcategory of the category Sp of
topological spaces and continuous maps. Up to equivalence the objects of QCB,
are Ty spaces arising as subquotients of Baire space. Obviously, the space X is in
QCB,,. See [1] for a more detailed treatment of this.

Notice also that the above universe U in the function realizability topos is also
path connected since any map from the unit interval [0, 1] to U is realizable (because
U is V(PER(A)) where A is Baire space endowed with the pca structure employed
in function realizability).
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