
Synthetic topology of data types
and classical spaces

Mart́ın Escardó
School of Computer Science, University of Birmingham,

Birmingham B15 2TT, England

Published in Electronic Notes in Theoretical Theoretical Computer
Science, volume 87, pages 21-156, Elsevier, 2004.

3

Abstract. Synthetic topology as conceived in this monograph has three funda-
mental aspects:

1. to explain what has been done in classical topology in conceptual terms,

2. to provide one-line, enlightening proofs of the theorems that constitute the
core of the theory, and

3. to smoothly export topological concepts and theorems to unintended situa-
tions, keeping the synthetic proofs unmodified.

The unintended situation that we focus on is the theory of computation, in partic-
ular regarding programming languages from both operational (Part I) and denota-
tional (Part III) points of view, with emphasis on sequential computation. We are
aware of other applications of synthetic topology, e.g. to locales, convergence spaces,
sequential spaces, equilogical spaces, and some sheaf and realizability toposes, but
this will be reported elsewhere.

Aspects 1 and 2 are the subject of Part II. However, it turns out that it is
possible to tackle aspect 3 without previous reference to 1 or 2. In fact, we start by
developing synthetic topology of programming-language data types in Part I, with-
out assuming any background in classical topology and without introducing any.
Part III combines ideas from Parts I and II, developing non-trivial computational
applications. The main new result is a computational version of the Tychonoff
theorem. We also review previously known applications and explain how topology
and semantics interact in program-correctness proofs.

Although computers are finite, infinity shows up in a number of important situ-
ations in the theory of computation, e.g. infinity in syntax : loops, recursion; infinity
in time: non-terminating computations; infinity of data: stream computation and
higher-type computation; infinity in precision: real-number computation; infinity
through abstraction: probabilistic descriptions.

The first few chapters of Part I explore how the fundamental topological no-
tions of continuous map, open set, closed set, compact set, Hausdorff space, and
discrete space reconcile the finite character of computers with the infinite nature
of the entities one wishes to calculate with. One of the main contributions of this
monograph is to explain the computational nature of the the notion of compact-
ness. Roughly speaking, a set is compact if and only if, given any semidecidable
property, one can semidecide whether it holds for all elements of the set in finite
time. Surprisingly, there are infinite computationally compact sets, for example
that of infinite streams of binary digits.

Keywords. Synthetic topology, data type, topological space, Tychonoff theo-
rem, domain theory, computability, recursion theory, λ-calculus, functional pro-
gramming, programming-language semantics, operational semantics, denotational
semantics, Scott model of PCF, equilogical space, cartesian closed extension.

MSC 2000. 54-02, 03B40, 06B35, 68Q10, 68Q55, 68P99, 03D65, 03D75, 03B15,
03B70 , 18B30.

Contents

Contents 5

0 Preface 9
0.1 Organization . 10
0.2 Intended audience . 10
0.3 Prerequisites and supporting material 10
0.4 Topology of data types . 12
0.5 Synthetic topology . 12
0.6 Synthetic topology of data types 13

I Topology of data types 15

1 Smyth’s dictionary 17
1.1 Notes . 19

2 Operational notions of data 21
2.1 Computational set-up . 21
2.2 Functional programming . 22
2.3 The Baire data type . 22
2.4 Divergence and points at infinity 24
2.5 The Sierpinski data type . 26
2.6 Internal and external views of data 26
2.7 Operational equivalence . 28
2.8 Notes . 29

3 Synthetic topology of data types 31
3.1 Continuous maps of data types 31
3.2 Open and closed subsets of data types 32
3.3 Digression — the operational preorder 33

5

6

3.4 Intersections and unions of open sets 34
3.5 Spaces . 35
3.6 The Baire and Cantor spaces 36
3.7 Continuous maps of spaces 36
3.8 Open and closed subsets of spaces 36
3.9 Discrete and Hausdorff spaces 37
3.10 Compact and overt spaces 37
3.11 Compactness of the Cantor space 38
3.12 Basic topology . 41
3.13 Revision of the notion of space 45
3.14 Notes . 47

4 Computability versus classical continuity 49
4.1 The Myhill–Shepherdson and Rice–Shapiro theorems 49
4.2 Classical topology of data types 50
4.3 Notes . 53

5 Revised and expanded edition of Smyth’s dictionary 55

6 Computationally induced classical topologies 57
6.1 The Cantor space . 57
6.2 The Kahn domain . 60
6.3 The real line . 61
6.4 The interval domain . 64
6.5 Notes . 66

II Topology of classical spaces 67

7 Synthetic formulation of classical topological notions 69
7.1 Open subspaces . 69
7.2 Hausdorff spaces . 70
7.3 Discrete spaces . 70
7.4 Compact subspaces . 70
7.5 A classically invisible notion 71
7.6 Notes . 71

8 Function spaces in classical topology 73
8.1 Exponentials and natural function spaces 73
8.2 Exponential laws . 75
8.3 The restricted, simply typed λ-calculus 76

7

8.4 Exponentiable spaces . 80
8.5 Characterization of exponentiable spaces 83
8.6 Notes . 84

9 Classical topology via the λ-calculus 85
9.1 Notes . 93

10 Imaginary exponentials 95
10.1 Generalized topological spaces 95
10.2 Examples of categories of generalized spaces 97
10.3 Notes . 102

11 The Hofmann–Mislove representation theorem 103
11.1 Compact saturated sets . 103
11.2 Sobriety . 104
11.3 A representation theorem for continuous universal quantifiers 105
11.4 A representation theorem for continuous existential quantifiers106
11.5 Notes . 108

III Domain theory, topology and denotational semantics109

12 Injective spaces, domains and function spaces 111
12.1 Introduction . 111
12.2 Densely injective spaces . 113
12.3 Densely injective spaces and function spaces 114
12.4 Topology from order and conversely 114
12.5 Directed complete posets . 115
12.6 The Scott topology of a dcpo 115
12.7 Continuous dcpos . 116
12.8 Topological view of continuous dcpos 118
12.9 Order-theoretic view of densely injective spaces 118
12.10 Continuous Scott domains and function spaces 119
12.11 Continuous lattices, injective spaces and exponentiable spaces120
12.12 Algebraic dcpos . 120
12.13 Scott domains . 121
12.14 Fixed points, function spaces and recursive definitions 122
12.15 The Scott model of PCF and its fundamental properties . . 123
12.16 Notes . 124

8

13 Sample applications 125
13.1 A computational version of the countable Tychonoff theorem 125
13.2 Universal quantification for boolean-valued predicates 131
13.3 Decidability of equality for integer-valued functions on the

Cantor space . 133
13.4 The tree of an integer-valued function on the Cantor space . 133
13.5 The supremum of the values of a function 134
13.6 Definite integration . 135
13.7 Notes . 135

Bibliography 137

Index 149

Chapter 0

Preface

This is a revised and expanded edition of manuscript lecture notes originally
written for an advanced course at the Bellairs Research Institute of McGill
University based in Barbados, in April 2003. Prakash Panangaden is warmly
thanked for inviting me to deliver this course and to subsequently submit
the resulting lecture notes for publication. This has forced me to invest time
in shaping the presentation of the ideas and finally write them down.

Reinhold Heckmann, Alex Simpson and Paul Taylor kindly proof-read
earlier versions of this manuscript and provided useful suggestions. However,
I haven’t followed all the advice given by them, and the errors and impreci-
sions that remain are mine. Paul Taylor is also gratefully acknowledged for
recent discussions about his abstract Stone duality and its connections with
the material presented here (see the entry Taylor in the index). I have had
many interesting and profitable conversations with Achim Jung and Steve
Vickers. Finally, I am grateful for the comments and suggestions given by
the anonymous referee and by the overt students of the Midlands Gradu-
ate School for the Foundations of Computing Science and Appsem Spring
School held jointly in March-April 2004 at Nottingham University, in partic-
ular my students Thomas Anberree, José Raymundo Marcial-Romero, and
Ho Weng Kin. There are many more people to acknowledge, and I apologize
for stopping here.

9

10 Preface

0.1 Organization

This set of notes consists of thirteen chapters divided in three parts:

I Topology of data types.

II Topology of classical spaces.

III Domain theory, topology and denotational semantics.

The computational Part I can be read independently of the mathematical
Part II. Computer scientists may use Part I as a bridge to reach Part II, and
mathematicians may travel in the opposite direction. The central Chapter 3
of Part I parallels the central Chapter 9 of Part II. Part III unifies the
parallel computational and mathematical developments of Parts I and II,
and concludes with some applications.

Each part starts with a discussion of its own contents and organization.
The particular chosen linear sorting of the chapters is to some extent id-
iosyncratic, and readers are invited to try their own paths, not necessarily
linear, probably including cycles.

0.2 Intended audience

Three audiences are expected: researchers who are familiar with the area
(and hence know well the mathematics and the computer science involved),
mathematicians who are not necessarily familiar with the required computer-
science concepts but would like to learn about the applications of topology
to the theory of computation, and computer scientists who are not familiar
with the applications of topology to computer science.

0.3 Prerequisites and supporting material

The ideal prerequisites are topology, domain theory, recursion theory, and
programming language semantics, but it should be possible to cover Chap-
ters 1–5 without them. Many expository texts have been written in the
(computer-science and mathematical) literature about such topics. A grad-
uate student may take this set of notes as a guide to such texts, or the other
way round. To begin with, a biased selection of (not necessarily expository)
supporting texts is the following:

0.3 Prerequisites and supporting material 11

1. Scott’s seminal manuscript on a logic of computable functions [113],
and papers continuous lattices [111] and data types as lattices [112].

2. Plotkin’s seminal paper on PCF [101] and widely circulated Pisa notes [103].

3. Smyth’s topological view of predicate transformers [121] and handbook
chapter on topology [122].

4. Abramsky’s logic of observable properties [1].

5. Vickers’ topology via logic [140].

6. Abramsky and Jung’s handbook chapter on domains [3].

7. Amadio and Curien’s book on domain theory and lambda-calculi [4].

8. Thomas Streicher’s course notes on mathematical foundations of func-
tional programming [128].

9. Weihrauch’s book on computable analysis [142].

Possible supporting texts for the above supporting texts include:

1. Rogers’ book on recursion theory [108].

2. Davey and Priestley’s introduction to lattices and order [24].

3. The multi-author compendium of continuous lattices [54] or, prefer-
ably, its recent expanded edition continuous lattices and domains [55].

4. Johnstone’s book on Stone spaces and their descendants [69].

5. Any good text on general topology such as Kelley’s [78], Dugundji’s [31],
Bourbaki’s [17]. A reader with no background on the subject may pre-
fer to start with texts such as [117] or [129].

6. For expository reasons, we have avoided the use of category theory.
But, inevitably, occasional references are made to it. Of course, check
Mac Lane’s book [89]. A survey of its uses in functional programming
and programming-language semantics is [105].

12 Preface

0.4 Topology of data types

The topological view of computational phenomena has been developed in
intuitionistic and constructive mathematics, logic and recursion theory, do-
main theory, and type-two theory of effectivity. This goes back to Brouwer,
who proved that, in his intuitionistic approach to mathematics, all functions
f : R → R are continuous. In these notes, our mathematics is classical, but
his arguments can be exported to the theory of computation as developed in
classical mathematics to conclude that computable functions are continuous.

Work by Kleene, Kreisel, Myhill/Shepherdson, Rice/Shapiro, Nerode,
Scott, Ershov, Plotkin, Smyth, Abramsky, Vickers, Weihrauch and no doubt
many others gradually exhibited the topological character of data types
other than the real numbers, emphasizing the fact that computable functions
are topologically continuous generalizes to any domain of computation.

0.5 Synthetic topology

We reformulate classical topological concepts as continuity notions with the
aid of the Sierpinski space, which has one open point > (true) and one
closed point ⊥ (false) and plays the role of a space of results of observa-
tions or semidecisions. For example, a set is closed iff one can continuously
semidecide its complement, a space is Hausdorff iff one can continuously
tell distinct points apart, and a subset of a space is compact iff one can
continuously universally quantify over it.

Replacing “continuously” by “computationally”, computational versions
of the topological notions are obtained. Surprisingly, there exist compu-
tationally compact sets of infinite cardinality, such as the Cantor space of
infinite sequences of binary digits and the closed unit interval of real num-
bers. These two uncountable spaces behave as finite sets in that they admit
universal quantification in finite time for continuous Sierpinski-valued prop-
erties defined on them.

Using the lambda-calculus, we can combine the continuous maps that
define compactness, Hausdorff separation, closedness etc. to produce new
continuous maps. For example, the theorem that a compact subspace Q of
a Hausdorff space X is closed has the following computational reading: If
we can computationally tell distinct points of X apart and we can computa-
tionally quantify over Q, then we can computationally semidecide the com-
plement of Q. The synthetic proof of the topological theorem is a lambda-
expression that defines the semidecision function for the complement of Q

0.6 Synthetic topology of data types 13

from the apartness map of X and the quantifier of Q: A point x of X is not
in Q iff it is distinct from all points of Q. Hence the characteristic function of
the complement of Q is the lambda-expression χX\Q(x) = (∀q ∈ Q.x 6= q).
Because functions that are lambda-constructible from continuous maps are
themselves continuous, this is all we need to do. But lambda-definability
also preserves computability. Thus, both the formulation of the theorem
and its proof are seen to simultaneously have computational and topological
content, and synthetic proofs are programs in a literal sense.

(At this point, expert readers will object that the category of continuous
maps of topological spaces fails to be cartesian closed and hence doesn’t ad-
mit an interpretation of the (simply typed) λ-calculus. In order to overcome
this obstacle, we formally add, in a standard way, imaginary spaces that
implement the exponentials (function spaces) that are missing in the world
of topological spaces. For expository reasons, however, we first prove the
theorems in less generality than they are known, by requiring the needed
exponentials to exist as real spaces and working with the restricted lambda-
calculus. Thus, for example, at a first instance the theorem discussed above
has the extraneous assumption that the exponential SX exists as a real
space, where S is the Sierpinski space. Then, at a second stage, the extra-
neous assumptions are removed with the aid of imaginary exponentials, but
the original proofs are retained.)

The terminology synthetic goes back to its use in synthetic differential
geometry [82] and synthetic domain theory [65]. In our case, the point is that
the notion of continuity is taken as primitive and that the other topological
notions, including that of open set, are derived from it via the use of a space
of results observations. Moreover, proofs are obtained by manipulating con-
tinuous maps rather than points and open sets. In a computational setting,
the intended connotation of the word is that the topology is operationally
extracted from a programming language as opposed to imposed into it via a
denotational semantics.

0.6 Synthetic topology of data types

In the synthetic approach to the topology of data types, which is based on the
above ideas, we start from computational definitions of topological notions,
and at a later stage convince ourselves that the computational notions match
the classical topological ones. In fact, in order to stress this point, we
develop the synthetic topology topology of data types without assuming
any background on classical topology (and without introducing any).

14 Preface

Many of the definitions of classical topology arise as theorems in syn-
thetic topology. Moreover, the topologies that arise are familiar in topology
and analysis. For instance, computable functions on infinite sequences of
binary digits are continuous with respect to the Cantor topology.

Many applications of the topology of data types are known in the theory
of computation. To give a simple example, it follows from the compactness
of the Cantor space that equality of integer-valued continuous functions on
the Cantor space is computationally decidable. We prove computational
compactness of the Cantor space by writing a functional program that im-
plements the Tychonoff theorem in the countable case.

Part I

Topology of data types

15

16

Contents and organization

1 Smyth’s dictionary 17

2 Operational notions of data 21

3 Synthetic topology of data types 31

4 Computability versus classical continuity 49

5 Revised and expanded edition of Smyth’s dictionary 55

6 Computationally induced classical topologies 57

The centre of gravity of this part is Chapter 3, for which no previous knowl-
edge of classical topology is required. Although this part is primarily ad-
dressed to computer scientists, it has been designed to be readable, at least
to some extent, by mathematicians with no previous exposure to computer
science, for whom Chapter 2 should serve as an introduction to the relevant
prerequisites. However, mathematicians may prefer to start from Part II.
In particular, Chapter 7 of that part justifies the synthetic formulations of
the topological notions from the point of view of classical topology, and
Chapter 9 parallels Section 3.12.

The introductory Chapter 1 briefly discusses an informal dictionary re-
lating topological and computational notions, which is revised and expanded
in Chapter 5 in light of the preceding technical development.

Chapter 2 introduces the notion of data language for a programming lan-
guage, which allows us to discuss programs that manipulate not-necessarily-
computable data without invoking a denotational semantics for the program-
ming language. The data language can, in particular, be taken to be the
same as the programming language, in which case all data are computable.
The concrete meaning of the synthetic topological notions vary together
with the underlying data and programming languages, but the basic theory
holds for a variety of pairs of languages, including sequential languages.

Chapter 4 gives an important example in which the synthetic notions of
open set and continuous map satisfy the classical topological axioms. Ex-
pert readers may object that this example crucially relies on the presence
of certain parallel features in the data language, but in any case the devel-
opment of Chapter 3 shows that, despite the fact that the synthetic notions
may fail to satisfy the classical axioms, the classical theorems do hold for
them.

Chapter 6 takes a closer look at the classical topologies of some proto-
typical domains of computation. For this, some basic knowledge of classical
topology is required. Mathematicians may prefer to approach Part I start-
ing from this (perhaps after reading the introductory Chapter 1). As in
Chapter 4, some of the material relies on, and motivates, Part III.

Chapter 1

Smyth’s dictionary

In this introductory chapter we briefly discuss an informal dictionary that
relates computational and topological concepts [121, 122]:

Data type ≈ topological space.

Piece of data ≈ point.

We shall see many examples supporting this idea.

Semidecidable property ≈ open set.

(observable property – Abramsky [1],
affirmable property – Vickers [140].)

We shall give detailed accounts to this entry of the dictionary in Chapters 3
and 4. Here we briefly tell the traditional story.

Suppose that an observer is watching a black box that outputs decimal
digits, one after the other, in a never-ending fashion. The observer can be
any physical device, including a person. It may be that, for example, the
black box is producing the decimal expansion of π. If the observer were
able to see the internal machinery of the black box and maybe get hold of a
program that controls its behaviour, then he would perhaps be able to prove
or disprove that it will indeed produce the decimal expansion of π. However,
because the box is black, the observer doesn’t see its inside, and he has to
content himself with what he can observe about its external behaviour.

For example, the property that the output is the decimal expansion of π
is not observable, because the observer would have to wait until the end of
time, or have a crystal ball, in order to be sure. But the negation of this

17

18 Smyth’s dictionary

property is observable: An algorithm for computing the decimal expansion
of π is known. Hence the observer can run this algorithm, perhaps with
the aid of a third physical device, and compare its output to that of the
black box. If the black box is not producing the decimal expansion of π,
the observer will realize that at some finite stage. This may take a billion
zillion years if the black box is computing something very close to π, but the
semidecision is possible in principle. If, on the other hand, the black box
happens to be computing π, then the observer will be busy forever without
ever having a chance of producing an answer.

Thus, by an observable property we mean a property such that, when
it holds, one can make sure it does by observation, ignoring practical limits
of time and other physical resources. If it doesn’t hold, the observer is
not obliged to answer; in fact, in this case, as in the example just given,
the observer will usually be busy until the end of time trying to verify the
property in vain.

Now suppose that p(x) and q(x) are observable properties. Then the con-
junction p(x) ∧ q(x) is certainly observable: First observe one of them, and
then, if the experiment succeeds, observe the other, and, if the experiment
succeeds again, then the fact that p(x) ∧ q(x) holds has been observed.

Given a family pi(x) of properties, in order to observe that the disjunc-
tion

∨
i pi(x) holds it suffices to observe that one of the disjuncts pi(x) holds.

Hence arbitrary disjunctions of observable properties are observable. As it
stands, this claim is problematic. It is true that to observe the disjunction∨

i pi(x) holds it suffices to observe that one disjunct pi(x) holds. However,
how does the observer figure out which? Of course, he can try all in parallel.
But how is the collection of all disjuncts pi(x) presented to him?

So, in summary, observable properties are closed under finite conjunc-
tions and arbitrary disjunctions, where, for the moment, we are not sure
what “arbitrary” means. This imprecision is clarified in two different ways
in Chapters 3 and 4 with two different conclusions. This leads to a revision
of the dictionary, which is summarized in Chapter 5.

Identifying a property with the set of elements that it satisfies, we arrive
at the conclusion that observable sets are closed under the formation of finite
intersections and arbitrary unions. That is, they satisfy the axioms for the
open sets of a topology on the set of data.

Computable function ≈ continuous map.

As discussed in the preface, this goes back to Brouwer. This entry of the
dictionary is the main topic of Chapters 4 and 6. Before that, in Chapter 3,

1.1 Notes 19

it is made into a synthetic definition of continuity for functions between data
types.

? ≈ compact set.

“The notion of compactness is a little harder
to motivate: but it will have the significance
for us of a ‘finitarily specifiable’ set, or, al-
ternatively, of a set of results attainable by a
boundedly non-deterministic process.” [121]

One of the main purposes of these notes is to fill this gap. We also extend the
dictionary with computational manifestations of other topological notions,
such as those of Hausdorff space, discrete space, and function space.

1.1 Notes

We stress that the material of this chapter should be regarded as motivating
the computational and mathematical development that follows rather than
asserting any philosophical dogma. In particular, the discussion about ob-
servers and observable properties poses more questions than it answers, and
is necessarily vague and prone to endless philosophical debate.

However, one can formulate objective, operational notions of observation
with mathematical and computational precision in particular circumstances,
as is done in Chapter 2 and studied in Chapters 3 and 4. In particular, the
difference between observable and semidecidable properties is clarified in
Chapters 2 and 4, which leads to a revision of the dictionary. The expansion
and revision are summarized in Chapter 5.

Chapter 2

Operational notions of data

In order to be able to rigorously develop the topology of data types as sug-
gested by the informal discussion of the previous chapter, we need precise
definitions of notions of observation or semidecision. For this, we in turn
need precise notions of data. We obtain suitable definitions by considering
data languages for a base programming language. In an extreme, but famil-
iar, case, the data language is taken to be the same as the programming
language. But we can also consider the situation in which programs can
manipulate data coming from the environment, which we are not entitled
to assume to be necessarily programmable or computable. For the sake of
uniformity, the elements of function types are regarded as data, following
Strachey’s slogan that functions are first-class citizens.

In an attempt to make the topological character of computational phe-
nomena convincing, we reason on purely operational grounds without invok-
ing any topologically motivated denotational semantics for the programming
language under consideration (see Section 12.15 of Part III). Moreover, we
don’t assume that our language includes the so-called parallel-or operation,
although we do discuss the topological consequences of extending the lan-
guage with a weaker variant.

2.1 Computational set-up

For mathematical simplicity, we consider a functional programming lan-
guage [16], but we intend the development to be reasonably self-contained,
and hence we explain the language as we proceed. We use Haskell notation,
so that the interested reader can try the programs, e.g. using the hugs inter-
preter [73]. For computer scientists, we emphasize that, in our examples, it

21

22 Operational notions of data

is crucial to use a call-by-name language — with more effort, and sacrificing
clarity, one could use a call-by-value functional language such as ML [99],
or even a traditional imperative language.

2.2 Functional programming

In functional programming one defines computable functions by writing
down equations that they satisfy. Mathematically, in order to know what
function a set of equations defines, we need to solve the system of equa-
tions (typically by means of fixed-point techniques, as explained in Chap-
ter 12.14). Computationally, the equations are interpreted as a rewrite sys-
tem and taken as an algorithm or computer program. An example is the
factorial function:

f :: Nat -> Nat
f(0) = 1
f(n+1) = (n+1) * f(n)

In this simple case, both the mathematical and computational meanings of
the system of equations are clear. On operational grounds, any system of
equations has a solution, including e.g.

g :: Nat -> Nat
g(n) = g(n)+1

In this case, the mathematical meaning is not immediately clear, but it is
evident that the operational solution is a constantly divergent function. If
we regard such implicit definitions of computable functions as the analogue
of the differential equations in physics, we can say that in physics one has
singularities and in computation one has non-termination.

2.3 The Baire data type

For several reasons, we are interested in programs that manipulate (infinite)
sequences of natural numbers. Our programming language has a built-in
data type for sequences, but it will be more convenient for our purposes
to take the mathematical view, regarding sequences as functions defined on
the natural numbers. For simplicity, we shall pretend that the built-in data
type Int is that of natural numbers, and so we declare:

type Nat = Int

2.3 The Baire data type 23

(A data type of natural numbers without negative integers can be easily
defined in our language, but this would be a distraction from our main
aims.)

The Baire data type is defined by

type Baire = Nat -> Nat

Intuitively, this is the type of sequences of natural numbers. However, it
turns out that, on operational grounds, it also has some extraneous elements
(see Section 2.4). The set of sequences of natural numbers will occur as a
subspace, which we will call the Baire space, of the Baire data type (see
Section 3.5).

As a warming-up exercise, we consider the function that interleaves two
given sequences:

interl :: (Baire,Baire) -> Baire
interl(s,t) = \i -> if even(i) then s(i/2) else t((i-1)/2)

A bit oddly, double-colon is used to indicate types and the pairing nota-
tion to denote cartesian products. Here an expression of the form \i -> e
denotes the function that maps i to e (readers who know the λ-calculus
should regard the symbol “\” as a one-legged letter λ). The if-then-else
construction is (pre)defined by the equations

if True then x else y = x
if False then x else y = y

and has type

(Bool,a,a) -> a

for any type variable a, where the type of booleans is (pre)defined by the
declaration

data Bool = True | False

A more contrived definition of the interleaving function is the following.
Firstly, define the head , tail and cons(truction) functions by

hd :: Baire -> Nat
hd(s) = s(0)

tl :: Baire -> Baire

24 Operational notions of data

tl(s) = \i -> s(i+1)

cons :: (Nat,Baire) -> Baire
cons(n,s) = \i -> if i == 0 then n else s(i-1)

Here “==” denotes the boolean-valued equality relation (for natural numbers
in this context). The head of a sequence is its first term, the tail function
decapitates its argument, and the cons function attaches a new head to a
given sequence, and hence the following equations, which are not part of the
program we are writing, hold:

cons(hd(s),tl(s)) = s
hd(cons(n,s)) = n
tl(cons(n,s)) = s

With this notation, the readers can convince themselves that the interleaving
function explicitly defined above satisfies the equation

interl(s,t) = cons(hd(s),cons(hd(t),interl(tl(s),tl(t))))

This can, in fact, be regarded as an implicit definition of the interleaving
function (c.f. discussion above about solving equations), or as an alternative
program for computing it. That is, if one defines

interl’ :: (Baire,Baire) -> Baire
interl’(s,t) = cons(hd(s),cons(hd(t),interl’(tl(s),tl(t))))

then

interl’ = interl

holds.

2.4 Divergence and points at infinity

Of course, the equality relation on the Baire data type is not computationally
decidable. However, the apartness relation is computationally semidecidable:

apart_B :: (Baire,Baire) -> Bool
apart_B(s,t) = apart(0)

where apart(i) = if s(i) /= t(i)
then True else apart(i+1)

2.4 Divergence and points at infinity 25

Here “/=” is the negation of the boolean-valued equality relation. For ex-
ample, we have that

apart_B(\i -> 0,\i -> if i == 2^100 then 1 else 0) = True

although it takes a very long time to get the answer, and it takes infinitely
long to get the answer when we run the expression

apart_B(\i -> 0, \i -> 0)

To be accurate, the above program defines the apartness map of the Baire
space, which occurs as a subspace of the Baire data type (see Sections 3.6
and 3.9 below).

Notice that we started by saying that, in functional programming, one
implicitly defines functions by equations they satisfy. But, of course, not
every equation satisfied by a function uniquely determines it. For example,
the interleaving function satisfies the equation

f = f

but the program

divergent_function :: (Baire,Baire) -> Baire
divergent_function = divergent_function

certainly doesn’t define the interleaving function: When we run it, we get a
non-terminating computation.

One attitude towards this phenomenon is to consider that such divergent
programs fail to compute any entity of the required type, and hence should
be ruled out of consideration (one cannot rule them out of existence because
the halting problem is not computationally solvable). Another is to regard
such kind of computational behaviour as an entity similar to a point at
infinity in projective geometry, and think of the non-terminating program
as computing such a postulated, intangible entity, which is usually denoted
by ⊥ and called bottom (the reason for this terminology is discussed below).
This is the point of view that is compatible with the operational semantics
of our language. Thus, for any data type a, the program bot defined below
denotes bottom:

bot :: a
bot = bot

With this convention, one can now write

26 Operational notions of data

apart_B(\i -> 0,\i -> 0) = bot

That bottom should be regarded as a legitimate entity is supported by the
fact that, for example, the following equations hold:

if True then x else bot = x
if False then bot else y = y
(\i -> 0)(bot) = 0

As we shall see, the topology of data types is intimately related to divergent
computations.

2.5 The Sierpinski data type

The Sierpinski data type is that of results of observations or semidecisions:

data S = T

By the above discussion, S has precisely two elements, namely T (pronounced
top or true) and bot. Guided by examples such as the apartness map dis-
cussed above, we think of T as “observable true” and of bot as “unobservable
false”. In fact, notice that the apartness map is better typed using the Sier-
pinski data type, because the answer (observable) False is not possible.

2.1 Lemma (Turing 1936) The function diverges : S→ S defined by

diverges(T)=bot
diverges(bot)=T

is not computable, and hence not definable in our language.
Proof Otherwise we would be able to solve the halting problem. �

2.6 Internal and external views of data

What are the elements of a data type? There are two operational answers
to this question, depending on whether we consider the language as existing
in isolation or within an external environment that can supply data which
is not necessarily programmable in the language, but which programs in the
language can manipulate. We call these the internal and external views.
For many purposes, it doesn’t matter which view one takes, and, in fact,
the synthetic topology developed below applies to both. But there is one

2.6 Internal and external views of data 27

exception: It turns out that, as we shall see, the Cantor space defined below
is compact in one view but not the other. The reader can safely skip the
material on the external view until this example is reached or studied, but
should certainly consult it before Chapter 4 is reached.

Internal view. In the internal view, we take the elements of a data type
to be simply the (equivalence classes of) programs of that type. We write
x ∈ a to indicate that x is an element of the data type a. In particular, if
we write f ∈ (a→ b), we imply that the function f is programmable.

External view. Programs in our language can exchange sequences of
natural numbers with the environment, by communicating terms in suc-
cession in a never-ending fashion. For example, one can write a program
f : Baire → Baire and run it interactively : The computer will alternate
between reading some terms of the sequence from the input, performing in-
ternal calculations, and writing some terms of the sequence to the output.
For instance, if

f(s) = \i -> if even(i) then s(i+1) else s(i-1)

then, under the interactive regime, the program will wait for two numbers
from the input, print them in reverse order, again wait for two more numbers,
again print them in reverse order, and so on.

The crucial point here is that the input sequence is not necessarily com-
putable — unless someone proves that the universe in which we live is a big
Turing machine.

Now suppose that a program f : Baire → Baire is written as a com-
position of programs Baire → a and a → Baire for some suitable data
type a. If the input from the first is non-computable, then so will its output
be in general. Hence we would get into trouble if we took the elements of
the data type a to be programs. Moreover, even if the input turns out to
be computable, this doesn’t help, because an algorithm that generates the
input is not disclosed: We only get the input itself.

Data language for the external view. To solve the problem, we define
a data language, which will accommodate both programmable and external
data. We take this to be the extension of our programming language with
a constant of type Baire for each sequence of natural numbers. Each such
constant represents a particular potential input.

28 Operational notions of data

We take the elements of type a to be the (equivalence classes of) ex-
pressions in the data language. Thus, we have external data (expressions
in which input constants occur) and programmable data (expressions in our
programming language). We write x ∈ a to indicate that x is an element
of a. In particular, if we write f ∈ (a → b), this time we don’t imply that
the function f is programmable in the language or computable.

Notice that external data cannot occur within programs of our language,
which remains unchanged. The point is that programs can manipulate ex-
ternal data. For example, given a program f : Baire→ Baire and external
data s ∈ Baire we get external data f(s) ∈ Baire. Although f(s) is not
necessarily computable, we can certainly evaluate it relatively to the given
input s using the computation rules of the language, with the understanding
that whenever one attempts to evaluate s, one is actually reading the input.

2.7 Operational equivalence

When we wrote

interl = interl’

we didn’t say what we meant, relying on the reader’s intuition.
Two programs, or two pieces of data, of the same type are operationally

equivalent if any observer will detect the same properties for them. To make
this notion mathematically precise, we define a notion of experiment that
an observer can perform.

By an experiment of type a we mean a function u ∈ (a → S). To
observe a given x ∈ a, the observer prepares an experiment u ∈ (a→ S) and
then runs u(x) and waits for the evaluation to terminate (necessarily with
result T). If it does, the observation succeeds. Thus, x, y ∈ a are said to be
operationally equivalent if convergence of u(x) is equivalent to that of u(y)
for every experiment u ∈ (a→ S). We treat equivalent programs as if they
were equal, both conceptually and notationally.

With an official definition of the elements of data types and equality for
programs, one can now be more rigorous. The equation

cons(hd(s),tl(s)) = s

discussed above actually fails. The offending cases are those of the form

s = \i -> n

2.8 Notes 29

with n 6= bot. In order to see this, for any s ∈ Baire, define

s’ = \i -> if i == 0 then s(0) else s(i)

Then

cons(hd(s),tl(s)) = s’

Because s’(bot)=bot and s’(i) = s(i) for i 6= bot, the original equation
for cons holds if and only if s = s’ if and only if s(bot) = bot.

2.8 Notes

In many examples of interest, it is not so easy to establish or refute equiva-
lence of two given programs. One of the main aims of programming language
semantics is to develop general techniques for that purpose. See e.g. Gor-
don [56], Gunter [57], Pitts [100], Plotkin [101, 103], Tennent [135] and
Winskel [145]. In the next chapter we rely on operational methods, and in
Chapter 13 of Part III, on denotational methods, which are briefly developed
in Chapter 12 of the same part.

The notion of computability relative to external inputs is standard in
recursion theory, where external inputs are known as oracles, which are
used to study Turing degrees. They were previously known to Brouwer, in
his intuitionistic approach to mathematics, as lawless sequences. Our view
of external data is closer to Brouwer’s than to Turing’s, and coincides with
that of [142].

Chapter 3

Synthetic topology of data
types

In topology one finds notions such as space, continuous map, open set, closed
set, discrete space, Hausdorff space, compact space and so on. Partly based
on Smyth’s dictionary, in this chapter we define computational notions with
the same names, and later on convince ourselves that they match the original
topological ones, where the match is precise under some natural assumptions
on the model of observation (Theorem 4.1). For this chapter, no background
in topology is required.

Using computational technology, we prove known theorems such as “ev-
ery compact subspace of a Hausdorff space is closed”. The proofs are pro-
grams in the literal sense. Thus, the topological character of data types is
explicitly exhibited. In Part II, we turn this programme on its head: We
apply the lambda-calculus to cheaply develop the core of classical topology.

In this chapter we work with the programming and data languages dis-
cussed in the previous. With the exception of Section 3.11, it doesn’t make
any difference whether we work with the internal or the external view of
data.

3.1 Continuous maps of data types

In the traditional approach to the topology of data types of languages such
as the one we are considering, one starts with a partial order on the set
of data, then constructs a topology from the order, then defines continuity
from the topology, and finally shows that functions that are definable in the
language are continuous. With hindsight, we can start from the end and

31

32 Synthetic topology of data types

carry on until we reach the beginning (in Chapter 12 of Part III).
We define a function f : a → b of data types to be continuous if it is

definable in the language. For example, out of the four functions S → S,
where S is the Sierpinski data type, the two constant ones and the identity
are continuous, but, as we have already seen, the fourth is not (Lemma 2.1).

Notice the carefully chosen word definable as opposed to computable:
By varying the language under consideration, the notion of continuity will
vary. In particular, instead of our base programming language we can use
the induced data language with respect to the external view, as it is done
in Chapter 4, where one gets a perfect match of synthetic continuity with
classical continuity (Theorem 4.1). In this chapter, our base language is
Haskell, where in two occasions we consider an extension with a certain
computable disjunction operation which is not definable in the language.

All other topological notions considered in this chapter are reduced to
that of continuity, with the aid of the Sierpinski data type, and hence they
vary together with the notion of continuity. When the coincidence of syn-
thetic and classical continuity holds, one gets classical topological notions
(Lemmas 7.1–7.4), and hence we don’t bother to attach the qualification
computational to the notions. The ambiguity of the terminology reflects the
ambiguity of the approximation sign ≈ in Smyth’s dictionary (cf. Chapter 5).

3.2 Open and closed subsets of data types

A subset U of a data type a is called open if its characteristic function
χU : a→ S defined by

χU (x) = T if and only if x ∈ U

is continuous. A set is called closed if its complement is open.
Because our language is Turing-universal as far as definability of func-

tions Nat → Nat is concerned, a subset of non-divergent elements of Nat is
open if and only if it is r.e., if and only if it is semidecidable. As discussed
above, this will change in Chapter 4 (Theorem 4.1).

As another example, the subsets ∅, {T}, and {bot, T} of the Sierpin-
ski data type are open, because their characteristic functions are the two
constant maps and the identity, but the set {bot} is not, because its charac-
teristic function is that considered in Lemma 2.1. If the divergent element
of a data type a belongs to an open set, then all elements of the data type
belong to the open set. The reason is that any definable function a → S
that maps the divergent program to T has to send all the elements to T,

3.3 Digression — the operational preorder 33

because, on operational grounds, the program has to produce the output T
without ever looking at the input. In summary, the only open set with bot
as a member is the whole space of data.

3.1 Proposition If f : a→ b is continuous then f−1(V) is open for every
open set V ⊆ b.

Proof Because χf−1(V) = χV ◦ f and because the composite v ◦ f : a→
S is definable if v : b→ S is. �

Moreover, the inverse-image operation itself is definable:

type Open a = a -> S

inverse_image :: (a -> b) -> (Open b -> Open a)
inverse_image(f) = \v -> v.f

The converse of the proposition is not true, at least not until we reach
Chapter 4.

3.3 Digression — the operational preorder

Notice that, by definition, two programs x and y are operationally equivalent
in the internal sense if and only if x ∈ U ⇐⇒ y ∈ U for every open
set U . The internal operational preorder x v y is defined by requiring
that x ∈ U =⇒ y ∈ U for every open set U . That is, y passes every
internal observation that x does. By the above development, we conclude
that bot v x holds for any x. In particular, bot v T in the Sierpinski data
type, and this is the historical reason for using the terminologies bottom and
top. (Of course, one can also consider an external operational preorder, but
then open sets have to be defined relative to observers. See Chapter 4.)

3.2 Proposition If f : a→ b is continuous and x v y then f(x) v f(y).

Proof If V is a an open neighbourhood of f(x) then f−1(V) is an open
neighbourhood of x by Proposition 3.1 and hence of y by the assumption
that x v y, from which we conclude that V is a neighbourhood of f(y), as
required to conclude that f(x) v f(y). �

34 Synthetic topology of data types

This is summarized by saying that continuous functions are monotone. But
we shall not have occasion to consider this preorder in this chapter (see
Chapter 12 of Part III).

3.4 Intersections and unions of open sets

In any data type, the empty set and the whole space of data are open:
Just consider the two constant functions into S. In order to see that finite
intersections of open sets are open, first consider the conjunction operator,
which one can write in infix notation:

(/\) :: S -> S -> S
T /\ T = T

(There is no mistake in the first line, but we won’t pause to explain the
idiosyncrasies of the programming language.) The other cases

T /\ bot = bot
bot /\ T = bot
bot /\ bot = bot

hold automatically. Notice that they cannot be given explicitly, because we
cannot define a function by stipulating what happens at non-terminating
arguments, as illustrated in Lemma 2.1. With this, we now program the
intersection operator by

intersection :: Open a -> Open a -> Open a
u ‘intersection‘ v = \x -> u(x) /\ v(x)

where the quotes are used in order to indicate that a function is used as an
infix operator. This proves

3.3 Proposition Finite intersections of open sets are open.

Regarding unions, it is well known that a function

(\/) :: S -> S -> S

for disjunction is not expressible in the language. In fact, one requires that
the equations

3.5 Spaces 35

T \/ T = T
T \/ bot = T
bot \/ T = T
bot \/ bot = bot

hold, but the evaluation mechanism of the language is sequential and in order
to evaluate an expression e1 \/ e2 one would have to evaluate the expressions
e1 and e2 in an interleaved or parallel fashion, until one of them terminates
(necessarily with result T). This function is certainly computable though,
and the language can be extended with it if required. In the extended
language, finite unions of open sets are open:

union :: Open a -> Open a -> Open a
u ‘union‘ v = \x -> u(x) \/ v(x)

Moreover, countable unions of open sets are also open — as above, we regard
sequences as functions defined on the natural numbers:

countable_union :: (Nat -> Open a) -> Open a
countable_union(s) = \x -> exists(0)

where exists(i) = s(i)(x) \/ exists(i+1)

3.4 Proposition In the language extended with the disjunction operation,
countable unions of open sets are open.

However, in this chapter we work with the restricted language whenever
possible, clearly indicating when the parallel operation is invoked. In fact,
it turns out that the synthetic topology developed below doesn’t rely on the
closure properties for open sets: They are there, but we don’t seem to need
to explicitly invoke them. But we’ll meet the closure properties again in a
proposition that generalizes them.

3.5 Spaces

For one reason or another, one frequently considers subsets of data types,
even if they are not expressible in the language. For example, every data type
has an extraneous divergent element bot, but often we are concerned with
the set of non-divergent elements, or some more subtly defined subset. By
a space we mean an arbitrary subset of a data type. (But see Section 3.13.)
If X is a subspace of a data type a, we also say that the data type a is an
environment for the space X.

36 Synthetic topology of data types

For example, for us the space of natural numbers is the subspace N of
non-divergent elements of the data type of natural numbers, and the space
of booleans is the subspace T of non-divergent elements of the data type of
booleans.

3.6 The Baire and Cantor spaces

We are particularly interested in two subspaces of the Baire data type defined
above: The Baire space is the subset B of functions that map the divergent
element to itself, and non-divergent elements to non-divergent elements (i.e.,
the Baire space consists of the strict total functions). The Cantor space is
the subset C of B consisting of functions taking values 0 or 1 on all non-
divergent arguments.

3.7 Continuous maps of spaces

Because subspaces of data types are not necessarily data types, we are
forced to work with relative topological notions as follows (cf. Chapter 12
of Part III). Let X and Y be subspaces of data types a and b. We say
that a function φ : X → Y is (relatively) continuous if there is at least one
continuous function f : a→ b with φ(x) = f(x) for every x ∈ X. We don’t
care how f behaves on elements of a which are outside X (cf. Section 3.13).

3.8 Open and closed subsets of spaces

We say that a subset of a space is (relatively) open if its Sierpinski-valued
characteristic map is continuous. The following is immediate from the defi-
nitions.

3.5 Proposition For a subspace X of a data type a, a subset U of X is
open in X iff there is an open subset U ′ of a such that X ∩ U ′ = U .

Similarly, we define a notion of (relatively) closed subset of a subspace.

3.6 Exercise The subset of all sequences s which belong to the Cantor
space and satisfy s(17) = 0 is not open in the Baire data type, but it is open
in the Cantor space.

3.9 Discrete and Hausdorff spaces 37

3.9 Discrete and Hausdorff spaces

We say that a subspace of a data type is (relatively) discrete if its Sierpinski-
valued equality map is continuous. For example, the data type of natural
numbers is not discrete, because one has to take into account the diver-
gent element. However, the space of natural numbers is — we just use the
predefined boolean-valued equality test:

equal_N :: (Nat,Nat) -> S
equal_N(m,n) = if m == n then T else bot

As we have seen, the Baire and Cantor spaces are not discrete, for it takes
an infinitely long time to check that two infinite sequences are equal.

3.7 Exercise In a discrete space, singletons consisting of programmable
elements are open.

We say that a subspace of a data type is (relatively) Hausdorff if its
Sierpinski-valued apartness map is continuous. Again, because of the pres-
ence of the divergent element, no data type is Hausdorff. However, for
example, the space of natural numbers is Hausdorff, and, as we have seen in
Chapter 2.4, so is the Baire space. It follows that the Cantor space is also
Hausdorff, because an apartness program for a space obviously also works
for any subspace. That is, subspaces of Hausdorff spaces are Hausdorff. The
same argument shows that subspaces of discrete spaces are discrete.

3.8 Exercise In a Hausdorff space, singletons consisting of programmable
elements are closed.

3.10 Compact and overt spaces

We call a subspace Q of a data type a compact if its universal quantification
functional ∀Q : (a→ S) → S defined by ∀Q(p) = T iff p(x) = T for all x ∈ Q
is continuous. The notion of compactness generalizes that of finiteness:
Any finite subspace {x1, . . . , xn} of definable elements of any data type is
compact. Its quantification functional is definable as the nameless program

\p -> p(x1) /\ ... /\ p(xn)

where x1, . . . , xn are programs for x1, . . . , xn. Of course, one needs a different
program for each finite set — the above is just a program scheme.

38 Synthetic topology of data types

The space of all elements of any data type a is compact, but for trivial
reasons: A continuous predicate holds for all elements if and only if it holds
for the divergent element, as discussed above:

\p -> p(bot)

A subset of the space of natural numbers is compact if and only if it is finite,
for otherwise we would be able to solve the halting problem. The situation
changes radically in the case of non-discrete spaces, but it is still not so
easy to find non-trivial examples of compact spaces. For example, the Baire
space fails to be compact, as we shall see below.

A subspace O of a data type a is called overt if its existential quantifica-
tion functional ∃O : (a→ S) → S defined by ∃O(p) = T iff p(x) = T for some
x ∈ O is continuous. For example, any overt set of natural numbers is r.e.,
as shown in Proposition 3.13.

3.9 Exercise Any r.e. set of natural numbers is overt in the language ex-
tended with the disjunction operation.

As in this example, overtness results typically rely on the existence of parallel
features such as the disjunction operation discussed above.

3.10 Exercise Show that the Baire and Cantor spaces are overt using the
disjunction operator. In particular, conclude than an overt set doesn’t need
to be countable. Hint. Enumerate infinite sequences whose finite prefixes
exhaust all finite sequences, and argue using the modulus of continuity of a
predicate at a sequence as defined in Section 3.11 below.

3.11 Compactness of the Cantor space

In classical topology, the Cantor space is one of the simplest non-trivial
examples of a compact space. In the synthetic approach we are considering,
compactness of the Cantor space holds in the external view of data but fails
in the internal.

If p(s) evaluates to T for p ∈ (Baire→ S) and s ∈ Baire, then, on oper-
ational grounds, we conclude that only finitely many terms of the sequence s
can be inspected before the evaluation terminates, because if an answer is
ever produced then this has to happen after finitely many applications of
the equations that define the program. We refer to the index of the last
inspected term plus one as the (operational) modulus of continuity of p at s.
If the modulus is zero then no term of the sequence is inspected. By the

3.11 Compactness of the Cantor space 39

Cantor tree we mean the infinite binarily branching tree. We think of a
point in the Cantor space as an infinite path in the Cantor tree, starting
from the root, where a sequence of digits 0 and 1 is interpreted as a sequence
of instructions “turn left” and “turn right”.

Each predicate p ∈ (Baire → S) induces a pruning of the tree: For
each s in the Cantor space with p(s) = T, we prune the path s at level n,
where n is the modulus of continuity of p at s. For the external view of
data, if p holds for all s in the Cantor space, then all paths of the resulting
tree are finite and hence the tree itself is finite by König’s lemma. We refer
to the height of this tree as the uniform modulus of continuity of p (notice
that this is defined only for predicates that hold for all points in the Cantor
space).

It is crucial in this last argument that all paths are pruned to finite
paths. If we take the internal view, then s in the proof ranges over com-
putable sequences, and hence only the computable paths are pruned. As a
consequence, there may remain infinite paths. However, they must be non-
computable. It is clear that the pruned tree is computable, and so one is
tempted to think that there cannot be any non-computable path. But this
impression is wrong: Such trees, which are called Kleene trees, are known to
exist [12]. The tree of a predicate that holds for all computable sequences but
fails for at least one non-computable sequence must be infinite, and hence it
is not possible to completely traverse it in finite time. Hence compactness
fails in the internal view.

But, because, in the external view, the tree is finite, we can hope to
traverse it in finite time in order to perform the universal quantification. A
simple idea is that a predicate holds for all sequences in the Cantor space
iff it holds for those that start with a zero and those that start with a one.
This corresponds to searching the left and right subtrees of the predicate.
More precisely, the left and right subtrees of a predicate p coincide with the
trees of the predicates p0(s) = p(cons(0, s)) and p1(s) = p(cons(1, s)). Hence
if p has uniform modulus n + 1 then p0 and p1 have uniform modulus n.
This argument shows that not only does ∀C : (Baire→ S) → S satisfy the
equation

forall_C(p) = forall_C(\s -> p(cons(0,s)))
/\ forall_C(\s -> p(cons(1,s)))

but also that as the equation is unfolded starting with a universally valid
predicate, the modulus of the predicate decreases to 0. From that point on,
the predicate doesn’t look at its argument anymore. However, it is clear

40 Synthetic topology of data types

that a finite unfolding of the equation never produces the value T and hence
evaluation doesn’t terminate. But we are in the right track. What we need
is to find a way to probe p. If we could ask p whether it looks at its argument
(cf. Longley [86]), then we would be done. However, all we can do in our
language is to write down equations, and hence we have a harder task ahead.

In order to be able to probe p, we consider an “if-then” construction on
the Sierpinski data type, without an “else” clause:

ifs :: (S,a) -> a
ifs(T,x) = x

Then the equation

ifs(bot,x) = bot

holds automatically. Using this, our program is the following:

c :: Baire
c = \i -> 0

forall_C :: (Baire -> S) -> S
forall_C(p) = p(ifs(forall_C(\s -> p(cons(0,s))), c))

/\ p(ifs(forall_C(\s -> p(cons(1,s))), c))

What is important about c here is that it is a point of the Cantor space,
but the particular choice is irrelevant. In order to argue that it works, it is
convenient to rewrite it to name some subexpressions:

forall_C(p) = p(t0) /\ p(t1)
where p0(s) = p(cons(0,s))

p1(s) = p(cons(1,s))
t0 = ifs(forall_C(p0), c)
t1 = ifs(forall_C(p1), c)

It is not hard to see that the quantifier does satisfy any of the two equivalent
equations by considering the two cases ∀C(p) = T and ∀C(p) = bot. As
discussed above, it is a general fact that an implicit definition of a function
may have more than one solution. We take the operational solution, which
is obtained by repeatedly unfolding the equations until a value is reached,
or forever so that bottom is computed. As we shall see in Chapter 12, it
coincides with the smallest continuous solution in the operational preorder.

We first show that forall_C(p) evaluates to T if p(s) evaluates to T for
all s in the Cantor space by induction on the uniform modulus of p. If the

3.12 Basic topology 41

modulus is zero, then both arguments of the conjunction operator evaluate
to T, no matter what t0 and t1 are, and hence the conjunction itself evaluates
to T, as required. If p has modulus n+1 then p0 and p1 have modulus n, as
discussed above, and hence forall_C(p0) and forall_C(p1) evaluate to T
by the induction hypothesis. It follows that t0 and t1 evaluate to points in
the Cantor space, and, no matter what they are as long as they are members
of the Cantor space, p(t0) and p(t1) evaluate to T and hence so does their
conjunction, which concludes our inductive argument.

To complete the proof, we show that if forall_C(p) evaluates to T then
p(s) evaluates to T for all s in the Cantor space. The argument considers the
number of unfoldings of the equation that defines forall_C(p) performed
by the evaluation procedure. If this number is one, then no information
about t0 and t1 is available and hence p(t0)∧p(t1) must have evaluated to T
without p looking at its arguments t0 or t1, i.e., p must have modulus of
continuity 0. Hence p(s) must evaluate to T for every s in the Cantor space,
as required. More generally, if forall_C(p) evaluates to T in 2n unfoldings
or fewer, then p has uniform modulus of continuity n or smaller, and hence
must be universally valid. We have provided the base case of the inductive
argument. The routine inductive step is left to the reader. We present a
complete proof of a generalization of this program in Chapter 13.

In summary:

3.11 Proposition Compactness of the Cantor space

1. holds in the external view of data, but

2. fails in the internal view.

What is going on here is that the definition of the quantification func-
tional is relative to what we mean by an element of a data type, so we end
up with two different definitions when we specialize it to the internal and
external views. The above program satisfies one of the resulting specifica-
tions, but not the other. The statement that a predicate is universally valid
with respect to the external view is stronger (but often easier to prove when
it holds) than the statement that it is universally valid with respect to the
internal view.

3.12 Basic topology

Now that we have plenty of definitions and at least one example of a non-
trivial compact space, let’s prove some theorems about them. To be precise,

42 Synthetic topology of data types

let’s write some programs. For convenience, we introduce a type for quan-
tifiers:

type Quant a = (a -> S) -> S

3.12 Proposition If X is Hausdorff and Q ⊆ X is compact, then Q is
closed.
Proof Let a be an environment for the spaceX, apart_X :: (a,a) -> S
be an apartness program for X and forall_Q :: Quant a be a quantifying
program for Q. Then the characteristic map of the complement of Q can be
programmed by

complement_Q :: Open a
complement_Q = \x -> forall_Q(\y -> apart_X(x,y))

That this performs the required job follows from the fact that x 6∈ Q if and
only if, for all y ∈ Q, x 6= y. �

In fact, functional programmers will have already realized that we can
say more: Not only is the characteristic map of the complement of Q de-
finable, but also we can construct it, by means of a program, from the
quantifier of Q and an apartness map of X. We don’t have a good name for
the program, but in any case we want to keep it short for layout reasons:

c :: (Quant a, (a,a) -> S) -> Open a
c(forall_Q,apart_X) = \x -> forall_Q (\y -> apart_X(x,y))

Then

complement_Q = c(forall_Q,apart_X)

That is, the result holds uniformly in the sense of recursion theory [108].
This is also the case for the following propositions, but we omit the routine
details.

The following dual proposition with dual proof won’t be very exciting to
topologists, but it confirms what is expected from a discrete set over which
one can existentially quantity in a computational fashion: It must be r.e.

3.13 Proposition If X is discrete and O ⊆ X is overt, then O is open.
Proof Let a be an environment for the spaceX, equal_X :: (a,a) -> S
be an equality program for X and exists_O :: Quant a be a quantifying
program for O. Then the characteristic map of O can be programmed by

3.12 Basic topology 43

chi_O :: Open a
chi_O = \x -> exists_O(\y -> equals_X(x,y))

That this performs the required job follows from the fact that x ∈ O if and
only if there exists y ∈ O with x = y. �

3.14 Proposition If X is compact and F ⊆ X is closed then F is compact.

Here we need the disjunction operation discussed above.

Proof Let forall_X :: Quant a be the quantifying program for X,
where a is an environment for the space X, and complement_F :: a -> S
be the program for the characteristic map of the complement of F . Then
the quantifying program for F is defined by

forall_F :: Quant a
forall_F(p) = forall_X(\x -> complement_F(x) \/ p(x))

That this performs the required job follows from the fact that ∀x ∈ F.p(x)
iff ∀x ∈ X.x ∈ F =⇒ p(x) iff ∀x ∈ X.x 6∈ F ∨ p(x). �

3.15 Exercise Prove the dual of the above proposition, namely that an
open subspace of an overt space is overt. The parallel operation is not
needed.

3.16 Proposition If f : a → b is a continuous function and Q ⊆ a is
compact, then its direct image f(Q) is compact.

Proof If f is a program for f and forall_Q is a program for quantifica-
tion over Q, then the following program clearly quantifies over f(Q):

forall_fQ :: Quant b
forall_fQ(p) = forall_Q(\x -> p(f(x)))

�

This can be applied to conclude that the Baire subspace of the Baire
data type is not compact, as claimed above. If it were compact, then its
direct image under e.g. the continuous map

f :: Baire -> Nat
f(s) = s(0)

44 Synthetic topology of data types

would be compact, but this is absurd because the image is the space of
natural numbers, which, as we have seen, is not compact. This holds for
both the internal and external views of data. For the same reasons, we
conclude that any continuous image of the Cantor space in the space of
natural numbers is finite if we take the external view of data. This fails if
we take the internal view, with a counter-example again using Kleene trees.

3.17 Exercise A similar proposition for direct images of overt subspaces
with a similar proof holds.

3.18 Proposition A product of two compact spaces is compact.
Proof If Q and R are compact subspaces of data types a and b with
quantification programs forall_Q and forall_R, then the following pro-
gram quantifies over Q×R:

forall_QtimesR :: Quant (a,b)
forall_QtimesR(p) = forall_Q(\x -> forall_R(\y -> p(x,y)))

That this performs the required job follows from the fact that ∀z ∈ Q ×
R.p(z) iff ∀x ∈ Q.∀y ∈ R.p(x, y). �

3.19 Exercises Similarly, a product of two overt spaces is overt. A product
of two discrete spaces is discrete. Assuming the parallel disjunction oper-
ation, a product of two Hausdorff spaces is Hausdorff (however, for many
particular examples, the disjunction operation is not needed).

How does one observe a continuous function? A simple idea is that we
run it for a particular input and then check whether its output lands in a
given open set. But we can do better than that:

3.20 Proposition If Q ⊆ a is compact and V ⊆ b is open then the set

N(Q,V) = {f ∈ (a→ b) | f(Q) ⊆ V }

is open.
Proof If forall_Q is the quantifier of Q and v is a program for the char-
acteristic function of V then the following is a program for the characteristic
function of the set displayed above:

nQV :: (a->b) -> S
nQV(f) = forall_Q(\x -> v(f(x)))

That this performs the required job follows from the fact that f ∈ N(Q,V)
if and only if ∀x ∈ Q.f(x) ∈ V . �

3.13 Revision of the notion of space 45

Open sets of this form are known in classical topology: They form the
subbase that defines the so-called compact-open topology on the set of con-
tinuous maps (Chapter 8.5). As we shall see in Chapter 12, one cannot do
better than the above proposition, at least when the disjunction operation
is available: After taking finite intersections and then unions of the above
sets, all observable properties are exhausted.

Proposition 3.21(1) below is perhaps not so familiar to topologists, but it
does have a classical topological manifestation (Proposition 9.17). We have
seen that finite intersections of open sets are open. This generalizes from
finite sets to compact sets. In fact, because Open a is a data type like any
other, one can speak about its compact subsets, and hence, identifying open
sets with their characteristic functions, we can talk about compact sets of
open sets.

3.21 Proposition (Closure properties for open sets)

1. If a set of open sets is compact, then its intersection is open.

2. If a set of open sets is overt, then its union is open.

Proof (1): Let forall_Q :: Quant (Open a) be a program for quan-
tifying over a compact set Q of (characteristic functions of) open sets of a
data type a. Because x ∈

⋂
Q iff ∀U ∈ Q.x ∈ U , the following is a program

for the intersection of Q:

intersection_of_Q :: Open a
intersection_of_Q = \x -> forall_Q(\u -> u(x))

(2): Similar, using the fact that x ∈
⋃
O iff ∃U ∈ O.x ∈ U . �

Notice that the proof of the second item doesn’t need the disjunction
operator. However, as we have already mentioned, in order to show that
sets of interest are overt, one invariably needs the disjunction operator.

3.13 Revision of the notion of space

Consider the following assertion and proof:

3.22 Proposition If X is an overt subspace of a data type a and Y is a
Hausdorff subspace of a data type b, then the space (X → Y) consisting of
the functions (a→ b) that map X into Y is Hausdorff.

46 Synthetic topology of data types

Proof We can program the apartness map apart_XtoY of (X → Y) from
the existential quantifier exists_X of X and the apartness map apart_Y
of Y by

apart_XtoY :: (a->b, a->b) -> S
apart_XtoY(f,g) = exists_X(\x -> apart_Y(f(x),g(x)))

�

This program doesn’t quite perform the advertised job. By definition,
the space (X → Y) consists of the functions a→ b that map X into Y , but
there are, in general, different such functions that have the same behaviour
on X. The apartness program defined above doesn’t distinguish them, as it
shouldn’t. To fix the above incorrect statement for our correct proof, we can
attempt to give (X → Y) the quotient topology of the subspace topology.
However, it seems more reasonable and in line with practice to think that
the notion of space is better captured by an equivalence relation on a subset
of a data type, rather than just a subset, and hence Scott’s equilogical spaces
are probably the natural tool to apply in this context [114]. In some cases,
such as the Baire and Cantor spaces, it is possible to work with canonical
representatives of equivalence classes, as we have done above.

We have a dual proposition, with the same revised interpretation of the
notion of space (as a subset with an equivalence relation):

3.23 Proposition If X is a compact subspace of a data type a and Y is a
discrete subspace of a data type b then the space (X → Y) is discrete.

Proof We define the equality map of (X → Y), with the identifications
discussed above, from the universal quantifier of X and the equality map
of Y :

equal_XtoY :: (a->b, a->b) -> S
equal_XtoY(f,g) = forall_X(\x -> equal_Y(f(x),g(x)))

�

Recall that N is the space of natural numbers and T is space of booleans
(see Section 3.5). Hence (N → T) is another manifestation of the Cantor
space.

3.24 Corollary Under the external view of data, ((N → T) → N) has
semidecidable equality and semidecidable apartness.

3.14 Notes 47

Because our language doesn’t have a mechanism for gluing semidecision
procedures for a set and for its complement, it doesn’t immediately follow
that this space has decidable equality. However, a proof that it does (which
can be read at this point) and other surprising computational facts (which
depend on more advanced material) are contained in Chapter 13.

3.14 Notes

It follows easily from what is known about function-space topologies that the
classical notion of compactness coincides with the one given here (Lemma 7.4
and Chapter 8). This seems to have been first pointed out and exploited by
Taylor [131] and the author independently and from different perspectives.

Dubuc and Penon [30] have an interesting notion of a compact object
of a topos, expressed in the internal language, which amounts to a certain
Frobenius condition (as known in locale theory) for the universal quantifier
(which always exists in topos theory). They also consider other topological
notions, for example that of a Hausdorff object. There must be connections
of their approach with abstract Stone duality and the ideas reported here,
but we haven’t discovered them at the time of writing.

The functional program for universal quantification over the Cantor
space provided here is due to the author but it is related to a program
formerly discovered by Berger [13], which we present in Chapter 13. The
fact that compactness of the Cantor space is susceptible to considerations
such as the one made here is well known in logic and recursion theory, with
Kleene trees playing the same role.

The given formulation of the notion of overt space was discovered by
Taylor, but the notion itself was originally introduced in locale theory as
developed in arbitrary toposes by Joyal with a different form of definition and
under a different name [70, 72]. The notion also occurs in formal topology
via positivity predicates [22]. In classical topology, the notion of overt space
plays no role at all, and hence classical topologists will necessarily miss the
point: Every subspace of any space is overt (Lemma 7.5). As opposed to the
topos of sets, classical logic doesn’t necessarily hold in an arbitrary topos
(i.e. the principle of excluded middle and the general axiom of choice may
fail), as is the case for instance for the topos of sheaves on a topological
space, and this makes the notion non-vacuous. Under classical logic, which
is what we are assuming here, what makes it non-vacuous is the requirement
of computability.

The Sierpinski space is a common tool in computer science, arising as

48 Synthetic topology of data types

the typical space of results of observations, as already emphasized by Smyth.
For other kinds of computation, e.g. non-deterministic or probabilistic, one
considers different spaces of results of observations [104]. Perhaps, for com-
putational applications, one should develop topology relativized to a given
space of results of observations.

The translations of topological notions such as those of discrete and
Hausdorff space in terms of the Sierpinski space are obvious, and so are
their computational interpretations — at least when one has seen them.
But, to the best of our knowledge, they haven’t been explicitly formulated
or exploited, except in the work by Taylor and by the author.

Taylor formulates the quantifiers by adjoint conditions [131], as it is done
in topos theory [72]. He formulates the notions of open, closed, discrete and
Hausdorff objects by the existence of certain pullbacks that arise in topos
theory, with the subobject classifier of a topos replaced by the Sierpinski
object. His abstract Stone duality is based on the discovery that Paré’s
theorem for toposes and a certain Stone-type duality in topology can be
regarded as instances of the same phenomenon. The duality here is that be-
tween distributive continuous lattices in the sense of Dana Scott and locally
compact sober spaces, which is due to Hofmann and Lawson [62]. Taylor
has developed a translation of abstract Stone duality into the logic program-
ming language Prolog , which is briefly discussed in the last chapter of the
paper [133], but this doesn’t seem to be related to the Haskell programs
presented here.

The proofs of topological statements via functional programs reported in
this chapter (and via the λ-calculus reported in Chapter 9) were discovered
by the author, but some constructions in abstract Stone duality can also be
regarded as functional programs and there is some overlap.

During a visit of Dana Scott to the University of Birmingham in Eng-
land in January 2001, the author communicated the approach to topology
reported here and in Chapter 9. Scott saw this as an opportunity to exploit
his recent equilogical spaces and wrote it down together with Andrej Bauer
in an unpublished note [11].

Notice that we have taken a purely operational, rather than denotational,
view of data and programs in this chapter. This is because we wanted to
justify the topological view of data types from first computational principles.
The denotational view occurs in the proof of Theorem 4.1 and in Chapter 13
and is briefly introduced in Chapter 12.

Chapter 4

Computability versus
classical continuity

In the previous chapter we defined computational versions of topological
notions, using topological terminology for the computational concepts. We
now revert to the classical topological meanings of the terms, and so we
require some rudimentary background on topology (perhaps in the form of
domain theory) at this point.

The topology of a data type is somehow induced by its computational
structure. With this in mind, it is not entirely surprising that

Computability implies continuity.

Indeed, we made this fact into a sensible definition in the synthetic approach
to the topology of data types developed in Chapter 3. For the classical
notion of continuity, the converse of the statement fails. We shall exhibit
counter-examples in due course, but, for the moment, a cardinality argument
suffices: In general, there are uncountably many continuous functions, but
only countably many computable functions.

Nevertheless, one is entitled to ask to what extent the converse holds.

4.1 The Myhill–Shepherdson and Rice–Shapiro the-
orems

One precise answer for the data type (N ⇀ N) of partial functions on the
natural numbers is given by the Myhill–Shepherdson theorem: Every ef-
fectively continuous functional (N ⇀ N) → (N ⇀ N) is computable. The

49

50 Computability versus classical continuity

Rice–Shapiro theorem is about the extent to which openness implies semide-
cidability, this time for a different data type: Every effectively open set of
P N is semidecidable. The precise formulations and proofs of these two the-
orems can be found in e.g. Rogers’ book [108].

4.2 Classical topology of data types

Here we explore a different type of answer. For the sake of mathematical
rigour, we consider the programming language PCF and some of its standard
extensions (for its call-by-name evaluation strategy). This can be regarded
as a subset of the language discussed in the previous chapter, and, in fact,
all the programs written in the previous chapter could have been written
in PCF instead. Readers who don’t know PCF have two options: They
can (1) safely rely on the previous chapter, ignoring some technical details,
or else (2) pause to read e.g. Streicher’s excellent notes on mathematical
foundations of functional programming. If option (1) is taken, it won’t be
possible to make sense of the proof of Theorem 4.1 until Chapter 12 is
reached — but it should be profitable to just understand its formulation at
this point.

In Chapter 2 we introduced a data language, for a given base program-
ming language, in order to make sense of programs computing with data
coming from the external environment. Because we have function types in
the language, we have a notion of function coming from the environment. We
prove that the functions that come from the environment are precisely the
classically continuous ones, where the notion of open set is defined relatively
to the environment, rather than relatively to the programming language as
in the previous chapter. The idea is that the classically open sets are pre-
cisely the observable, not necessarily semidecidable, properties. Our base
programming language is PCF++ and our data language is PCF++

Ω . Human
beings write programs in PCF++, or perhaps just PCF, and ideal observers
living in the environment prepare their data and experiments in PCF++

Ω ,
which programs written by human beings can process.

1. PCF+ = PCF extended with parallel-or.

(This will implement the requirement that finite unions of
open sets be open.)

4.2 Classical topology of data types 51

2. PCF++ = PCF+ extended with the parallel existential quantifier.

(This will implement the requirement that arbitrary
unions of open sets be open.)

3. PCF++
Ω = PCF++ extended with constants of type Nat → Nat, one

for each sequence of natural numbers, representing potential inputs
provided by external observers.

(This will implement the requirement that “arbitrary”
really means arbitrary in the axiom for closure under
unions for open sets — cf. the discussion in Chapter 1
regarding disjunctions of observable properties.)

The operational semantics of PCF++
Ω is defined in the same way as

for PCF++, with obvious rules for evaluating inputs, and so is opera-
tional equivalence.

4. For each type σ, the topological space Xσ is defined as follows:

(a) Its points are the equivalence classes of PCF++
Ω programs of

type σ.

(b) A set U ⊆ Xσ is called open if the function

χU : Xσ → XBool

x 7→
{

true if x ∈ U ,
⊥ if x 6∈ U

is definable in PCF++
Ω . Here “true” is the equivalence class of the

term “True” and ⊥ is the equivalence class of divergent terms of
type Bool. Definability of χU amounts to the requirement that
there is a term F : σ → Bool such that, for every term M of
type σ, one has that F (M) = True if the equivalence class of M
belongs to U and F (M) is a divergent term otherwise. Notice that
this function takes values in the Sierpinski subspace {⊥, true} of
the boolean data type, which is not directly available as a data
type on its own in PCF.

For the expert reader, we remark that we are not invoking the oper-
ational preorder or any denotational semantics for the language in these
definitions. However, they do occur in the proof of the following.

52 Computability versus classical continuity

4.1 Theorem

1. The open sets of Xσ form a topology, that is, they are closed under the
formation of finite intersections and arbitrary unions.

2. A function f : Xσ → Xτ is definable in PCF++
Ω iff it is continuous.

Proof (Sketch) Interpret PCF++
Ω in the standard Scott model [113, 101]

of PCF++. Replace recursive sequences by inputs, i.e. arbitrary sequences,
in Plotkin’s proof [101, Theorem 5.1] of Turing-universality of PCF++ to
prove that every element of Dσ is definable in PCF++

Ω , where Dσ is the
interpretation of the type σ in the model. Computational adequacy of the
model holds for PCF++

Ω with the same proof as that for PCF++ [101, The-
orem 3.1]. Hence the domain order of Dσ is isomorphic to the partial-order
reflection of the operational preorder on closed terms of type σ. It follows
that the open sets of Xσ are the Scott open sets of its operational partial
order. This concludes the proof (1). Because Dσ→τ under the Scott topol-
ogy is homeomorphic to Xσ→τ and because f : Xσ → Xτ is continuous iff
f ∈ Xσ→τ , (2) follows. �

Thus, in this setting,

computable =⇒ continuous,
continuous =⇒ computable relatively to external inputs.

For data types D and E, the function type (D → E) consists of the continu-
ous functions from D to E, rather than all functions or just the computable
ones. Thus, the language articulates a notion of computable function on
continuous data. A particular instance of this situation is a functional such
as

F : (C → D) → E

We are typically interested in the case in which F is computable. However,
the above development tells us that it is appropriate to take the input of F
to be a continuous, not necessarily computable, function f : C → D. If
the function f happens to be computable, then so will be F (f), because
computable functions preserve computability.

Notice that one way of showing that F is not computable is to prove
that it is not continuous. The converse fails in general, but it is a fact of
experience that it often holds in practice, which can be used as a guideline
to successfully conjecture that certain function(al)s are computable.

4.3 Notes 53

Notice also that, because we have encoded open sets as semidecision
functions, the above theorem also gives:

semidecidable =⇒ open,
open =⇒ semidecidable relatively to external inputs.

The above proof shows that the topologies that we get are Scott topologies.
This is compatible with, and indeed explains, the fact that not all functions
are computable relatively to not-necessarily-computable inputs, one example
being the function on the booleans that maps ⊥ to true, and true and false
to ⊥. This is the case despite the fact that e.g. an enumeration of the
complement of the halting set is allowed as an input.

4.3 Notes

In summary, Chapter 3 shows that synthetic topology can be developed in
a variety of languages, and this one shows that, for a particular language,
synthetic topology coincides with classical topology. For the full coincidence
of all topological notions discussed in Chapter 3, we further need the results
of Chapters 7, 8 and 12. As far as this chapter is concerned, for this coinci-
dence to hold, we need (i) external inputs in the data language, (ii) synthetic
topological notions defined relative to the data language rather than to the
base programming language, and (iii) parallel features (in the observer’s
language but not necessarily in the base programming language).

Notice that (ideal or human) observers can externally compute parallel-
or by observing (the external effect of) computations of pairs of programs
of type Bool. This is true for the existential quantifier as well, if we either
assume that we are allowed to have access to countably many copies of the
PCF black box that computes the input predicate, or else we are allowed to
restart and abort computations of the black box. Hence we advocate that
it is reasonable to take the observation language (or data language) to be
PCF++

Ω even if we choose our base language to be PCF rather than PCF+

or PCF++. From the point of view of recursion theory, parallel-or and the
parallel existential quantifier correspond to dovetailing [108], and hence it
is natural to include them.

However, there are good reasons to exclude them for certain purposes —
cf. Longley’s work on computability at higher types [87, 86]. If parallel-or
and/or the existential quantifier are not included in the observer’s language,
the synthetic open sets don’t form classical topologies. In any case, as we
have seen in Chapter 3, it is possible to develop a good deal of topology

54 Computability versus classical continuity

even when the open sets don’t form topologies in the classical sense, but
we haven’t explored this avenue in more detail than already reported in
Chapter 3.

We remark that, although the topologies that one gets in this chapter
are closed under the formation of arbitrary unions, and hence are classi-
cal as claimed, the methods used here are fundamentally different from the
ones used in Chapter 3 to obtain restricted versions of the closure prop-
erties. Here we have argued using a domain-theoretic model of the lan-
guage which is known, by mathematical means, to have this classical clo-
sure property, whereas in Chapter 3 we constructed programs to implement
the operations in the countable case (Proposition 3.4) and the overt case
(Proposition 3.21(2)). But, because in classical topology all sets are overt
(Lemma 7.5), the closure property established via the model also holds syn-
thetically within the data language, using Proposition 3.21(2). In order to
exploit the closure property implemented by this proposition, a collection
of open sets has to be presented via its existential quantifier (rather than
via an enumeration as in Proposition 3.4). This gives a possible answer to
the question, posed in Chapter 1, of how a truly arbitrary collection of ob-
servable properties can be presented to an observer. One way of presenting
a not-necessarily-countable subset of a data type is via a search method for
it, which is precisely what an existential quantifier is. Here we apply this
idea to the data type of observable properties (function type with values in
the Sierpinski space).

As discussed above, in the absence of parallel features, the scope of
synthetic topology remains to be investigated, not only at the level of (pro-
gramming and data) languages, but also at the level of their mathemati-
cal models. However, notice that because, for instance, various categories
of games [2, 66] are models of PCF, the synthetic topology developed in
Chapter 3 applies to them. Just as the notion of overt space, which has
no counterpart in classical topology (Lemma 7.5), emerges in Chapter 3
for computational reasons, other classically invisible topological notions are
likely to emerge for sequentiality reasons in the investigation of the synthetic
topology of such models.

Chapter 5

Revised and expanded
edition of Smyth’s dictionary

Assuming that observers live in an external environment which is not neces-
sarily restricted to the laws of Turing computation, Chapters 2–4 elucidate
the distinction between the notions of semidecidable and observable prop-
erty, and their relationship to that of topologically open set, at least if one
believes that the given mathematical definition of observation is reasonable.
In summary, a property of elements of a data type is semidecidable iff its
Sierpinski-valued characteristic function is definable in the programming
language, and it is observable iff its characteristic function is definable in
the data language.

If, in addition, one assumes that the data language includes the parallel
constructs discussed in Chapter 4, some occurrences of the approximation
sign ≈ in Smyth’s dictionary become equalities and others implications as
follows:

Data type = topological space (of a certain kind).

Piece of data = point (computable or not).

Semidecidable property ⇒ observable property = open set.

Computable map⇒ map computable by observer = continuous map.

If the data language is sequential, then the above equality signs can be taken
as synthetic formulations of “sequential” topological notions, but we don’t
pursue this subject here. However, to be consistent, for sequential program-
ming and data languages, one should speak of sequentially semidecidable
and observable properties in the above entries.

55

56 Revised and expanded edition of Smyth’s dictionary

Also based on the previous development, but depending on topological
material developed in Parts II and III, we include:

Subspace of data type with semidecidable equality⇒ discrete space.

Subspace of data type with semidecidable apartness⇒ Hausdorff space.

Computationally universally quantifiable set

⇒ continuously universally quantifiable set = compact set.

Function type = function space.

The last entry is based on Proposition 3.20 and on Chapter 8 of Part II.
But, before taking care of the unresolved entries of the dictionary, we pause
to address some concrete aspects of the topology of computation.

Chapter 6

Computationally induced
classical topologies

We mentioned in Chapter 4 that it is not terribly surprising that computable
functions are continuous with respect to computationally induced topologies.
What is surprising is that these topologies are familiar. In fact, this is what
justifies the terminologies e.g. Cantor space and Baire space from classi-
cal topology that were adopted in Chapter 3 to designate (certain subsets
of) well-known domains of computation. In this chapter we consider the
classical topology of these and other domains in a programming-language-
independent fashion.

6.1 The Cantor space

Let 2 = {0, 1} be the set of bits (binary digits) and consider computations
of functions f : 2ω → 2ω, where 2ω denotes the set of infinite sequences of
bits:

s0s1s2 · · · - f
t0t1t2 · · · -

s = s0s1s2 · · · t = t0t1t2 · · ·
f(s) = t.

Think of the sequences s and t as the complete histories of the input and
output, including the future. The black box alternates between reading some

57

58 Computationally induced classical topologies

digits from the input, performing some internal computations and writing
some digits to the output. Bad input suppliers will provide a finite sequence
of digits and then give up — these are ruled out of consideration for the
moment. Bad black boxes will engage into infinite internal computations at
some point, neglecting the output forever — these are also ruled out for the
moment.

6.1 Example h : 2ω → 2ω defined by

h(s) = t where ti = s̄i (digit negation).

This is clearly computable. We emphasize again that there is no need to
restrict attention to computable inputs.

6.2 Counter-Example f : 2ω → 2ω defined by

f(0k010k110k2 · · · 0kn10ω) = 0k0h00k1h10k2 · · · 0knhn0ω

f(0k010k110k2 · · · 0kn1 · · ·) = 0k0h00k1h10k2 · · · 0knhn · · ·

where

hn =

{
1 if kn belongs to the halting set,
0 otherwise,

is not computable.

6.3 Counter-Example g : 2ω → 2ω defined by

g(s) =

{
10ω if ∀i ∈ ω, si = 0,
0ω otherwise,

is not computable either.

But the reasons are fundamentally different:

1. The halting set is undecidable.

2. The first digit of the output depends on infinitely many digits of the
input.

A black box could compute f if antiprotonic computers were built in or-
der to decide the halting set (of Turing machines — that of antiprotonic
computers would require a further technological development, as Turing’s
self-referential argument for undecidability of the halting problem is bound

6.1 The Cantor space 59

to apply to antiprotonic computers as well). However, to compute g, a black
box would have to be in possession of a crystal ball, because supplying, and
hence reading, the whole input takes forever. In any case, based on what
went wrong with g, we can say

If a function f : 2ω → 2ω is computable, then finite parts of its
output must depend only on finite parts of its input.

As Counter-example 6.2 shows, this necessary condition is not sufficient to
characterize computability.

More formally, define

s =n t ⇐⇒ ∀i < n, si = ti.

Then the condition amounts to

∀s ∈ 2ω ∀ε ∈ ω ∃δ ∈ ω ∀t ∈ 2ω, s =δ t =⇒ f(s) =ε f(t).

We say that f is of finite character .

6.4 Proposition Endow 2 with the discrete topology and 2ω with the prod-
uct topology. Then f : 2ω → 2ω is of finite character iff it is continuous.

Proof This readily follows from the definition of product topology.
But it may be helpful to consider a more complicated proof. Define

d(s, t) = inf{2−n | s =n t}.

Then, as is well known [122], d is a metric that induces the topological
product on the set-theoretical product, and it is clear that the ε–δ definition
of continuity w.r.t. d coincides with the ε–δ definition of the notion of finitary
character. �

This topology is called the Cantor topology because it makes the prod-
uct space homeomorphic to the Cantor middle-third set of the closed unit
interval [0, 1] with the relative topology. For us, it has computational sig-
nificance:

U ⊆ 2ω is open ⇐⇒ ∀s ∈ U ∃n ∀t =n s, t ∈ U .

That is, if s passes a test U , then it has a finite part such that every t sharing
this part also passes the test. In this sense, the property of belonging to U
is an observable one, albeit not necessarily a semidecidable one, as it may
be necessary to perform a non-computable operation on the finite part of s
in order to check whether s indeed passes the test.

60 Computationally induced classical topologies

6.2 The Kahn domain

We have ruled out bad input suppliers and bad black boxes. Let’s now allow
them. Then a black box of the kind we are considering is best modelled by
a function

f : 2∞ → 2∞,

where
2∞ = 2∗ ∪ 2ω

and 2∗ is the set of finite (possibly empty) sequences of bits.
Because outputs, once written out, cannot be retracted, computable

functions have to be monotone:

s is a prefix of s′ =⇒ f(s) is a prefix of f(s′).

Again, such functions have to be of finite character — but this time we don’t
need the relations =n to express the condition:

If t is a finite prefix of f(s), then there is a finite prefix s′ of s
such that t is already a prefix of f(s′).

6.5 Proposition f : 2∞ → 2∞ is monotone and of finite character iff it is
continuous w.r.t. the Scott topology of the prefix order of 2∞.
Proof See Chapter 12 . �

In general, the Scott topology of a directed complete poset (dcpo) is
defined by saying that a set U is open iff it is an upper set and every
directed set with join in U actually intersects U (see Chapter 12). In this
case (and more generally in algebraic dcpos), the second condition can be
simplified to

∀s ∈ U∃ a finite prefix s′ ∈ U of s s.t. ∀t with s′ as a prefix, t ∈ U .

We leave the proof of the following as an exercise.

6.6 Proposition The Cantor topology of 2ω coincides with the subspace
topology of the Scott topology of 2∞.

6.7 Corollary Suppose a potentially bad function g : 2∞ → 2∞ turns out
to be good i.e.

2ω f
- 2ω

2∞
?

∩

g
- 2∞

?

∩

6.3 The real line 61

for some (necessarily unique) f : 2ω → 2ω. If g is continuous then so is f .

Proof This is a standard property of subspace topologies. �

Computationally, it is clear that whenever we implement a black box
f : 2ω → 2ω we are in reality implementing a black box g : 2∞ → 2∞ such
that the above diagram commutes. Topologically, we have:

6.8 Proposition Every continuous f : 2ω → 2ω extends to at least one
continuous function g : 2∞ → 2∞ (in the sense of the above diagram).

Proof A direct proof of this fact is not difficult and is an interesting ex-
ercise. A more abstract proof that uses (and partly motivates) the material
developed in Chapter 12 has the advantage of applying to many similar sit-
uations encountered here and elsewhere: The embedding 2ω ↪→ 2∞ is dense
(because Scott closed sets are lower sets), and 2∞, being a Scott domain
under the Scott topology, is injective over dense topological embeddings. �

Notice that the space 2ω is Hausdorff but 2∞ isn’t. As we have already
seen, this is typical of data types: They are usually non-Hausdorff (in fact
typically domains under the Scott topology), but we are actually interested
in distinguished Hausdorff subspaces. That is, a domain serves as an en-
vironment for the Hausdorff space we wish to compute with. In this, and
many other but not all examples, the Hausdorff space is that of maximal
elements of the domain. A counter-example occurs in Chapter 3: It turned
out to be convenient to work with the Cantor space using the Baire data
type as a computational environment.

6.3 The real line

For simplicity, we consider the unit interval [0, 1], to begin with, and then
the interval [−1, 1]. There are many approaches. We consider three, of
which the first is flawed.

We may compute with reals via their binary expansions (as Turing [139]
did):

J−K : 2ω � [0, 1]
s 7→

∑
i∈ω si2−i−1.

Think of s as 0.s0s1s2 · · · . Notice that dyadic numbers (i.e. numbers of the
form m/2n ∈ [0, 1] with m and n integer) have two binary expansions.

6.9 Proposition The quotient topology on [0, 1] induced by this surjection
is the usual Hausdorff topology.

62 Computationally induced classical topologies

Proof With this topology, it is easy to check that the map is continuous.
But continuous surjections of compact Hausdorff spaces are always quotient
maps. �

6.10 Corollary In a situation

2ω f
- 2ω

[0, 1]

??

g
- [0, 1],

??

if f is continuous, then so is g.

Proof This is a standard property of quotient topologies. �

We refer to a map f such as that in the above diagram as a realizer of g,
and we say that g is computable with respect to binary notation if it has at
least one computable realizer.

6.11 Corollary Digitally computable functions on [0, 1] are continuous.

The converse of Corollary 6.10 fails badly. Because we have ten fingers,
we illustrate this using decimal notation, but the readers should convince
themselves that the choice of base is unimportant, as long as it is an integer
bigger than 1:

(10) = {0, 1, 2, . . . , 9},

(10)ω f- (10)ω

[0, 1]
??

g
- [0, 1].

??

The bad news is that most continuous functions g don’t have continuous
realizers f , e.g.

6.12 Proposition The function g(x) = 3x/10 has no continuous real-
izer f .

Proof (Brouwer 1920) If f were a realizer, the first digit of f(3n2 · · ·)
would have to be 0 and that of f(3n4 · · ·) would have to be 1. On the other
hand, that of f(3ω) can be either 0 or else 1, because J10ωK = J09ωK = 0.1 =
3J3ωK/10. But, by continuity, it can be neither. �

6.3 The real line 63

The good news is that there are other realizations or representations of
real numbers that overcome the problem, as already discovered by Brouwer.
His solution was to work with the non-integral base 2/3 and still with digits
0 and 1 — Turing [138] adopted this solution.

Here we consider an equivalent, well known solution which is perhaps
more intuitive (see e.g. [144], and the introduction of [44] for some history).
We keep the base 2 but allow negative digits:

J−K : 3ω � [−1, 1]
s 7→

∑
i∈ω

si2−i−1 where 3 = {−1, 0, 1}.

We refer to the members of the source of the quotient as realizers of the
members of the target. With this terminology, each of the numbers −1
and 1 has exactly one realizer, the other dyadic numbers each have count-
ably many realizers, and each non-dyadic number has uncountably many
realizers. Intuitively, the problem identified in the above proof disappears,
because when one is not so sure about two choices, either will do — if one
makes a “mistake”, it can be corrected at a later stage via the use of a
negative digit.

More formally, the problem disappears as follows. The above realization
function is a topological quotient map for the same reasons, and the same
corollaries follow, with the bad news overcome:

6.13 Proposition For every continuous g : [−1, 1] → [−1, 1] there is at
least one continuous realizer f : 3ω → 3ω.

And, in fact, in general there are uncountably many realizers.

Proof For a full proof see e.g. [143]. First show that every continuous
map φ : 3ω → [−1, 1] lifts to at least one continuous map f : 3ω → 3ω as in
the diagram

3ω f - 3ω

@
@
@φ R

[−1, 1].
??

(In categorical language, 3ω (in the left top corner) is projective over the
down quotient.) To conclude, apply this to the map φ(s) = g(JsK). �

64 Computationally induced classical topologies

The space 3ω is homeomorphic to any countable product P of finite
discrete spaces of cardinality at least 2 (in fact computationally so if the
function that sends a natural number n to the size of the nth factor of
the product is computable). Hence the (projectivity) assertion of the proof
implies that for any quotient realization φ : P � [−1, 1] of the unit interval
there is a continuous translation f : P → 3ω from P -notation to signed-digit
notation:

P
f - 3ω

@
@
@φ R

[−1, 1].
??

In this sense, signed-digit representation is characterized, up to continuous
translation, as the maximal quotient realization using spaces of the form P .
It can be shown that maximality still holds when one generalizes P to any
subspace of the Baire space (the topological product Nω, where N is the
countable discrete space). Such a quotient realization of a space is called an
admissible representation in Weihrauch’s school of computability [142].

The above proposition holds with “continuous” replaced by “computable”,
for any of the many equivalent definitions of the notion of computability for
functions over the reals that can be found in the literature:

A function g : [−1, 1] → [−1, 1] is computable iff it has at least
one computable realizer f : 3ω → 3ω.

Thus, this can be taken as a formulation of the notion, assuming that the
notion of computability over 3ω is understood.

6.4 The interval domain

Very briefly, we consider the analogue of the situation

2ω - 2ω

2∞
?

∩

- 2∞
?

∩

with the Cantor space 2ω and the “partialized” Cantor space 2∞ replaced
by the unit interval [−1, 1] and the “partialized” unit interval I[−1, 1]:

I[−1, 1] = closed subintervals of [−1, 1] under the Scott topology of
the reverse-inclusion order on intervals.

6.4 The interval domain 65

We have a topological embedding

[−1, 1] ↪→ I[−1, 1]
x 7→ [x, x] = {x}.

Notice that this is an embedding onto the maximal elements of the interval
domain. Thus, what this says is that the relative Scott topology on the
maximal elements is (homeomorphic to) the usual Hausdorff topology on
the closed interval [−1, 1]. That is, yet again a computational topology
induces a familiar topology. Hence in a situation

[−1, 1]
f- [−1, 1]

I[−1, 1]
?

∩

g
- I[−1, 1],

?

∩

if g is continuous then so is f .
Moreover, for any continuous f there is at least one continuous g s.t.

the above diagram commutes. As for Proposition 6.8, we sketch two proofs,
referring the reader to Chapter 12 of Part II for domain-theoretic details.

First proof. Take g(x) to be {f(r) | r ∈ x}. Because a subset of the
unit interval is a closed interval if and only if it is compact and connected,
and because continuous maps take compact sets to compact sets and con-
nected sets to connected sets, g(x) is a closed interval if x is, and hence g
is well-defined, and it is clearly an extension of f is the sense of the above
diagram. Moreover, direct-image formation is easily seen to preserve filtered
intersections (i.e. directed joins in the interval domain), and hence g is Scott
continuous.

Second proof. The space I[−1, 1], being a continuous Scott domain under
the Scott topology, is densely injective and the embedding [−1, 1] ↪→ I[−1, 1]
is dense.

Computability via the interval domain (using its standard effective pre-
sentation that enumerates rational intervals [120]) coincides with computabil-
ity via signed-digit realizers, at least as far as second-order types are con-
cerned (where the ground type of real numbers is taken to have order zero):
What happens at third-order types and beyond is an open question, which
in turn relies on an open problem in topology [10, 98].

66 Computationally induced classical topologies

6.5 Notes

Most of the material of this chapter is folklore, and some references have
been given above. Regarding the interval domain, see Edalat’s work [32] or
e.g. [43].

Part II

Topology of classical spaces

67

68

Contents and organization

7 Synthetic formulation of classical topological notions 69

8 Function spaces in classical topology 73

9 Classical topology via the λ-calculus 85

10 Imaginary exponentials 95

11 The Hofmann–Mislove representation theorem 103

The foci of this mathematical part are Chapters 7 and 9, which parallel
the central Chapter 3 of Part I from the point of view of classical topology.
We first develop synthetic formulations of classical topological notions in a
series of lemmas in Chapter 7. For the proof of the lemma that takes care
of the notion of compactness, we need to pause to develop some material on
function spaces, which is the topic of Chapter 8. This chapter also intro-
duces the λ-calculus, which is the main tool in the synthetic development of
topology.

As discussed in Chapter 8, it is sometimes possible to topologize the
set of continuous maps from a space X to a space Y so that a function
space Y X that obeys the laws of exponentiation is obtained. The synthetic
formulation of the notion of compactness makes use of the case in which Y
is the Sierpinski space. As a result, the synthetic proof of e.g. the fact that a
product of two compact spaces is again compact, provided in Chapter 9, has
the extraneous assumption that the two spaces can serve as exponents for
the Sierpinski space, which is not always the case, as explained in Chapter 8.
The purpose of Chapter 10 is to show how one can easily circumvent this ob-
stacle by considering generalized topological spaces that act as “imaginary”
exponentials, very much like the imaginary number i acts as an exponential
(−1)

1
2 of the two real numbers −1 and 1/2 outside the real-number system.

Chapter 11 formulates representation theorems for compact and closed
sets as universal and existential functionals, which are analogous to the Riesz
representation theorem for measures as linear functionals.

Chapter 7

Synthetic formulation of
classical topological notions

In this chapter we formulate some basic topological concepts as continuity
notions with the aid of the Sierpinski space. This is the space S that has
two points > (true) and ⊥ (false), and three open sets ∅, {>} and {⊥,>}.
Equivalently, > is open but not closed, and ⊥ is closed but not open.

7.1 Open subspaces

The following well known (and easy) lemma was the implicit reason for
defining open subsets of data types in the way we did in Chapters 3 and 4.

7.1 Lemma A subset U of a topological space X is open iff its characteristic
function

χU : X → S

x 7→ Jx ∈ UK =

{
> if x ∈ U ,
⊥ if x 6∈ U ,

is continuous.

What is perhaps not so well known is that, like the notion of open sub-
space, those of Hausdorff, discrete, and compact space can also be reduced
to continuity of certain maps involving the Sierpinski space.

69

70 Synthetic formulation of classical topological notions

7.2 Hausdorff spaces

A space is Hausdorff if any two distinct points can be separated by disjoint
neighbourhoods, and one quickly learns that this is equivalent to saying that
its diagonal is closed in the product topology. But the diagonal is closed iff
its complement is open. This proves:

7.2 Lemma A space X is Hausdorff iff its apartness map

(6=): X ×X → S
(x, y) 7→ Jx 6= yK

is continuous.

7.3 Discrete spaces

A space is discrete if every singleton, and hence every set of points, is open,
but it is probably not so well known that this is equivalent to saying that
its diagonal is open, which is an easy exercise:

7.3 Lemma A space X is discrete iff its equality map

(=): X ×X → S
(x, y) 7→ Jx = yK

is continuous.

7.4 Compact subspaces

In the next chapter we shall see how to topologize the set of continuous maps
from a topological space X to a topological space Y , obtaining a natural
function space (X → Y). The following remarkable fact is a reformulation
of a well known property of function-space topologies.

7.4 Lemma A subset Q of a topological space X is compact iff its universal-
quantification functional

∀Q : (X → S) → S
p 7→ J∀x ∈ Q.p(x) = >K

is continuous.
Proof Provided in Chapter 8. �

7.5 A classically invisible notion 71

7.5 A classically invisible notion

We have seen in e.g. Proposition 3.13 that the existential-quantification func-
tional may fail to be computable. But, in classical topology,

7.5 Lemma For any F ⊆ X, the existential quantification functional

∃F : (X → S) → S
p 7→ J∃x ∈ F.p(x) = >K

is always continuous.
Proof Provided in Chapter 8. �

We shall apply the above five lemmas in Chapter 9 to easily develop basic
topology and extract constructive content from the theorems, performing
the task of the computational Chapter 3 from the point of view of classical
topology. In order to carry out this programme, it is necessary to pause to
define and study the natural function space (X → Y) that occurs in the
formulation of the last two lemmas.

7.6 Notes

For more notes about the material developed in this chapter, in particular
the relationship to Taylor’s abstract stone duality, see Section 3.14.

A logical presentation of the material of these notes would assume fa-
miliarity with classical topology, as this chapter does, and would have this
chapter as the starting point. However, because the synthetic formulations
presented in this chapter are appealing and stand on their own, they can be
taken as a starting point for the synthetic topology of data types, as we have
done in Chapter 3. Moreover, in that computational context, the λ-calculus
is a familiar tool, which, in the form of a programming language, can be
used in a natural way to prove topological theorems in a transparent way
and obtain interesting, unexpected computational conclusions, as we have
also done in Chapter 3.

In the classical formulation of topology, the notion of open set is taken as
primitive, in the sense that all other topological notions are reduced to it. In
the synthetic formulation developed in this chapter, the primitive notions
are those of Sierpinski space of truth values and of continuity of maps.
The fruitfulness of this change of perspective is illustrated in Chapters 3
and 4 of Part I, where the synthetic notion of continuity naturally varies
in interesting ways. The reason this works is the striking fact that the

72 Synthetic formulation of classical topological notions

Sierpinski space has a direct computational interpretation as a space of
results of observations or semidecisions. The asymmetry of the topology of
the Sierpinski space precisely matches the asymmetry of the computational
notion of semidecision.

In the same way as the present chapter gives input to Chapter 3, by pro-
viding synthetic formulations of classical topological notions, that chapter in
turn gives input to Chapter 9, which develops the core of classical topology
via the λ-calculus. Thus, the interaction between topology and computation
goes both ways. In this part, the highlight is the input of computational
ideas into topology. However, this has to be taken with a pinch of salt:
In the computational setting, the function spaces required for the synthetic
formulation of the notion of compactness exist by fiat, but in the topological
setting we have to work hard to reach them (Chapters 8 and 10).

In Part III, where the highlight is again the input of topological (and
also order-theoretical) ideas into the theory of computation, we unify the
developments of this and the previous parts, where once more non-trivial
computational conclusions are derived from topological theorems.

Chapter 8

Function spaces in classical
topology

The previous chapter reduces some fundamental topological concepts to the
notion of continuity with the aid of the Sierpinski space. For the notion
of compactness (Lemma 7.4), we invoked function spaces, which we now
develop. In Sections 8.1 and 8.2 we discuss exponentiation of spaces and its
laws, and in Section 8.3 we introduce λ-notation. These tools are applied in
Chapter 9 to easily develop basic topology parallelling the development of
Chapter 3.12.

For an expository account of function spaces in topology with full proofs,
together with credits and references to original sources, see [50]. In this chap-
ter we summarize the development of that paper to the extent that is needed
for our purposes. After reading Sections 8.1–8.3, it is possible to proceed
directly to Chapter 9 provided Lemmas 7.4 and 7.5, which are proved in
Section 8.4, are taken on faith. Section 8.5 formulates some characteriza-
tions of exponentiable spaces and exponential topologies, which are partially
proved in Chapter 9.

8.1 Exponentials and natural function spaces

For topological spaces X and Y , we denote by C(X,Y) the set of continuous
maps from X to Y . The transpose g : A → C(X,Y) of a continuous map
g : A×X → Y is defined by

g(a) = ga, where ga ∈ C(X,Y) is given by ga(x) = g(a, x).

73

74 Function spaces in classical topology

More concisely, we write the definition of the transpose as

g(a) = (x 7→ g(a, x)) or g(a)(x) = g(a, x).

A topology on the set C(X,Y) is called exponential if continuity of a function
g : A × X → Y is equivalent to that of its transpose g : A → C(X,Y). As
we shall see soon, there is at most one such topology. If it exists, the set
C(X,Y) endowed with this topology is referred to as an exponential and is
denoted by

Y X .

For example, if the exponential exists and we take A to be the closed unit
interval I = [0, 1], then a homotopy h : I ×X → Y of continuous functions
f, g : X → Y is essentially the same thing as a path h : I → Y X from f to g
in the function space Y X .

8.1 Remark For readers who know the general definition of an exponen-
tial Y X of two objects X and Y of a category (briefly: the contravariant
set-valued functor hom(− × X,Y) is representable by Y X), which we are
not assuming, we emphasize that, because our category is well pointed, the
categorical notion is equivalent to that defined below in our special case.

Unfortunately, there isn’t in general an exponential topology (Theo-
rem 8.24) and hence we aren’t always entitled to write Y X . In other words,
the category of topological spaces fails to be cartesian closed . But there is
always a canonical candidate for the exponential topology, which will cru-
cially come to our rescue (Lemma 10.1 and Corollary 10.2).

8.2 Lemma (Natural topology) There is a largest topology on C(X,Y)
such that, for all spaces A, continuity of a function g : A×X → Y implies
that of its transpose g : A→ C(X,Y), known as the natural topology.
Proof Declare a set N ⊆ C(X,Y) to be open if and only if g−1(N) is
open for every continuous map g : A×X → Y . These sets are easily seen to
form a topology, which, by construction, satisfies the required property. �

8.3 Remark One may wonder whether it would perhaps be sensible to take
the smallest topology for which the converse holds. However, this topology
doesn’t always exist — see Remark 8.19 below.

The set C(X,Y) endowed with the natural topology is denoted by

(X → Y)

8.2 Exponential laws 75

and referred to as the natural function space. Lemmas 8.4 and 8.5 below
are elaborated in Section 8.4.

8.4 Lemma If the exponential Y X exists then it coincides with the natural
function space (X → Y).

Lemmas 7.4 and 7.5 (proved in Section 8.4) hold whether or not the
topology of the natural function space (X → S) is exponential. But, in
order to be able to apply them in Chapter 9, we need it to be exponential
— or else use the technology developed in Chapter 10.

8.5 Lemma If the exponential SX exists then so does the exponential Y X

for every topological space Y .

8.2 Exponential laws

The above facts about exponentials are particular to the category of topo-
logical spaces. The following three lemmas easily follow from the general
categorical definition or the equivalent one given above. The (external)
definition of an exponential Y X says that transposition is a bijection from
continuous maps A×X → Y to continuous maps A→ Y X .

8.6 Lemma (Internal exponential law) Let A, X and Y be topologi-
cal spaces and assume that the exponential Y X exists. If either of the ex-
ponentials Y A×X and (Y X)A exists then so does the other, and they are
homeomorphic via transposition:

Y A×X ∼= (Y X)A

g 7→ g.

This and the following two lemmas play an important role in the applications
developed in Chapter 9.

8.7 Lemma If the exponential Y X exists then the evaluation map

εX,Y : Y X ×X → Y
(f, x) 7→ f(x)

is continuous.

Proof It has the identity map Y X → Y X as its transpose. �

76 Function spaces in classical topology

8.8 Lemma If f : Y → Z and h : W → X are continuous maps of topological
spaces then the functionals

fX : Y X → ZX

g 7→ f ◦ g
Y h : Y X → Y W

g 7→ g ◦ h

are continuous, provided the involved exponentials exist.

8.3 The restricted, simply typed λ-calculus

In our context, the λ-calculus is a labour-saving device for manipulating the
exponential laws discussed in the two previous sections. However, because
in Chapter 9 we include the direct manipulations of function spaces corre-
sponding to the λ-calculations that we provide, readers may safely take a
casual look at the development of this section.

The expression x+y of the real variables x and y can be regarded either
as a real number, as function of x, as a function of y, or as a function of
both. In order to make the distinction explicit, one can write:

x+ y, x 7→ x+ y, y 7→ x+ y, (x, y) 7→ x+ y.

A fifth way of interpreting the expression x + y is as a function that, for
each given x, produces the function y 7→ x+ y. In this case one can write

x 7→ (y 7→ x+ y).

In the λ-calculus, one uses λ-notation rather than the mathematically
more familiar 7→-notation. For instance, some of the above examples are
written

x+ y, λx.x+ y, λy.x+ y, λx.λy.x+ y.

(This is awkward when we use the λ-calculus to do e.g. linear algebra, mea-
sure theory and integration, where λ’s traditionally play the role of scalars.
See the example towards the end of this section.)

Often the λ-calculus is taken as a symbol-pushing, formal system, or
even programming language, without any a priori mathematical interpre-
tation. Here we use the restricted simply typed λ-calculus as a device for
automatically constructing continuous maps out of given ones (generalizing
the fact that compositions of continuous maps are automatically continu-
ous), and we deliberately omit syntactic details that are irrelevant for our

8.3 The restricted, simply typed λ-calculus 77

present purposes (but that are crucial for some calculational aspects regard-
ing the development of Chapter 2 and hence 3). The restriction, discussed
below, comes from the fact that not all exponentials exist in the world of
topological spaces.

In the above examples, some variables are free and others are bound .
For instance, in x + y both variables are free, in λx.x + y the variable x
is bound and the variable y is free, and in λx.λy.x + y both variables are
bound. Notice that bound variables can be safely renamed provided we are
consistent. For example, there is no difference between λx.λy.x + y and
λy.λz.y + z other than the accidental choice of names of variables.

The above examples have different types, which are topological spaces
where their values live. For example, x + 1 has type R and λx.x + 1 has
type RR. Thus, we have to know that the exponential exists before being
able to write λx.x+ 1. This is the restriction alluded to above.

The λ-polynomials (also known as λ-expressions or λ-terms) are induc-
tively defined, together with their free variables and types, as follows:

(λ0) Every variable x that ranges over a space X is a polynomial of type X,
with just one free variable x.

(λ1) If the exponential Y X exists, x is a variable that ranges over the
space X and t is a polynomial of type Y , then λx.t is a polynomial of
type Y X , with the same free variables as t except x.

Notice that we don’t require that x occurs as a free variable of t —
consider a constant function.

(λ2) If f : X1×· · ·×Xn → Y is a continuous map and t1, . . . , tn are polyno-
mials of types X1, . . . , Xn, then f(t1, . . . , tn) is a polynomial of type Y ,
with free variables those of t1, . . . , tn.

This clause includes the possibility n = 0, in which case the product
X1 × · · · ×Xn is the one-point space and hence f picks a point of Y .
To avoid the detour via the one-point space, we may safely agree that
if y0 is a point of Y then y0 is a polynomial of type Y with no free
variables.

Choosing Y = X1×· · ·×Xn and f the as identity map in the last clause,
we see that if t1, . . . , tn are polynomials of types X1, . . . , Xn then (t1, . . . , tn)
is a polynomial of type X1 × · · · × Xn. Using the same clause again, we
conclude that if the exponential Y X exists and if t and t′ are polynomials
of type Y X and X (respectively, of course), then ε(t, t′) is a polynomial of

78 Function spaces in classical topology

type Y , where ε : Y X × X → Y is the evaluation map. This polynomial
ε(t, t′) is abbreviated as t(t′). For future reference, we summarize these two
derived clauses:

(λ3) If t1, . . . , tn are polynomials of types X1, . . . , Xn then (t1, . . . , tn) is a
polynomial of type X1×· · ·×Xn with free variables those of t1, . . . , tn.

(λ4) If the exponential Y X exists and t and t′ are polynomials of types Y X

and X, then t(t′) is a polynomial of type Y with free variables those
of t and t′.

A polynomial function, or λ-definable function, is one that is obtained
by evaluating a polynomial. Such a function will be continuous by construc-
tion. In order to evaluate a polynomial, we have to assign values to its free
variables. More precisely and more generally, if a polynomial t of type X
has free variables that are among those in the list of variables a1, . . . , ak

(without repetitions) of type A1, . . . , Ak (possibly with repetitions), then t
defines a continuous map A1 × · · · × Ak → X. We refer to such a list of
variables and types for the polynomial t as a context , and we abbreviate the
type information by writing a1, . . . , ak : A1, . . . , Ak for contexts and t : X
for polynomials.

The continuous maps defined by polynomials are inductively constructed
as follows:

(λ0) A variable ai in the context a1, . . . , ak : A1, . . . , Ak defines the projec-
tion

πi : A1 × · · · ×Ak → Ai.

(λ1) If the exponential Y X exists and the polynomial t : Y in the context
a1, . . . , ak, x : A1, . . . , Ak, X defines the continuous map

g : A1 × · · · ×Ak ×X → Y,

then the polynomial λx.t : Y X in the context a1, . . . , ak defines its
exponential transpose

g : A1 × · · · ×Ak → Y X .

(Notice that the variable x is not among a1, . . . , an because, by defi-
nition of context, a1, . . . , an, x doesn’t contain repetitions.)

8.3 The restricted, simply typed λ-calculus 79

(λ2) If f : X1 × · · · × Xn → Y is a continuous map and the polynomials
ti : Xi in the context a1, . . . , ak : A1, . . . , Ak define continuous maps

gi : A1 × · · · ×Ak → Xi,

then the polynomial f(t1, . . . , tn) : Y defines the composite

f ◦ (g1, . . . , gn) : A1 × · · · ×Ak → Y.

Thus, by construction, λ-definable functions are continuous. Because
they are constructed from continuous functions by applications of the continuous-
maps clause (λ2) with the aid of the variables clause (λ0) and the lambda
clause (λ1), we can say, more memorably:

Functions that are λ-definable from continuous maps are them-
selves continuous.

It is now clear that definitions using λ-notation amount to sequences of
transpositions and compositions of continuous maps. Although it may not be
immediately apparent, such calculations occur often in mathematics, at least
implicitly. For example, a particular case of Fubini’s rule for integration
says that, in order to integrate a continuous map of two variables, we can
integrate over one variable and then over the other in an iterated fashion:∫

X×Y
f =

∫
X

(∫
Y
f(x, y)dy

)
dx.

If we regard the integration signs as standing for continuous functionals∫
X×Y

: RX×Y → R,
∫

X
: RX → R,

∫
Y

: RY → R,

then the right-hand side of the above equation can be equivalently written∫
X
λx.

∫
Y
λy.f(x, y).

Unraveling the definitions, and using the notation of the previous section, we
see that this polynomial (with the free functional variable f of type RX×Y)
defines the composite

RX×Y
∼=- (RY)X (

∫
Y)X

- RX

∫
X- R.

Thus, what the equation says is that this is the same as
∫
X×Y : RX×Y → R.

80 Function spaces in classical topology

For us, the point of using the λ-calculus is that we automatically conclude
that the functional defined by such a polynomial is continuous, because it is
λ-defined from continuous maps (in this case the functionals

∫
X : RX → R

and
∫
Y : RX → R). Moreover, in practice, there is no need to unravel

the continuous map defined by the polynomial in order to know that it is
continuous, because this is so by construction, as we have seen. In our appli-
cations, we consider functionals of the same type, typically with R replaced
by the Sierpinski space S, e.g. the universal and existential quantification
functionals ∀ : SX → S and ∃ : SX → S of Lemmas 7.4 and 7.5 (see also
Chapter 11).

8.9 Remark It is possible to remove the assumption of existence of the
exponential Y X in clause (λ2) of the definition of polynomials by replac-
ing Y X by the natural function space (X → Y), which always exists. The
construction of continuous maps defined by polynomials still works with
this modification, because, by definition, the natural function space allows
transposition in the required direction. Given that we know that if the ex-
ponential exists then it coincides with the natural function space, this is a
sensible thing to do. But notice that the derived clause (λ4) still needs the
proviso that the exponential exists. The reason is that the natural topology
is exponential if and only if it makes the evaluation map continuous, as we
shall see in the next section. By virtue of the results of Chapter 10, which al-
low us to work with exponentials constructed outside the world of topological
spaces, we don’t take the troublesome route of working with this general-
ization. However, in some interesting examples, working with it allows us
to sidestep the machinery developed in Chapter 10 — see Remark 9.2.

8.10 Question Is there an analogue of the natural function space in the
category of locales? Is the natural topology characterized by a universal
property that can be formulated in arbitrary categories with finite products?

At this point, as discussed above, if Lemmas 7.4 and 7.5 are taken on
faith, it is possible proceed directly to Chapter 9.

8.4 Exponentiable spaces

In order to discuss existence of exponentials Y X , we introduce the following
terminology. A topology on the set C(X,Y) is called

8.4 Exponentiable spaces 81

1. splitting if continuity of g : A×X → Y implies that of g : A→ C(X,Y),

2. conjoining if continuity of g : A→ C(X,Y) implies that of g : A×X → Y .

With this terminology, the topology is exponential if it is both splitting and
conjoining.

8.11 Lemma A topology on C(X,Y) is conjoining if and only if it makes
the evaluation map εX,Y : C(X,Y)×X → Y into a continuous function.

Using this, one easily proves the following lemma, which can be read as say-
ing that the splitting and conjoining topologies form a sort of Dedekind cut.
Recall that a topology T on a given set is coarser than another topology T ′

on the same set if T ⊆ T ′. In this case one also says that the topology T ′ is
finer than T .

8.12 Lemma

1. The indiscrete topology is splitting and the discrete is conjoining.

2. Any topology coarser than a splitting topology is also splitting.

3. Any topology finer than a conjoining topology is also conjoining.

4. Any splitting topology is coarser than any conjoining topology.

8.13 Corollary There is at most one exponential topology; when it exists,
it is the coarsest conjoining topology, or, equivalently, the finest splitting
topology.

Because the natural topology is the finest splitting topology by construc-
tion, the above establishes Lemma 8.4. In general, however, there isn’t a
coarsest conjoining topology unless the natural topology is conjoining (see
Remark 8.19).

8.14 Definition (Exponentiable space) A space X is called exponen-
tiable if the set C(X,Y) admits an exponential topology for every space Y .

We have just concluded that a space X is exponentiable if and only if the
natural function space (X → Y) is exponential for every space Y . Our next
goal is to formulate an intrinsic characterization of exponentiable spaces and
of exponential topology.

82 Function spaces in classical topology

Firstly, one can avoid quantification over all spaces Y in the definition of
exponentiability of X: As stated in Lemma 8.5, it turns out that a topolog-
ical space X is exponentiable if and only if the single exponential SX exists.
Moreover, in this case, the topology of Y X , for any space Y , is determined
by the topologies of SX and Y as follows. For any topological space, let

OX

denote its set of open sets.

8.15 Definition (Induced function-space topology) The topology on
the set C(X,Y) induced by a topology T on the set OX is that generated
by the subbasic open sets

N(H,V) = {f ∈ C(X,Y) | f−1(V) ∈ H},

where H ranges over T and V ranges over O Y .

We have seen that there is a bijection from the lattice of open sets OX
of X to the set C(X, S) that sends an open set to its characteristic map.
We transfer names of properties of topologies on C(X, S) to OX via the
bijection. So, for example, a topology on OX is called exponential if the
corresponding topology on C(X, S) is exponential.

8.16 Lemma A topology on OX is splitting (resp. conjoining) iff it induces
a splitting (resp. conjoining) topology on C(X,Y) for every space Y .

8.17 Corollary A space X is exponentiable if and only if OX has an
exponential topology. In this case, the exponential topology of C(X,Y) is
that induced by the exponential topology of OX.

A set H ⊆ OX is called Alexandroff open if the conditions U ∈ H and
U ⊆ U ′ ∈ OX together imply that U ′ ∈ H, and it is called Scott open if
in addition every open cover of a member of H has a finite subcover of a
member of H. (Because OX is a complete lattice, the latter is equivalent to
saying that every directed open cover of a member of H intersects H.) Thus,
for example, for any subset Q of X, the Alexandroff open set {U ∈ OX |
Q ⊆ U} is Scott open if and only if Q is compact. We observe that this
example is the only place where the open-cover definition of compactness
occurs in Part II. All other uses of compactness are reduced to it, via the
proof of Lemma 7.4 that we are about to give.

8.5 Characterization of exponentiable spaces 83

8.18 Lemma (Naturality of the Scott topology.)

1. The Scott topology of OX is always splitting.

2. The Scott topology of OX is an intersection of conjoining topologies.

Hence the Scott topology is the natural topology.

8.19 Remark By the second part of this lemma, it follows that there isn’t
in general a coarsest conjoining topology, unless the natural topology is
conjoining, in which case the coarsest conjoining topology coincides with the
finest splitting topology, i.e. the space is exponentiable — cf. Remark 8.3.

We can now fill two gaps.

Proof of Lemma 7.4. By the corollary, the natural function space (X →
S) is homeomorphic to the setOX under the Scott topology via the bijection
OX ∼= C(X, S), and the universal-quantification functional can be regarded
as a map ∀Q : OX → S with ∀Q(U) = > iff ∀x ∈ Q.χU (x) = >. But
∀x ∈ Q.χU (x) = > iff ∀x ∈ Q.x ∈ U iff Q ⊆ U . Hence ∀−1

Q (>) = {U ∈
OX | Q ⊆ U}, which, as we have observed above, is Scott open if and only
if Q is compact. �

Proof of Lemma 7.5. Via the bijection C(X, S) ∼= OX, the existential-
quantification functional can be regarded as a map ∃F : OX → S with
∃F (U) = > iff F ∩U 6= ∅. An easy verification shows that the set ∃−1

F (>) =
{U ∈ OX | F ∩ U 6= ∅} is Scott open. �

8.5 Characterization of exponentiable spaces

In order to summarize the results of Section 8.4, we name a special instance
of the induced topology:

8.20 Definition (Isbell topology) The topology on C(X,Y) induced
by the Scott topology of OX is known as the Isbell topology .

8.21 Theorem A space is exponentiable if and only if the Scott topology
of its lattice of open sets is conjoining. Moreover, for X exponentiable, the
topology of an exponential Y X is the Isbell topology.

8.22 Lemma The Scott topology of OX is conjoining if and only if OX is
a continuous lattice in the sense of Dana Scott.

84 Function spaces in classical topology

Regarding continuous lattices, see Chapter 12 and, in connection with
function spaces, Section 12.11 in particular. An equivalent topological for-
mulation of the lattice-theoretic condition is that X be core-compact:

8.23 Definition (Core-compact space) A topological space X is called
core-compact if every open neighbourhood V of a point x of X contains an
open neighbourhood U of x such that every open cover of V has a finite
subcover of U .

Hence every locally compact space is core-compact. Moreover, among Haus-
dorff spaces (and more generally sober spaces), core-compactness coincides
with local compactness. As it is well known, a careful formulation of the
notion of local compactness is needed in the absense of the Hausdorff separa-
tion axiom: We mean that every point has a base of compact (not necessarily
open) neighbourhoods. The following is an immediate corollary.

8.24 Theorem A topological space is exponentiable if and only if it is core-
compact.

We finish by remarking that if X is locally compact, then the topology
of the exponential Y X also coincides with the compact-open topology . This
is generated by the subbasic Isbell open sets of the form N(H,V) with
H = {U ∈ OX | Q ⊆ U} for Q ⊆ X compact. These are precisely the sets
of the form {f ∈ Y X | f(Q) ⊆ V } which occur in the usual formulation of
the compact-open topology (cf. Propositions 3.20 and 9.11).

8.6 Notes

For the long and interesting history of the subject of function spaces, see
Isbell [68]. The only thing to be added is that the terminology natural
topology used in this chapter is taken from an unpublished manuscript by
Eilenberg [36], which was kindly supplied by Fred Linton to the author —
but of course the concept was known long before that manuscript.

The interpretation of the simply-typed λ-calculus in cartesian closed
categories is a familiar theme in categorical logic — see e.g. [23, 72, 84,
90]. Here we have rehearsed this in the particular case of the category of
continuous maps of topological spaces, taking care of the (rather annoying)
fact that it is not cartesian closed, i.e. fails to have all exponentials.

Chapter 9

Classical topology via the
λ-calculus

We have seen in Chapter 7 that some topological notions, such as those
of open and closed subspace, and those of Hausdorff, discrete and compact
space, can be expressed as continuity of certain maps involving the Sierpinski
space. Using the function-space machinery of the previous chapter, we can
combine these maps in order to produce new continuous maps and hence
easily prove known propositions about topological spaces. Equivalently, we
can combine them using the λ-calculus. In any case, the point is that one
automatically gets continuous functions out of given continuous functions.
For the benefit of readers who are not acquainted with the λ-calculus, or
who feel in shaky grounds given the fact that not all exponentials exist in
the world of topological spaces, we include both the proofs via the λ-calculus
and those via direct manipulation of function spaces.

To be able to take full advantage of the function-space machinery or the
λ-calculus, we would need the world of topological spaces to have exponen-
tials Y X for all topological spaces X and Y , that is, to form a cartesian
closed category, which it doesn’t (see Chapter 8 and Remark 9.9). One can
take the further step of formally adding the missing exponentials when one
needs them, very much like one adds the missing exponential i = (−1)

1
2

to the reals obtaining the complex numbers, and we indeed proceed in this
way in Chapter 10. But, to begin with, we content ourselves with working
within the world of “real” topological spaces, explicitly assuming existence
of exponentials within the world when necessary, and hence the propositions
are not formulated in the full generality they are known. However, in or-
der to be able to reuse both the formulations and the proofs provided here

85

86 Classical topology via the λ-calculus

to regain full generality, we flag such extraneous existence assumptions as
preliminary. Notice that there are some occurrences of existence assump-
tions to which we don’t attach the label: This is the case when function
spaces occur in the formulation of a proposition. In the flagged cases, the
exponentials are needed only in the proofs.

9.1 Proposition If X is Hausdorff and Q ⊆ X is compact, then Q is
closed.

Preliminary assumption. The exponential SX exists.

Proof By Lemma 7.1 and Section 8.3, it is enough to λ-define the com-
plement of the characteristic function of Q from continuous maps. Because
x 6∈ Q ⇐⇒ ∀y ∈ Q.x 6= y, we conclude that χX\Q(x) = ∀Q(λy.x 6= y). The
result then follows from the fact that ∀Q : SX → S and (6=): X ×X → S are
continuous by the assumptions that Q is compact and X is Hausdorff, using
the synthetic formulations of the topological notions given in Lemmas 7.4
and 7.2. �

The continuous map defined by the λ-expression of the above proof is
obtained as follows. Using the exponential law, we get the continuous map
(6=): X → SX from the continuous map (6=): X ×X → S, and, composing
with the continuous map ∀Q : SX → S, we get the continuous map

X
(6=)- SX ∀Q- S,

which gives the characteristic function of the complement of Q.
A constructive reading of the proposition is that if we can tell points ofX

apart and we can quantify over Q, then we can semidecide the complement
of Q. Algorithms for the first two tasks give an algorithm for the third —
see Chapter 3. This is what the λ-expression amounts to in a computational
setting. Thus, both the formulation of the classical proposition and its proof
are seen to have computational content, and synthetic proofs are programs
in a literal sense.

9.2 Remark By Remark 8.9, we see that in this example we can interpret
the λ-expression using the natural function space (X → S) and hence the
preliminary assumption that SX exists is not really necessary. The same
applies to other examples in this chapter, but the exercise of discovering
them (and of showing that the others don’t qualify) is left to the interested
reader.

87

9.3 Proposition If X is compact and F ⊆ X is closed then F is compact.

Preliminary assumption. The exponential SX exists.
Proof We λ-define ∀F : SX → S from continuous maps. Notice that
∀x ∈ F.p(x) iff ∀x ∈ X.x ∈ F =⇒ p(x) iff ∀x ∈ X.x 6∈ F ∨ p(x). Hence
∀F (p) = ∀X(λx.χX\F (x) ∨ p(x)), where (− ∨ −) : S × S → S is the evident
(continuous) disjunction map. �

The λ-expression defines a continuous map as follows. Firstly, we have
a composition of continuous maps

SX ×X
id×∆- SX × (X ×X)

∼=- (SX ×X)×X
ε× χX\F- S× S

∨- S,

where id is the identity map of SX , the map ∆ is the diagonal of X, the
symbol ∼= denotes the evident homeomorphism, and ε is the evaluation map
of the exponential SX . Transposing this composite we get a continuous map
SX → SX , which composed with ∀X : SX → S yields ∀F : SX → S.

This illustrates the typical phenomenon that λ-expressions are easier to
deal with than the corresponding sequences of compositions and transposi-
tions. However, because our category doesn’t have all exponentials, it is a
good idea to explicitly write down the translations of our λ-expressions in
order to be clear about exactly which exponentials are needed.

Generalizing the proof of the above proposition, we get that if F is a
closed subspace of a space X and Q is a compact subspace of X, then F ∩Q
is compact, because ∀x ∈ F ∩Q.p(x) iff ∀x ∈ Q.x 6∈ F ∨ p(x), with the same
preliminary assumption.

9.4 Proposition If f : X → Y is continuous and Q ⊆ X is compact then
f(Q) is compact.

Preliminary assumption. The exponentials SX and SY exist.
Proof ∀y ∈ f(Q).p(y) iff ∀x ∈ Q.p(f(x)). �

Here the continuous map defined by the implicitly given λ-expression in
the above proof is the composite

SY Sf
- SX ∀Q- S,

which gives the quantifier of f(Q).

9.5 Proposition If X and Y are compact then so is X × Y .

Preliminary assumption. The exponentials SX and SY exist.
Proof ∀z ∈ X × Y.p(z) iff ∀x ∈ X.∀y ∈ Y.p(x, y). �

88 Classical topology via the λ-calculus

Cf. Fubini’s rule for integration over a product of two spaces. The con-
tinuous map defined by the implicitly given λ-expression is the composite

SX×Y
∼=- (SY)X (∀Y)X

- SX ∀X- S.

Notice that, under the assumption of existence of SX and SY we get the
existence of (SY)X by Lemma 8.5 and hence that of SX×Y by Lemma 8.6,
which also gives the homeomorphism.

9.6 Remark The above proof looks unbelievably easy compared to the clas-
sical proofs. However, the law of conservation of proofs is not violated: An
interesting exercise reveals that one of the classical proofs is obtained from
the above by a routine unwinding of the proofs of the various lemmas on
which it relies. For example, if we start with the proofs given in [50] for
exponentials, then an unwinding of above proof produces essentially the
proof given in [129, Theorem 5.6.2]. One notices that the major work is
performed by the proof of [50, Lemma 4.2] (formulated as Lemma 8.18(1)
here). The other lemmas perform bookkeeping only. Indeed, the proof of
[129, Theorem 5.6.2] looks as a nesting of two copies of the proof of [50,
Lemma 4.2]. The pasting of the two copies is performed by the compo-

sition (SY)X
(∀Y)X

−→ SX
∀X−→S, and further composition with the homeomorphism

SX×Y ∼=(SY)X produces the nesting. A similar examination of the other proofs
regarding compactness provided in this chapter reveals that the classical
proofs include special instances of the proof of [50, Lemma 4.2]. Thus, that
proof can be regarded as the “generic argument involving compactness”:
The λ-calculus machinery implicitly produces the familiar known instances.
These remarks still apply when we eliminate the preliminary assumptions
via the techniques of Chapter 10. The λ-calculus (or the function-space
machinery) can thus be regarded as an “automatic bookkeeping device” for
writing high-level versions of the classical proofs — and, in our case, also
for extracting computational content from them.

9.7 Proposition If Y is Hausdorff then so is the exponential Y X if it
exists.

Preliminary assumption. The exponential SX exists.

Proof f 6= g iff ∃x ∈ X.f(x) 6= g(x) and Lemma 7.5. �

89

The continuous map defined by the λ-expression implicitly given in the
proof of the above proposition gives the apartness map of Y X from that
of Y as the composite

Y X × Y X
∼=- (Y × Y)X (6=Y)X

- SX ∃X- S.

The λ-proof of the above proposition suggests the following dual ver-
sion. We start from the argument and then try to figure out what it proves:
f = g iff ∀x ∈ X.f(x) = g(x). For this to λ-define a continuous map of
the pair (f, g), we need continuously semidecidable equality on Y and con-
tinuous universal quantification over X. Thus, under the same preliminary
assumption:

9.8 Proposition If X is compact and Y is discrete, then the exponen-
tial Y X is discrete if it exists.

Notice how the proofs of two seemingly unrelated propositions have the same
shape:

Y X × Y X
∼=- (Y × Y)X (=Y)X

- SX ∀X- S.

9.9 Remark Because the Cantor space is compact Hausdorff, it is locally
compact and hence the exponential 22ω

exists by Chapter 8 and is dis-
crete by the above proposition. In fact, it is homeomorphic to the discrete
space N, because 2ω has countably many clopens (sets which are both open
and closed), and because the two-point discrete space 2 classifies clopen sub-
spaces. (Cf. Proposition 3.23 and Chapters 13.2–13.3.) A routine verifica-
tion shows that the exponential Y X exists ifX is discrete, and coincides with
the topological product of X-many copies of Y . In particular, the Cantor
space 2ω is the same as the exponential 2N, and the exponential NN exists and
is the Baire space. Hence, using the homeomorphism N ∼= 22N

and the expo-
nential law, we conclude that NN ∼= (22N

)N ∼= 2(N×2N) ∼= 2(2N×N) ∼= (2N)(2
N).

That is, we obtain the curious fact that the Cantor space elevated to the
power Cantor space (exists and) is the Baire space [67]. The general crite-
rion for exponentiability given in Chapter 8 reveals that the Cantor space
is exponentiable but that the Baire space isn’t. Thus, this gives a simple
example of a space X which is exponentiable but XX isn’t. The same holds
for e.g. X = [0, 1] with the usual Hausdorff topology, but one needs to use
tools such as the Ascoli–Arzela theorem in order to argue that the Hausdorff
space XX is not locally compact and hence not exponentiable.

90 Classical topology via the λ-calculus

9.10 Remark The Tychonoff theorem gives:

Y compact, X discrete =⇒ Y X compact.

We have just proved a symmetric consequence, assuming that Y X exists:

Y discrete, X compact =⇒ Y X discrete.

It would be interesting to formulate this as a consequence of a “dual” Ty-
chonoff theorem, but we don’t know what such a theorem would state.

Notice that we didn’t need to know what the topology of Y X is in the
proofs of the above two propositions. Everything is encapsulated in the
proofs of continuity of ∀ and ∃. In fact, ignoring what we already know (on
faith) from Chapters 8.4 and 8.5, we can easily construct plenty of open sets
of Y X using λ-technology:

9.11 Proposition If Q ⊆ X is compact and V ⊆ Y is open then the set

N(Q,V) = {f ∈ Y X | f(Q) ⊆ V }

is open in Y X provided the exponential exists.

Preliminary assumption: The exponential SX exists.
Proof χN(Q,V)(f) = ∀Q(λx.χV (f(x))) because f ∈ N(Q,V) if and only
if ∀x ∈ Q.f(x) ∈ V . �

9.12 Remark We have seen in Chapter 8.1 that if the exponential SX ex-
ists, then so does the exponential Y X for every Y . But if the exponential Y X

exists for a particular Y , there is no reason why the exponential SX should
exist. To give a trivial counter-example, consider the case in which Y is the
two-point discrete space and X is connected. Then the exponential exists,
even if X is not exponentiable, and is a two-point discrete space. So, in fact,
applying the techniques of Chapter 10 to remove the preliminary assump-
tion from the above proposition, we learn something that we didn’t know
from Chapter 8: Even when X is not exponentiable, if the exponential Y X

exists for a particular Y then its topology is finer than the compact-open
topology. In fact, we can easily improve this bound on the topology of Y X .
The continuous map defined by the λ-expression of the proof of the above
proposition is the composite

Y X (χV)X
- SX ∀Q- S.

91

Replacing the quantifier by any continuous map h : SX → S whatsoever, one
obtains the characteristic functions of the subbasic open sets that define the
Isbell topology, and we conclude that if the exponential exists then it has a
topology finer than the Isbell topology. As discussed in Chapter 8.5, this is
as fine as we can get when X is exponentiable. However, we can carry on
ignoring the compact-open and Isbell topologies.

The map considered in the following proposition is well defined because
continuous functions map compact sets to compact sets and because the
non-empty compact sets of R are bounded by the Heine–Borel theorem and
hence the set f(X) has a supremum in R.

9.13 Proposition If X is compact and non-empty and the exponential RX

exists, where R is endowed with its usual Hausdorff topology, then the func-
tional

sup: RX → R
f 7→ sup f(X)

is continuous.

Preliminary assumption. The exponential SX exists.
Proof Because the open sets of the form (a,∞) and (−∞, b) form a sub-
base of the topology of R, it suffices to show that the sets Na = sup−1(a,∞)
and Nb = sup−1(−∞, b) are open in RX . We have that f ∈ Na iff a <
sup(f) iff ∃x ∈ X.a < f(x) iff ∃x ∈ X.f(x) ∈ (a,∞). Hence χNa(f) =
∃X(λx.χ(a,∞)(f(x))). Dually, we have that f ∈ Nb iff ∀x ∈ X. sup(f) <
b iff ∀x ∈ X.f(x) < b iff ∀x ∈ X.f(x) ∈ (−∞, b). Hence χNb

(f) =
∀X(λx.χ(−∞,b)(f(x))). �

The continuous maps defined by the λ-expressions that give the charac-
teristic functions of Na = sup−1(a,∞) and Nb = sup−1(−∞, b) are

RX
(χ(a,∞))X

- SX ∃X- S, RX
(χ(−∞,b))X

- SX ∀X- S.

Notice that both sets are open in the Isbell topology and the second is open
in the compact-open topology as well.

9.14 Remark This generalizes to other topological lattices, such as e.g.
continuous lattices under the Lawson topology, with the same proof (and
with one half of the proof if one considers the Scott topology and the other
if one considered the dual topology). Unfortunately, we won’t have the
opportunity of discussing the Lawson topology or its computational content
in these notes [27].

92 Classical topology via the λ-calculus

Recall that a function is called closed if it maps closed sets to closed
sets.

9.15 Theorem A space X is compact iff, for every space Y , the projection
π : X × Y → Y is closed.

Preliminary assumption. The exponential SX exists.

Proof π is closed iff W ∈ O(X × Y) implies Y \ π(X × Y \W) ∈ O Y .
But Y \ π(X × Y \W) = {y ∈ Y | ∀x ∈ X.(x, y) ∈ W}. This immediately
gives (⇒). To prove (⇐), choose Y = SX andW = {(x, p) ∈ X×SX | p(x) =
>} to get Y \ π(X × Y \W) = {p ∈ SX | ∀x ∈ X.p(x) = >} = (∀X)−1(>),
which shows that ∀X : SX → S is continuous. �

9.16 Exercise Generalize the above proof to get the following well known
characterization of proper maps (closed maps with compact fibres): A con-
tinuous map f : X → Z is proper iff for every continuous map g : Y → Z,
the pullback f∗(g) is a closed map:

X ×Z Y
f∗(g)- Y

X

g∗(f)
?

f
- Z.

g
?

That is, X×Z Y is the subspace {(x, y) ∈ X×Y | f(x) = g(x)} of the prod-
uct, and the maps emanating from it are the (restrictions of) the projections.
Hint. The theorem is this with Z = 1, the one-point space.

Vickers’ book [140] tempts us to observe that what we have developed
here is topology via first-order logic rather than just propositional logic. If
we regard open sets as properties, second-order quantification occurs in the
proof of our last proposition of this chapter.

If SX exists, then its topology induces one in OX via the bijection of S-
valued continuous maps with open sets. We refer to this as the exponential
topology of OX (as we did in Chapter 8.4). The following proposition
generalizes the fact that finite intersections of open sets are open.

9.17 Proposition If X is exponentiable and Q ⊆ OX is compact in the
exponential topology of OX, then

⋂
Q is open.

Proof x ∈
⋂
Q iff ∀U ∈ Q.x ∈ U . �

9.1 Notes 93

It might be possible to remove the exponentiability assumption from the
above proposition using the techniques of Chapter 10, but not routinely so
as far as we can see, and hence we don’t label it as preliminary.

9.1 Notes

See Chapter 3.14. We have made some progress in combining the ideas re-
ported here with those of Taylor’s on abstract Stone duality and Vickers and
Townsend on double powerlocales and exponentiation [141, 136] in order to
tackle locales in arbitrary toposes, but this will be reported elsewhere, were
we shall also address synthetic topology in toposes using dominances. We
just mention that (1) the λ-expressions of the proofs are same, but one needs
to argue in a different way that they perform the required jobs, (2) overtness
assumptions have to be added whenever the existential quantifier is invoked
in a proof and (3) we don’t know how to tackle Theorem 9.15, but we believe
that sheaf-topos extensions (gros toposes) of the category of locales will rou-
tinely do the job. In particular, in the localic setting, our Proposition 9.7
amounts to [70, Proposition 3.2], where what we call overt locales are called
open locales, and for this case the topos machinery is not needed.

Chapter 10

Imaginary exponentials

Because certain exponentials don’t exist in the world of real numbers, we
pass to the world of complex numbers by adding imaginary exponentials,
starting from i = (−1)

1
2 . This extension is conservative: Every fact about

real numbers deduced in the new world holds in the old world, provided it
can be expressed there. In particular, functions and operations are gener-
alized in such a way that they coincide with those of real numbers in the
extended world. So, for instance, if yx is an exponential of real numbers
calculated in the world of complex numbers which happens to be real, then
it coincides with the exponential calculated in the world of real numbers. An
interesting example of an application of the conservativity of the extension is
the extraction of roots of cubics: There is a formula for obtaining the three
roots of a real polynomial of degree three with real roots, but the formula
explicitly manipulates imaginary numbers on its way to its final real result.

Similarly, one can create imaginary exponentials of topological spaces in
order to remove the exponentiability assumptions labelled “preliminary” in
the previous chapter: In fact, the required exponentials occur in the proofs
of the propositions but not in their formulations, so we don’t care what they
really are.

10.1 Generalized topological spaces

For the purposes of the previous chapter, we only need imaginary exponen-
tials where the base is the Sierpinski space, but it is easier to create all
missing exponentials in a single step.

In the following lemma, we refer to topological spaces as real topological
spaces for emphasis.

95

96 Imaginary exponentials

10.1 Lemma (Generalized topological spaces) There exists a cate-
gory of generalized topological spaces, consisting of sets endowed with gen-
eralized topologies, such that

1. The category of real topological spaces lives inside that of generalized
spaces: Every real topology can be regarded as a generalized topology,
and the notion of continuity w.r.t. generalized topologies subsumes that
of continuity w.r.t. real topologies.

2. The category of generalized spaces has finite products, which extend
products of real spaces, and exponentials, which extend existing real
exponentials.

3. The generalized topology of any generalized space A can be collapsed
to a real topology, giving rise to a real space <A with the same set of
points as A, its real part, in such a way that, for any real space Z,
continuity of a map A→ Z is equivalent to that of the map <A→ Z
that has the same effect on points.

4. For any two real spaces X and Y , we have that <(Y X) = (X → Y),
the natural function space in the category of topological spaces.

Proof See Section 10.2. �

In categorical language, the lemma says that there exists a well pointed cate-
gory T̂op containing the category Top of topological spaces as a fully embed-
ded subcategory, with embedding denoted by (f : X → Y) 7→ (f̂ : X̂ → Ŷ),
subject to the following properties: (1) T̂op is cartesian closed. (2) The
embedding Top ↪→ T̂op preserves finite products and any exponential that
exists in Top. (3) It has a left adjoint < : T̂op � Top, a reflection. (4) For
any X,Y ∈ Top the reflection of the exponential Ŷ X̂ in T̂op is the natu-
ral function space (X → Y) in Top. The notation T̂op is pronounced top
hat . Just as a magician takes rabbits out of his, we take exponentials of
topological spaces out of ours.

For the purpose of removing the preliminary exponentiability assump-
tions from the propositions of the previous chapter, we fix any such category
of generalized spaces — it doesn’t matter which. In view of the above lemma,
we can unambiguously write Y X for any two real spaces X and Y : The ex-
ponential always exists in the category of generalized spaces, and if it exists
in the category of real spaces then both coincide. Hence we can now remove
the preliminary assumptions of Chapter 9 in view of the following:

10.2 Examples of categories of generalized spaces 97

10.2 Corollary

1. For real spaces X,Y, Z, continuity of a functional Y X → Z is equiva-
lent to that of the functional (X → Y) → Z that has the same effect
on points.

2. A subset Q of a topological space X is compact if and only if its uni-
versal quantification functional ∀Q : SX → S is continuous.

3. For any subset F of a topological space X, its existential quantification
functional ∃F : SX → S is continuous.

Proof For the first part, take A = Y X in the lemma and use the fact
that <(Y X) = (X → Y). For the second, take Y = Z = S in the first
and apply Lemma 7.4. For the third, proceed as in the second and apply
Lemma 7.5 instead. �

10.2 Examples of categories of generalized spaces

The remainder of this chapter can be safely omitted if the results of the
previous section are taken on faith.

Plenty of supercategories of Top satisfying the conditions of Lemma 10.1
are known — we name a few: quasi-topological spaces [29], convergence
spaces [64] (also known as filter spaces) and Dana Scott’s equilogical spaces [9].
However, there is essentially only one known such category. It has been ob-
served that the known examples are all full subcategories of the category of
presheaves of topological spaces, and that the embeddings of Top into each
of them land in the same portion of the category of presheaves [29, 109, 110].
The category of presheaves itself is not cartesian closed for size problems: Its
homs are classes which fail to be (indexed by) sets in general and hence fail
to form (set-valued) presheaves. However, each of the examples of subcate-
gories mentioned above are exponential ideals closed under finite products.

What doesn’t seem to have been observed in the literature is that the
real part of an imaginary exponential of topological spaces is the natural
function space, and hence we now develop some proofs. We briefly discuss
convergence and equilogical spaces, and then we develop a full proof for
quasi-topological spaces.

Convergence spaces. A convergence space is a set (of points) together
with a relation between filters (of sets of points) and points, postulating
which filters converge to which points, subject to suitable axioms — see

98 Imaginary exponentials

e.g. [64]. The continuous maps are those that preserve the convergence
relation. This category is known to satisfy the conditions of Lemma 10.1,
except perhaps for item (4).

To see that item (4) holds, we consider a standard topology on the
set of continuous maps. A filter of sets Φ on C(X,Y) is said to converge
continuously to a function f0 ∈ C(X,Y) if for any filter Γ converging to a
point x of X, the filter generated by the filter base consisting of the sets
{f(G) | f ∈ F}, for F ∈ Φ and G ∈ Γ, converges to f0(x). The topology of
continuous convergence is obtained in the standard fashion whenever one is
given a family of convergent filters: A set N ⊆ C(X,Y) is open if whenever
any of the given filters converges to a member of N , the filter has N as a
member. It is proved in [52] that the topology of continuous convergence
coincides with the natural topology. Lemma 10.1(4) immediately follows
from this and standard facts about the category of convergence spaces.

Equilogical spaces. A proof for equilogical spaces has been produced by
Andrej Bauer after the first version of these notes was advertised [7]. Al-
ternatively, as Alex Simpson pointed out to the author, the results for equi-
logical spaces and convergence space follow immediately from Rosolini [109]
and the result for quasi-spaces given below.

Quasi-topological spaces. For the sake of completeness, we include a
complete proof of Lemma 10.1 using quasi-spaces. An advantage of quasi-
spaces is that they simplify the unwinding process described in Remark 9.6.
Moreover, the proof of Lemma 10.1 becomes a triviality once the definitions
and constructions are formulated. A disadvantage of quasi-spaces is that
quasi-topologies are proper classes rather than sets.

To construct a quasi-space, we start with a set B of points, and, for each
topological space X, we choose which functions from points of X to B we
want to be continuous. But the chosen continuous maps have to interact
with the existing continuous maps of topological spaces in the expected way.
The details are as follows.

A quasi-topology on a set B consists of, for each topological space X,
a collection of designated functions s : X → B, called the continuous maps
from X into B, such that (i) all constant maps are continuous and (ii) if
t : X → Y is a continuous map of topological spaces then the composite
t ◦ s : X → B is continuous for every continuous s : Y → B. A quasi-space
is a set endowed with a quasi-topology. A continuous map of quasi-spaces is
a function f : B → C such that the composite f ◦ s : X → C is continuous

10.2 Examples of categories of generalized spaces 99

for every continuous map s : X → B.
Notice that we are using the word continuous for three purposes: (1) to

name the well known concept for maps of topological spaces, (2) to name
the members of a designated collection of maps from a topological space
to a quasi-space, and (3) to name a defined notion of continuous map of
quasi-spaces. The continuous maps of type (2) constitute the structure of
a quasi-space. Not every collection of maps from topological spaces into a
given set qualifies as a quasi-topology on the set: We require a compatibility
condition with the continuous maps of type (1). Finally, the continuous
maps of type (2) are used in order to define the continuous maps of type (3).
For the moment, in order to avoid potential ambiguities, we use the letters
X,Y, Z to range over topological spaces and the letters B,C,D to range
over quasi-spaces. However, as shown in Lemma 10.5 below, there is no real
danger of ambiguity. But let’s first observe that we have a category.

10.3 Lemma Continuous maps of quasi-spaces form a category under ordi-
nary function composition.
Proof It doesn’t harm to include the routine verification: The identity
function of any quasi-space is clearly continuous. Let f : A→ B and g : B →
C be continuous maps of quasi-spaces. In order to show that g ◦ f : A→ C
is continuous, let s : X → A be a continuous map. Because f is a continuous
map, the composite f ◦ s : X → B is a continuous map, and, because g is a
continuous map, so is g ◦ (f ◦ s) = (g ◦ f) ◦ s, as required. �

10.4 Definition (The quasi-topology of a topological space.)
Each topological space X can be regarded as a quasi-topological space: Let
the designated continuous maps into X be the topologically continuous ones.
The space X regarded as a quasi-space in this way is officially denoted by X̂.

The first part of the following lemma shows that type (3) continuity sub-
sumes type (2), and the second that (3) subsumes (1).

10.5 Lemma

(Yoneda lemma) Continuity of a function X → B from a topological
space X to a quasi-space B is equivalent to that of the function X̂ → B
that has the same effect on points.

(Yoneda embedding) Continuity of a function X → Y of topological
spaces is equivalent to that of the function X̂ → Ŷ of quasi-spaces that
has the same effect on points.

100 Imaginary exponentials

Proof (Yoneda lemma) (⇒): Assume that s : X → B is continuous.
In order to show that s : X̂ → B is continuous, we have to show that t ◦
s : X ′ → B is continuous for any given continuous t : X ′ → X̂, i.e. any
given continuous map t : X ′ → X. But this follows from axiom (ii) of the
definition of quasi-topology on B.

(⇐): If s : X̂ → B is continuous, then so is s : X → B because the
identity map X → X̂ is continuous by definition of the quasi-topology of X̂,
and the definition of continuity of s : X̂ → B requires that its composition
with any map X → X̂ be continuous.

(Yoneda embedding): Taking B = Ŷ in the Yoneda lemma, we conclude
that a continuous map X → Ŷ is the same thing as a continuous map
X̂ → Ŷ . So it suffices to show that a continuous map X → Ŷ is the same
thing as a continuous map X → Y . But this is the definition of the quasi-
topology of Ŷ . �

We can define a continuous map of type B → X to be a continuous
map B → X̂, obtaining a fourth type of continuous map. Compositions of
continuous maps produce continuous maps, for any combination of the four
types of maps, using the axioms for designated continuous maps, those for
continuous maps of quasi-spaces, and Lemma 10.3. In view of these facts
and conventions, we can generally allow topological spaces not to wear their
quasi-space hats without any danger of confusion.

In categorical terminology, the second part of the above lemma shows
that the category of topological spaces is fully embedded into that of quasi-
spaces. We now prove that the latter is cartesian closed.

10.6 Lemma The category of quasi-spaces has finite products.

Construction: For quasi-spaces B0 and B1, take the underlying set of the
product as the set-theoretical product B0 × B1. As the continuous maps
from a space X, take the functions X → B0 × B1 whose composition with
the projections πi : B0 ×B1 → Bi are continuous maps X → Bi. These are
just the pairings (p0, p1) : X → B0×B1 of the continuous maps p0 : X → B0

and p1 : X → B1.

Proof It is clear that the designated continuous maps satisfy the required
axioms. By construction, the projections πi : B0 × B1 → Bi are continuous
maps. In order to verify the universal property, let C be a quasi-space, let
fi : C → Bi be a continuous map for each index i, and let f : C → B0 ×B1

be the unique set-theoretical function with fi = πi ◦ f . To show that it is
a continuous map, let s : X → C be a continuous map. By construction of
the continuous maps from topological spaces into the product, showing that

10.2 Examples of categories of generalized spaces 101

the composite f ◦ s : X → B0 × B1 is a continuous map is equivalent to
showing that the composite πi ◦ f ◦ s is a continuous map for each index i.
By construction of f , this is the same as fi ◦ s, which is a continuous map
because fi and s are. �

(Essentially the same construction and proof actually show that all limits
exist.) It is immediate that the Yoneda embedding preserves finite products:

10.7 Lemma X̂ × Ŷ = X̂ × Y .

We now consider exponentials.

10.8 Lemma If f : B×C → D is a continuous map of quasi-spaces, then for
each b ∈ B, the function fb : C → D defined by fb(c) = f(b, c) is continuous.

Proof Let s : X → C be a continuous map and t : X → B be the constant
continuous map with value b. Because (t, s) : X → B × C is a continuous
map, so is f ◦ (t, s) = fb ◦ s, as required. �

We thus have a function f : B → DC defined by f(b) = fb, where DC is
the set of continuous maps from C to D, called the transpose of f .

10.9 Lemma The category of quasi-spaces has all exponentials.

Construction: Given quasi-spaces C and D, let the underlying set of the ex-
ponential DC consist of the continuous maps from C to D, and let the con-
tinuous maps from a topological space X be the functions u : X → DC such
that for every continuous map t : X → C, the composite ε ◦ (u, t) : X → D
is a continuous map, where ε : DC ×C → D is the set-theoretical evaluation
map.

Proof It is easy to see that such designated continuous functions satisfy
the required axioms. By construction, they make the evaluation function
continuous. Hence if f : B → DC is a continuous map then so is f : B×C →
D, because f = ε ◦ (f × idC) where idC : C → C is the identity. Conversely,
assume that f : B × C → D is a continuous map. In order to show that
f : B → DC is also a continuous map, we have to show that if s : X → B is
a continuous map then so is the composite f ◦ s : X → DC . By definition,
this amounts to showing that ε ◦ (f ◦ s, t) is a continuous map for any given
continuous map t : X → C. But ε ◦ (f ◦ s, t) = f ◦ (s, t), which, being a
composition of continuous map, is itself continuous. �

102 Imaginary exponentials

10.10 Corollary The designated continuous maps from a space X to DC

are precisely the functions of the form f ◦ s : X → DC with f : B × C → D
a continuous map and s : X → B a designated continuous map.
Proof (⇒): Because f : B → DC is a continuous map if f : B ×C → D
is, we conclude that f ◦ s : X → DC is a continuous map if the function
s : X → B is. (⇐): If u : X → DC is a continuous map, then, considering
B = DC , we have that u = ε ◦ u where ε : DC × C → D is the evaluation
map, because ε : DC → DC is the identity. �

10.11 Lemma (The topology of a quasi-topological space)
Any quasi-space B has a unique topology, giving rise to a space <B with the
same sets of points as B, such that continuity of a map <B → Y into a
topological space Y is equivalent to that of the map B → Ŷ with the same
set of points.
Proof Declare a subset U of B to be open if for every continuous map
s : X → B from a topological space, the set s−1(U) is open. �

In categorical terminology, the above says that < is the functor part of
the left adjoint of the inclusion of the category of topological spaces into that
of quasi-spaces, i.e. a reflection. Hence the inclusion preserves limits, which
gives a categorical proof of Lemma 10.7. The following is an immediate
consequence of Lemma 10.11 and Corollary 10.10.

10.12 Corollary For any two real spaces X and Y , we have that <(Y X) =
(X → Y), the natural function space in the category of topological spaces.

In particular, if the exponential Y X exists in the category of topological
spaces then it coincides with that calculated in the category of quasi-spaces.

10.3 Notes

Reinhold Heckmann has recently obtained a similar extension of the category
of locales, but this is still unpublished (cf. Chapter 9.1).

Chapter 11

The Hofmann–Mislove
representation theorem

If Q is a compact subset of a topological space X, then its universal quan-
tification functional A = ∀Q : (X → S) → S is not only continuous but also
meet-linear :

A(>) = >, A(p ∧ q) = A(p) ∧A(q).

Here the left-hand occurrence of > is the constant map X → S with value
> ∈ S, the operation (−∧−) : S×S → S is the evident (continuous) conjunc-
tion map, and p∧ q is defined pointwise. The Hofmann–Mislove representa-
tion theorem can be read as saying that, under favourable circumstances, the
converse holds: Every continuous meet-linear functional A : (X → S) → S
is the universal quantifier of some compact set. This is analogous to the
Riesz representation theorem, which formulates a bijection from measures
on a space X to linear functionals F : (X → R) → R, sending a measure µ
to the linear functional F =

∫
µ i.e. F (f) =

∫
fdµ.

11.1 Compact saturated sets

To get a bijection between compact sets and continuous meet-linear func-
tionals, one needs to carefully analyse the situation. In the absence of the T1

separation axiom, one can find distinct compact sets Q and R with ∀Q = ∀R,
as we shall see shortly. But we don’t wish to postulate the T1 separation
axiom, because e.g. the Scott topology is T1 only in the trivial case in which
it is discrete.

For a space failing to satisfy the T1 separation axiom, it proves useful
to consider the specialization order on its set of points: x v y iff every

103

104 The Hofmann–Mislove representation theorem

neighbourhood of x is a neighbourhood of y. It is clear from the form of
definition that this relation is reflexive and transitive, i.e. it is a preorder.
Computationally, this occurs as the so-called operational preorder : y passes
every observation that x does (cf. Section 3.3). The T0 separation axiom
is precisely the requirement that this preorder be antisymmetric, that is, a
partial order, and the T1 separation axiom amounts to the requirement that
it be the identity relation. By construction, open sets are upper sets in the
specialization order. By definition of closure, the relation x v y is equivalent
to saying that x belongs to the closure of {y}. Hence continuous maps
preserve the specialization order. Thus, if a space X is not T1 then there
exist distinct points x and y with x v y, and we have distinct compact sets
Q = {x} and R = {x, y} such that ∀Q(p) = ∀R(p) for every p ∈ (X → S),
as claimed above.

The saturation of a subset S of a topological space is its upper closure in
the specialization order, denoted by ↑S, and S is called saturated if S = ↑S.
Because this is the same as the intersection of the neighbourhoods of S, it
has the same neighbourhoods as S, and hence S is compact if and only if
its saturation is compact. It is now clear that

11.1 Proposition ∀Q = ∀↑Q.

11.2 Sobriety

In order to formulate the Hofmann–Mislove theorem, we need a further
notion. Notice that the filter φ of open neighbourhoods of a point of a space
X is completely prime: Whenever

⋃
i Ui ∈ φ for a family Ui of opens of X,

there is some i with Ui ∈ φ. Computationally, it is clear that when we
observe a point of, say, the Cantor space, we don’t actually see the point
itself but rather (an enumeration of a base of) its open-neighbourhood filter.
A space is called sober if it is T0 i.e. no two distinct points share the same
neighbourhoods (we don’t see double) and every completely prime filter
of opens is the open-neighbourhood filter of at least one point (what we
see is there). It is the second part that is relevant, for the first can be
cheaply enforced, by identifying points that share the same neighbourhoods
(which is precisely what we did in Chapter 3 when we defined operational
equivalence).

Hausdorff spaces are sober. This can be seen using the fact that a space
is sober iff every irreducible closed set is the closure of a unique point. Here
a non-empty closed set is called irreducible if it is not the union of two

11.3 A representation theorem for continuous universal quantifiers 105

strictly smaller non-empty closed sets. To obtain an irreducible closed set
from a completely prime filter of opens, take the union of the opens which
are not in the filter. By the requirement of complete primeness, the union
itself cannot be in the filter. The complement of the resulting open is the
desired irreducible closed set. We leave the details to the interested readers.

An example of a non-sober space is the subspace 2∗ of the Kahn do-
main 2∞ discussed in Chapter 6.2: For each natural number n, the set
Un ⊆ 2∗ of finite sequences s which have the sequence 0n as a prefix is open.
An easy argument shows that the filter {U ∈ O 2∗ | Un ⊆ U for some n} is
completely prime but is not the open-neighbourhood filter of any point. It
would be the open-neighbourhood filter of the non-existing point 0ω if that
point were added to the subspace. Every space has a sobrification, which
collapses points that share the same neighbourhoods and adds any missing
point. Moreover, the lattice of open sets of any space is isomorphic to that
of its sobrification. In summary, a space is sober if it has as many points as
its lattice of open sets allows it to have without violating the T0 separation
axiom. In computational terms, the set of data is uniquely determined by
the set of observable properties. The sobrification of 2∗ is 2∞, and, more
generally, any domain-base of a continuous dcpo under the Scott topology
regarded as a subspace with the relative topology is known to have the whole
domain as its sobrification. In particular, the sobrification of a poset un-
der the Alexandroff topology is homeomorphic to the ideal completion of
the poset under the Scott topology. For these and other facts concerning
sobriety, see [55, 54, 69].

11.3 A representation theorem for continuous uni-
versal quantifiers

11.2 Theorem (Hofmann and Mislove) The following are equivalent for
any topological space X.

1. X is sober.

2. The map that sends a set Q ⊆ X to the filter {U ∈ OX | Q ⊆ U} is
an order-reversing bijection from compact saturated sets to Scott open
filters of open sets, with inverse given by φ 7→

⋂
φ.

3. The map that sends a set Q ⊆ X to the functional ∀Q : (X → S) → S is
an order reversing bijection from compact saturated sets to continuous
meet-linear functionals.

106 The Hofmann–Mislove representation theorem

Proof The original version [63] of the theorem is the implication (1) ⇒
(2). The simplest proof we know is due to Keimel and Paseka [77]. The
implication (2) ⇒ (1) is folklore and easy: Use the fact that completely
prime filters are Scott open. The equivalence (2) ⇔ (3) follows immediately
from the fact that (X → S) is homeomorphic to OX under the Scott topol-
ogy as discussed in Chapter 8.4: Under this translation, a meet-linear map
A : OX → S is one that transforms finite intersections into finite conjunc-
tions. Continuity of A is equivalent to the requirement that the set A−1(>)
be Scott open, and meet-linearity to the requirement that it be a filter. �

Technically, one of the main uses of the Hofmann–Mislove representation
theorem is the generalization of a well known property of Hausdorff spaces to
sober spaces. We say that a collection Q of compact subsets of a topological
space is nested if it is non-empty and for any two sets R,S ∈ Q there is
Q ∈ Q with Q ⊆ R and Q ⊆ S.

11.3 Corollary

1. In a sober space, the intersection of any nested collection of compact
saturated sets is compact (i.e. compact saturated sets form a dcpo un-
der the reverse-inclusion order).

2. If
⋂
Q ⊆ U for a nested collection Q of compact saturated subsets of

a sober space X and U ∈ OX, then already Q ⊆ U for some Q ∈ Q.

In particular, considering the empty open set, we see that, in a sober space,
a nested collection of non-empty compact sets has non-empty intersection.
Proof Use the easily established fact that Scott open filters are closed
under the formation of directed unions. �

It is an interesting exercise to express this corollary in terms of universal
quantifiers.

11.4 A representation theorem for continuous ex-
istential quantifiers

It is natural to wonder if there is a corresponding representation theorem
for continuous existential quantifiers. It is clear that an existential quan-
tification functional E = ∃F : (X → S) → S is join-linear , in the sense
that

E(⊥) = ⊥, E(p ∨ q) = E(p) ∨ E(q).

We denote the closure of a subset S of a topological space by S−.

11.4 A representation theorem for continuous existential quantifiers 107

11.4 Proposition ∃F = ∃F−.

Proof We have seen that via the homeomorphism of (X → S) and
OX under the Scott topology, the existential quantifier of F becomes the
continuous map ∃F : OX → S such that ∃F (U) = > iff F ∩ U 6= ∅. But
F meets U ∈ OX iff F− meets U ∈ OX because, by definition of closure,
every neighbourhood of a point of F− meets F . �

The representation theorem turns out to be easy and doesn’t depend on any
assumption on the space.

11.5 Proposition The following hold for any topological space X.

1. The map that sends F ⊆ X to the set ϕ(F) = {U ∈ OX | F ∩U 6= ∅}
is an order preserving bijection from closed sets to completely prime
upper sets (i.e. upper sets which are inaccessible by arbitrary joins)
with inverse given by ψ(U) = X \

⋃
(OX \ U).

2. The map that sends a set F ⊆ X to the functional ∃F : (X → S) → S is
an order-preserving bijection from closed sets to continuous join-linear
functionals.

Proof (1): A routine verification shows that ϕ(F) is indeed a completely
prime upper set. Because OX \ϕ(F) is the set of open sets disjoint from F ,
we see that ψ(ϕ(F)) is the complement of the largest open set disjoint
from F , and this coincides with F if (and only if) F is closed. For U ⊆ OX,
we have that U ∈ ϕ(ψ(U)) iff ψ(U)∩U 6= ∅ iff U 6⊆ X \ψ(U) =

⋃
(OX \U).

Hence, to conclude that ϕ(ψ(U)) = U if U is a completely prime upper set,
we have to show that U 6⊆

⋃
(OX \ U) iff U ∈ U . (⇒): For the sake of

contradiction, assume that U 6∈ U , i.e. U ∈ OX \U . Then U ⊆
⋃

(OX \U),
which contradicts the premise. (⇐). For the sake of contradiction, assume
that U ⊆

⋃
(OX \U). Then the premise and the fact that U is an upper set

gives
⋃

(OX \ U) ∈ U , and completely primeness shows that some member
of OX \ U belongs to U , which gives the desired contradiction.

(2): Again considering the homeomorphism (X → S) ∼= OX for OX
endowed with the Scott topology, a map E : OX → S is join-linear iff it
transforms finite unions into finite disjunctions. But this is equivalent to
saying that the set E−1(>) is prime, or inaccessible by finite joins. And,
as before, Scott continuity of E is equivalent to Scott openness of E−1(>).
But a set is inaccessible by all joins if and only if it is inaccessible by finite
and directed joins. Hence E is continuous and join-linear iff E−1(>) is a
completely prime upper set. The result then follows from (1), because we
know that ∃F (U) = > iff F ∩ U 6= ∅. �

108 The Hofmann–Mislove representation theorem

11.5 Notes

Heckmann has considered representations of power domains in terms of the
functionals discussed here [58]. See also Vickers and Townsend [136].

Combining the above two representation theorems, we conclude that the
meet-join-linear continuous functionals are in bijection with the completely
prime filters of opens, and are precisely the continuous functionals that are
both universal and existential quantifiers. Hence they coincide with the
evaluation functionals of the form F (p) = p(x), for x a point of the space,
if and only if the space is sober. This is the concrete idea behind Taylor’s
approach to sobriety in abstract Stone duality [133].

One model of abstract Stone duality is the category of locally compact
sober spaces. Because such spaces fail to be closed under the formation of
compact saturated subspaces, the Hofmann–Mislove theorem doesn’t hold
in this model. However, in an arbitrary model, inspired by the Hofmann–
Mislove theorem, one can regard meet-linear continuous functionals as ar-
ticulating the notion of compact saturated set. This is precisely what Tay-
lor profitably does in order to prove a version of the Baire category theo-
rem [132].

Part III

Domain theory, topology and
denotational semantics

109

110

Contents and organization

12 Injective spaces, domains and function spaces 111

13 Sample applications 125

In the traditional approach to the topology of data types of languages such
as the ones considered in Chapters 2–4, one starts with a partial order on
the set of data, then constructs a topology from the order, then defines
continuity from the topology, and finally shows that the functions that are
definable in the language are continuous. This assignment of topological
spaces to data types and of continuous maps to programs is known as the
Scott model of the language, and constitutes an example of a denotational
semantics of the language. From a computational point of view, this is the
main topic of Chapter 12. In particular, we show that the data types of
the programming language considered in Part I are densely injective spaces,
and from this we conclude that the computationally defined function types
of Part I coincide with the topologically defined exponentials of Part II.

Chapter 13 gives some applications to program development and cor-
rectnees proofs. In particular, a computational version of the Tychonoff
theorem in the countable case is developed. In order to show that the result-
ing program has the correct termination properties, the classical Tychonoff
theorem, with the aid of denotational semantics, is invoked. At the time of
writing we don’t know of any operational proof. But notice that an opera-
tional proof for a particular case of this program is given in Chapter 3.11.
Also, we discuss some programs for exact real-number computation.

Chapter 12

Injective spaces, domains
and function spaces

This chapter studies the combination of certain order-theoretic and topo-
logical ideas, eventually culminating in their application to programming-
language semantics in Section 12.15 and to program development and cor-
rectness proofs in Chapter 13. We begin by formulating some basic appli-
cations.

12.1 Introduction

As in Chapter 4, in order to be able to be rigorous, we consider the pro-
gramming language PCF rather than the equivalent subset of the language
considered in Chapters 2 and 3.

The developments of Chapter 3 and of Chapters 7 and 9 are analogous,
but, as the attentive reader probably realized, a potential difference arises in
the construction of function spaces. Among other things, in this chapter we
show that the computationally defined function types of Chapter 4 coincide
with the topologically defined function spaces of Chapter 8:

12.1 Theorem Topologize the PCF types as in Section 4.2. Then any PCF
type Xσ is an exponentiable topological space, and Xσ→τ = XXσ

τ .

The second thing that the attentive reader will have noticed is that we
worked with non-standard, relative notions of Hausdorff and discrete space
in Chapter 3, but that we switched back to the standard (absolute) notions
in Chapters 7 and 9. We officially formulate the topological relative notion
of Hausdorff space, leaving the discrete case to the reader.

111

112 Injective spaces, domains and function spaces

We say that a subspace X of a space X̄ is relatively Hausdorff in X̄ if
the diagonal of X is relatively closed in X̄ × X̄. Clearly, (1) the relative
notion implies the absolute one, (2) a closed subspace X of X̄ is Hausdorff
if and only if it is relatively Hausdorff, and (3) a subspace of a Hausdorff
space is relatively Hausdorff. In terms of the Sierpinski space, X is relatively
Hausdorff in X̄ if there is at least one continuous map (6=X) : X̄ × X̄ → S
such that for all (x, y) ∈ X ×X, we have that (x 6=X y) = > if and only if
x 6= y. There can be more than one such continuous map because we don’t
care what the value of (x 6=X y) is for (x, y) ∈ X̄ × X̄ \X ×X.

In this chapter we also prove:

12.2 Proposition A dense subspace of a PCF type is relatively Hausdorff
(resp. discrete) if and only if it is absolutely Hausdorff (resp. discrete).

A third thing that the attentive reader will have noticed is that, in Chap-
ter 3, what we want are spaces X,Y, . . . (e.g. the Baire and Cantor spaces)
but what we get are larger spaces X̄, Ȳ , . . . containing extraneous points.
These are divergent points (at ground types), functions that map divergent
to convergent or convergent to divergent points (at first-order types), and (at
second and higher types) functionals of much more complicated behaviour
combining divergence and convergence. In fact, this is the reason why we
were forced to work with relative notions of Hausdorff and discrete space.

In order to analyse the situation, we introduce the following terminology:
By an environment for a topological space X we mean a superspace X̄. In
general, X will be homeomorphically embedded into X̄, but we often work as
if X were a subset of X̄. By a PCF-environment we mean an environment X̄
with X̄ a PCF type.

Because of the above phenomenon, we worked with a relative notion of
continuous function in Chapter 3: We say that a function f : X → Y of
topological spaces is relatively continuous with respect to environments X̄
and Ȳ for X and Y if there is at least one continuous function f̄ : X̄ → Ȳ
with f̄(x) = f(x) for all x ∈ X. It is easy to see that every relatively
continuous map is continuous.

We also prove in this chapter:

12.3 Theorem Let X and Y be topological spaces with PCF environments
X̄ and Ȳ such that X is dense in X̄. Then every continuous map X → Y
is relatively continuous with respect to the environments X̄ and Ȳ .

Notice that the above proposition follows from this theorem. It is natural
to define f to be relatively PCF-definable if there is at least one definable

12.2 Densely injective spaces 113

extension f̄ . Different notions of relative definability are obtained for dif-
ferent extensions of the language. In view of Theorem 4.1, what the above
theorem says is that, for the extension PCF++

Ω , continuity of f : X → Y
coincides with relative definability. Hence the above theorem roughly says
that if a topological space arises as a dense subspace of a PCF type then
we can (attempt to) compute with it in PCF. However, given the restricted
nature of PCF types, density is too much to ask for. But one has:

12.4 Theorem Every subspace of a PCF type is second countable. Con-
versely, every second countable space X has a PCF-environment X̄ such
that for any space Y with a PCF-environment Ȳ , continuity of a function
X → Y is equivalent to relative continuity.

A proof of this can be found in [102], where it is shown that, in fact, there is
a single PCF type which serves as an environment for all second-countable
spaces.

A fourth thing that the attentive reader will have realized is that all
functions definable in the languages considered in Chapter 3 and Chapter 4
have fixed points, because arbitrary equations are allowed in implicit defini-
tions of functions, but, on the other hand, most topological spaces that one
meets in practice fail to have this strong fixed-point property.

A fifth issue that doesn’t arise in our considerations is the untyped λ-
calculus, for which one needs an exponentiable space D homeomorphic to
the exponential DD. Moreover, related to this, even in the typed case one is
interested in “domain equations” (which make a brief appearance in Chap-
ter 13).

The remarkable paper continuous lattices by Dana Scott identifies a class
of spaces that simultaneously takes care of the above five issues. These
are the injective spaces, which, by a sixth insight of Scott, were found to
have a purely order-theoretic characterization as the continuous lattices.
For computational purposes, the top element of a continuous lattice is a
nuisance, and soon afterwards Scott proposed to work with the densely
injective spaces, which, using current terminology, he showed to coincide
with the continuous Scott domains under the Scott topology.

12.2 Densely injective spaces

We call an environment X̄ for a space X tight if X is dense in X̄. A topolog-
ical space D is called densely injective if every continuous map f : X → D
extends to a continuous map f̄ : X̄ → D for every tight environment X̄ of X.

114 Injective spaces, domains and function spaces

For example, the real line with its usual Hausdorff topology is not injec-
tive: e.g. the continuous map (x 7→ 1/x) : R \ {0} → R has no continuous
extension to R. In fact, as we shall see later, the only densely injective T1

spaces are the empty space and the one-point space. We shall see that every
PCF type is a densely injective space.

12.3 Densely injective spaces and function spaces

Before investigating what densely injective spaces look like, one can easily
relate them to function spaces. For this, one doesn’t need to know any
internal characterization of the exponentiable spaces — one can work just
with the definitions:

12.5 Theorem If D is a densely injective space and Y is an exponentiable
space then DY is a densely injective space.

Proof Let f : X → DY be continuous and X̄ be a tight environment
forX. Then f is the transpose of a continuous map g : X×Y → D and X̄×Y
is a tight environment for X × Y . Hence, because D is densely injective, g
has a continuous extension ḡ : X̄×Y → D, which has a continuous transpose
f̄ : X̄ → DY . A routine calculation shows that f̄ extends f , which shows
that DY is densely injective. �

A similar kind of proof shows that

12.6 Proposition The densely injective spaces are closed under the for-
mation of products.

In order to show that the densely injective spaces are exponentiable, and
hence conclude that they form a cartesian closed category of spaces, we need
to develop an internal characterization for them. We do this in several steps.

12.4 Topology from order and conversely

We have already briefly met the operational preorder of a data type (Chap-
ter 3.3) and its topological manifestation, the specialization order (Chap-
ter 11). Dana Scott discovered that, for certain data types, the topology
is uniquely determined by the operational order, and, conversely, the order
is uniquely determined by the topology. Such data types arise as domains.
Thus, domains can be seen either as special kinds of partially ordered sets,
or as special kinds of topological spaces. To move from the order-theoretic

12.5 Directed complete posets 115

view to the topological view, one takes the Scott topology of an order, and,
in the other direction, one takes the specialization order of a topology. We
have already met some examples, such as the PCF types, the Kahn domain
and the interval domain. We now look at these and other examples in more
detail.

In programming-language semantics, the order-theoretic view is empha-
sized. For the applications we have in mind (e.g. Chapter 13), the topological
view is crucial. In any case, what makes domain theory a rich subject is the
interplay between order-theoretic and topological notions.

When we think of an ordering x v y in computational terms, we say
that y is more defined than x, that y has more information content than x,
or that y is better than x.

12.5 Directed complete posets

A subset S of a poset D is called directed if it is non-empty and for any two
s, t ∈ S there is some u ∈ S with s v u and t v u. For example, any chain
(linearly ordered subset) is a directed set. In our applications, we think of
a directed subset S of D as an “abstract computation” of an element of D.
Its members are the concrete partial outputs that approximate the ideal
result of the computation. The defining condition says that any two partial
outputs eventually get superseded by a third, finer output (c.f. the Church–
Rosser property of the λ-calculus). The ideal result is taken to be the join
(also called supremum or least upper bound) of the concrete partial outputs.
Because we want all computations to compute something, we postulate that
D has joins of directed subsets. By a directed complete poset , or dcpo for
short, we mean a poset with joins of directed subsets.

12.6 The Scott topology of a dcpo

We have already met the Scott topology a number of times (from a compu-
tational point of view in Chapters 4 and 6, and from a mathematical point
of view in Chapters 8 and 11). A subset U of a dcpo is called Scott open if
it is an upper set (i.e. u ∈ U and u v x together imply x ∈ U) and every
directed set with join in U already has a member in U . If we think of U as
a test, the first condition says that if something passes the test then so does
anything more defined, and the second that if the ideal result of a compu-
tation passes the test then some concrete partial output of the computation

116 Injective spaces, domains and function spaces

already passes the test. That is, the test can be observed at a finite stage
of the computation.

For a proof of the following proposition, and other propositions provided
without proof, see e.g. [55].

12.7 Proposition 1. The specialization order of the Scott topology of a
dcpo is the given order.

2. A function f : D → E of dcpos is Scott continuous (i.e. continuous
with respect to the Scott topologies of D and E) if and only if it pre-
serves the order (i.e. x v y implies f(x) v f(y)) and directed suprema
(i.e. f(

⊔
S) =

⊔
s∈S f(s) for every directed subset S of D).

Hint: Notice that, for preservation of directed suprema, the inequality w
follows by order-preservation. To prove both items, argue by contradiction
at certain points. For this, first show that the set {x | x 6v y} is Scott
open for any y. (When we move to continuous dcpos, positive arguments
are available.)

12.7 Continuous dcpos

For the purpose of giving mathematical meaning to computer programs of
languages such as PCF, one can go a long way with directed complete posets
(or even with posets that have suprema of ascending sequences). However, in
order to consider, for example, computability notions, one considers continu-
ous dcpos [120] or the particular case of algebraic dcpos [35, 103]. Moreover,
as we shall see, in applications of mathematical semantics to correctness
proofs of programs one often uses arguments involving algebraicity or conti-
nuity. Because we want to consider continuous, non-algebraic domains such
as the interval domain, we introduce the more general situation.

We say that an element x of a dcpo is way below an element y, written
x � y, if for every directed set S with y v

⊔
S there is some s ∈ S

with x v s. Thinking of a directed set as an abstract computation as
above, x � y can be interpreted as saying that any computation of y or
something more defined than y eventually outputs x or something more
defined than x. In other words, x is an unavoidable step in any computation
of y or something more defined than y. The continuity axiom for a dcpo says
that the unavoidable steps are not only unavoidable but also enough, and,
moreover, they form an abstract computation: A dcpo is called continuous
if the set {b | b � x} is directed and has x as its join. For applications to

12.7 Continuous dcpos 117

computation, one requires that there are enough unavoidable parts among
a countable basis of the continuous dcpo — see e.g.[3] or [55]. These are
meant to be the elements that a mechanical computer can output in finite
time.

The following is an immediate, but rather useful, consequence of the
definition:

12.8 Proposition In a continuous dcpo,

1. if b v y holds for every b� x then x v y.

2. if x 6v y then there exists b� x such that already b 6v y.

The following lemma, whose proof is not so direct, plays a major role in
the theory, where the second item is known as the interpolation property :

12.9 Lemma In a continuous dcpo,

1. if x� y v
⊔
S for S directed then x� s for some s ∈ S,

2. if x� y then there is some b with x� b� y.

Using this, one easily shows that:

12.10 Proposition

1. In a continuous dcpo,

(a) the set ↑↑b def= {x | b� x} is Scott open,

(b) an upper set U is Scott open if and only if for every u ∈ U there
is b� u already in U ,

(c) the sets of the form ↑↑u form a base of the Scott topology.

2. An order-preserving function f : D → E of continuous dcpos is Scott
continuous if and only if whenever b� f(x), there is some c� x such
that already b� f(c).

From a computational point of view, item (1b) says that if u passes an ob-
servation U then some unavoidable part of u already passes the observation.

118 Injective spaces, domains and function spaces

12.8 Topological view of continuous dcpos

In the world of continuous dcpos, not only can we move between the order-
theoretic and topological views, but we can start from either end. Topolo-
gists can regard the first part of the following as an order-theoretic charac-
terization of certain spaces, and order-theoreticians can regard the second as
a topological characterization of certain posets. Define a subset of a topolog-
ical space to be supercompact if every open cover has a singleton subcover,
and a topological space to be locally supercompact if each point has a base
of supercompact neighbourhoods.

12.11 Theorem

1. The locally supercompact sober spaces are precisely the continuous dc-
pos under the Scott topology.

2. The continuous dcpos are precisely the locally supercompact sober spaces
under the specialization order.

We omit the proof, but we observe that if b � x then the principal filter
↑ b = {u | b v u} is a supercompact neighbourhood of x (which is open if
and only if b� b).

In particular, continuous dcpos under the Scott topology are locally com-
pact and hence exponentiable topological spaces (cf. Chapter 8).

12.9 Order-theoretic view of densely injective spaces

A continuous Scott domain is a continuous dcpo with meets of non-empty
sets, or, equivalently, joins of upper bounded sets. In particular, a non-
empty continuous Scott domain has a least element, which arises as the
meet of the whole domain.

12.12 Theorem Restricting attention to T0 spaces, we have:

1. The densely injective spaces are precisely the continuous Scott domains
under the Scott topology.

2. The continuous Scott domains are precisely the densely injective spaces
under the specialization order.

We again omit the proof, but we indicate how one can calculate exten-
sions. If D is a continuous Scott domain under the Scott topology and we

12.10 Continuous Scott domains and function spaces 119

have a dense subspace X of a space X̄ and a continuous map f : X → D,
there is in fact a unique largest continuous extension f̄ : X̄ → D in the
pointwise order, given by the formula

f̄(x̄) =
⊔
{
l
f(Ū ∩X) | x̄ ∈ Ū ∈ O X̄}.

Notice that the meet is of a non-empty set by density of X in X̄. Analysts
will recognize this as a limit-inferior construction related to lower semicon-
tinuous functions, and, indeed, lower semicontinuous functions are a special
case of this situation, when one considers the Scott topology of the natural
order of the real line (with points at infinity to get the required complete-
ness property), which is just the topology of lower semicontinuity — see [54]
or [55].

12.10 Continuous Scott domains and function spaces

We have already seen that if D is a densely injective space and Y is an
exponentiable space then DY is a densely injective space. By the previous
two theorems, we know that densely injective spaces are locally compact
and hence exponentiable. This proves:

12.13 Corollary The densely injective spaces form a cartesian closed cat-
egory with finite products and exponentials inherited from the category of
topological spaces.

The continuous Scott domains, considered as order-theoretical gadgets, also
form a cartesian closed category. Products are given by set-theoretical prod-
ucts under the coordinatewise order, and exponentials are given by sets of
Scott continuous maps under the pointwise order. Then the Scott-topology
construction can be seen as a (full and faithful) inclusion functor of con-
tinuous Scott domains into topological spaces with image landing precisely
into the category of densely injective spaces. This functor preserves finite
products. It is crucial here that the source category consists of continuous
dcpos. In fact, the Scott-topology construction regarded as a functor from
dcpos to topological spaces doesn’t preserve binary products in general. But
this is the case if one of the factors is a continuous dcpo. From the machin-
ery developed here, one can also see that the inclusion functor of continuous
Scott domains preserves exponentials. It suffices to show that, for densely
injective spaces D and E, the specialization order of ED under the compact-
open topology coincides with the pointwise specialization order. This can be

120 Injective spaces, domains and function spaces

routinely done by considering point-open sets (using the fact that singletons
are compact).

A number of examples of continuous Scott domains examples have al-
ready occurred: (1) The interval domain discussed in Chapter 6. (2) The
lattice of open sets of an exponentiable space in Chapter 8 — see Chap-
ter 12.11 for more details. (3) Various algebraic dcpos — see Section 12.12
for more details.

12.11 Continuous lattices, injective spaces and ex-
ponentiable spaces

By a continuous lattice it is meant a continuous complete lattice (equiv-
alently, a continuous dcpo with finite joins, including that of the empty
set). Scott showed that the injective spaces (defined by removing the den-
sity condition in the definition of densely injective space) are precisely the
continuous lattices under the Scott topology. The same argument as that of
Theorem 12.5 shows that if D is injective and Y is exponentiable then DY is
injective. It follows from the very definition of subspace that the Sierpinski
space is injective. Hence if X is exponentiable then SX is injective, and thus
a continuous lattice under the Scott topology. Via the bijection of OX with
Sierpinski-valued continuous maps, we conclude that OX is a continuous
lattice if X is an exponentiable topological space, as claimed in Chapter 8.5.

12.12 Algebraic dcpos

A poset is called algebraic if every element x is the directed join of the
elements b v x with b � b. An element b with b � b is called compact
and sometimes finite (neither terminology is optimal). It is clear from the
definition that every algebraic dcpo is continuous. Hence, by Lemma 12.9,
in an algebraic dcpo we have that every computation of b has to output b at
some stage, and this is a good reason for referring to such elements as finite
in a computational context.

For example, the Kahn domain (Chapter 6.2) is an algebraic dcpo with
the truly finite sequences playing the role of finite elements in the order-
theoretic sense just defined. The data type of natural numbers of the pro-
gramming languages considered in Chapters 3 and 4 is interpreted as the
algebraic dcpo consisting of the natural numbers together with a new el-
ement ⊥ and order defined by x v y if and only if x = ⊥ or x = y. All

12.13 Scott domains 121

elements are finite and the directed subsets have finite cardinality, and hence
this is trivially an algebraic dcpo, which is denoted by N⊥.

So notice, in particular, that finite doesn’t mean computable in finite
time: ⊥ takes an infinitely long time to be computed, and so do the finite
sequences of the Kahn domain, which is an algebraic poset under the prefix
order. What finite means is that all the information content will be explicitly
exhibited after a finite amount of time: This is fine for ⊥, which has no
information content, and so is for the finite elements of the Kahn domain.
Notice that the Kahn domain has a bottom element, namely the empty
sequence. Results of computations that terminate in a finite number of steps
correspond to maximal finite elements. In the Kahn domain, for example,
there are none. (One can work with a variation of the Kahn domain in which
finite sequences corresponding to finite terminating computations are added.
For example, consider a symbol that can only occur as the last element of a
finite sequence, and still work with the prefix order.)

12.13 Scott domains

A Scott domain is a continuous Scott domain which is also an algebraic dcpo.
The examples of algebraic dcpos just given are in fact examples of Scott
domains. Moreover, finite products and exponentials of Scott domains are
again Scott domains. So, for example, the Baire domain (N⊥)N⊥ is algebraic.
It has some unexpected finite elements, namely the constant functions with
non-bottom value. Computationally speaking, these are the functions that
don’t look at their argument. Their relatives, the functions that are constant
on non-bottom arguments but map bottom to bottom, are not finite. This
gives examples of finite elements which have non-finite elements below them
in the information order. Notice that we defined in Chapter 3 the Baire
space to be the subset of the Baire domain consisting of functions that map
bottom to bottom and natural numbers to natural numbers.

12.14 Exercise Show that, under the relative Scott topology, they form a
space homeomorphic to the Baire space (a product of countably many copies
of the discrete space with countably many points).

122 Injective spaces, domains and function spaces

12.14 Fixed points, function spaces and recursive
definitions

The implicit definitions of functions that occur in Chapter 3, known as recur-
sive definitions, are the computational analogue of the differential equations
in physics. Just as typical physicists write down differential equations and
take the existence (and sometimes uniqueness) of their solutions for granted
on operational grounds, so do typical computer scientists with their recursive
definitions (and that’s the way we proceeded in Chapter 3).

The following lemma is often attributed variously to Knaster, Tarski,
Davis and Kleene:

12.15 Lemma Let D be a poset with joins of countable ascending chains
and a bottom element. Then every function f : D → D that preserves order
and suprema of countable ascending chains has a least fixed point. That is,
there is x with f(x) = x and with x v y for every y with f(y) = y.

Proof (Sketch) x =
⊔

n∈N f
n(⊥). �

12.16 Corollary Every continuous endomap of a non-empty densely in-
jective space has a least fixed point in the specialization order.

In practice, this is used as follows. Given an implicit (or recursive)
definition of a function f : D → E of the form

f(x) = some expression involving x and f itself,

one defines, from that expression, a continuous map F : ED → ED such that
the above equation is equivalent to

f = F (f).

Examples of this situation occur in Chapter 13 below. Then we know that
the original equation has at least one continuous solution, in fact a smallest
one in the pointwise (operational or specialization) order. On computational
grounds, one takes the smallest solution. The precise mathematical reason
why this is what we are forced to choose is part of a theorem known as
computational adequacy [101, Theorem 3.1], which we now briefly discuss.

12.15 The Scott model of PCF and its fundamental properties 123

12.15 The Scott model of PCF and its fundamen-
tal properties

To fully answer the questions posed in Section 12.1, we should define the
domain-theoretic semantics of PCF and go through various fundamental
theorems. The reader is referred to e.g. Streicher’s notes [128] or the original
paper by Plotkin [101].

In summary, the ground type of natural numbers is interpreted as the
domain N⊥ discussed in Section 12.12 and similarly the ground type of
booleans is interpreted by adding a bottom element to the discretely or-
dered two-element set. Function types are interpreted as exponentials (see
Section 12.10). Implicit definitions of functions are interpreted via least
fixed points as discussed in Section 12.14. Constants for primitive func-
tions of the language are interpreted as suitable continuous functions. The
simply-typed λ-calculus machinery is interpreted via the exponential laws
for function spaces.

This is known as the Scott model of PCF. This mathematical model has a
number of fundamental computational properties: (1) It is computationally
adequate: A program of ground type evaluates to a non-bottom value in
finitely many steps, according to the operational semantics of the language,
if and only if it denotes that value in the model. (2) By extending the
language with the parallel-or operation mentioned in Chapter 4, the model
becomes fully abstract : Two programs of the same type denote the same
entity in the model if and only if they are operationally equivalent. (3) By
further adding the existential quantifier, it becomes Turing-universal , for a
notion of computability for elements (including function(al)s) of domains:
Every computable element of the model is definable in the language. (4) By
further adding what we called external inputs in Chapter 4, it becomes fully
complete: All elements of the model become definable in the language.

These are the ingredients used in the proof of Theorem 4.1. Thus, work-
ing with PCF as a programming language and with PCF++

Ω as its data
language, as in Chapter 4, is equivalent to working with PCF++ as a no-
tational system for the computable entities of the Scott model. In order
to mathematically argue about programs in Chapter 13, we adopt the lat-
ter. This has the advantage that we can completely ignore the evaluation
mechanism of the language in order to establish program correctness.

Historically, this is the view of affairs originally proposed by Scott [113].
He introduced a logic for reasoning about programs, together with a domain
model for it. Later on, Plotkin [101] regarded the terms of the logic as a

124 Injective spaces, domains and function spaces

programming language, with a subset of the equational rules of the logic
as its evaluation mechanism, and proved the basic computational properties
(1)-(3), and implicitly (4), of the mathematical model. The logic and the
programming language are called LCF and PCF, which stand for logic of
computable functions and programming language for computable functions.

Of course, this was just the beginning of work on programming-language
semantics, and many more languages and mathematical models have been
investigated. From our perspective, the Scott model has the advantage of
being intrinsically topological in nature, as Scott proved and emphasized
right from the beginning. However, we observe that the synthetic topology
developed in Chapter 3 is model-independent. In fact, we deliberately based
the theory on operational grounds, in order to make it clear that the topology
is there independently of what mathematical model one favours. This is
particularly important in the absence of the parallel operations, in which
case fully abstract models look very different from the Scott model.

12.16 Notes

Some historical notes on domain theory have already been given. Detailed
notes can be found in [55] (see also [68] regarding function spaces). Theo-
rem 12.12 was formulated and proved by Scott, but it was only published as
an exercise in [54] for a long time, until it eventually appeared in [55] (see
also [46]). What appeared in print first was the characterization by Scott of
the injective spaces as the continuous lattices under the Scott topology [111],
with the applications already mentioned above.

Theorem 12.5 is due to Keimel and Gierz [76]. The proof given here is
due to Johnstone and Joyal [69], as are the arguments given in Section 12.11.
A more direct proof of the result established in Section 12.11, which avoids
the characterization of the injective spaces as the continuous lattices under
the Scott topology, is contained in the reference on which Chapter 8 is based.

Chapter 13

Sample applications

In this chapter we give some non-trivial examples of how topology and do-
main theory, with the aid of denotational semantics, can be applied to de-
velop programs and prove their correctness. We revert to the programming
language Haskell, but, as in Chapters 2 and 3, the fragment considered here
can be regarded as the language PCF discussed in Chapter 4. In fact, in
order to establish program correctness, we treat programs in our language as
PCF programs interpreted in the Scott model, as explained in Chapter 12.15.
We continue from the program fragments constructed in Chapters 2 and 3.
In this chapter, all results depend on the external view of data.

13.1 A computational version of the countable Ty-
chonoff theorem

We have seen that there is a λ-expression that proves the binary case of
the Tychonoff theorem (Proposition 9.5), which can also be regarded as a
program (Proposition 3.18). It is natural to wonder whether one can prove
the Tychonoff theorem in the arbitrary case via the λ-calculus. We don’t
know the answer to this question. However, we are able to develop a program
that implements the Tychonoff theorem in the countable case, which allows
us to conclude that a product of an r.e. sequence of computationally compact
spaces is computationally compact. The given proof of correctness of the
program relies on the classical Tychonoff theorem.

We have shown that, under the external view of data types defined in
Chapter 3 and explored in Chapters 4 and 12, the Cantor space is compu-
tationally compact in the sense that its universal quantification functional
is computable. The Tychonoff theorem shows that an arbitrary product of

125

126 Sample applications

compact spaces is compact. Because the Cantor space is the product of
countably many copies of the two-point discrete space, we ought to be able
to define the quantification functional of the Cantor space from the trivial
quantification functional for the two-point discrete space by implementing
the countable case of the Tychonoff theorem.

Ideally, what we would like is, given a sequence ∀i : SDi → S of quantifiers
of a sequence of compact subspaces Qi of data types Di, to construct the
quantifier ∀ : S

∏
i
Di → S of the compact subspace

∏
iQi of the countable

product
∏

iDi. The difficulty here is that the countable product
∏

iDi is not
definable in our language unless the data types Di are the same (what we
would need are dependent types). For simplicity, we accept this restriction
but we still allow the subspaces Qi to be different, but we remark that the
dependently typed program would be literally the same as the one proposed
here, with a different type signature. This is the first obstacle that we face.

The second is that, in the absence of parallel features, we are not able
to solve the problem from the above data. We additionally need to be given
a choice of points ui ∈ Qi, i.e. a sequence u ∈

∏
iQi.

We define an abbreviation for a type of countable powers or sequences,
and recall the previously introduced abbreviation for quantifiers:

type Seq a = Nat -> a
type Quant a = (a -> S) -> S

Then the type of our countable-Tychonoff program is

tych :: (Seq a, Seq (Quant a)) -> (Quant (Seq a))

The first argument of the function is the sequence of choices of points for
the given sequence of compact subspaces of the data type a, and the second
is the sequence of quantifiers for the given compact subspaces. What results
is a quantifier for the product of the given sequence of compact subspaces.

For example, to define the quantifier for the Cantor space within the
Baire data type, we can first define the quantifier for the two-point discrete
space 2 = {0, 1} regarded as a subspace of the data type of natural numbers,

forall_2 :: Quant Nat
forall_2 p = p(0) /\ p(1)

and then define the quantifier of the Cantor space within the Baire data
type as, where c is the arbitrary choice:

13.1 A computational version of the countable Tychonoff theorem 127

c :: Baire
c = \i -> 0

forall_C :: Quant Baire
forall_C = tych(c, \i -> forall_2)

In order to obtain a program for the countable-Tychonoff functional, we
first recall the program for the quantifier of the Cantor space provided in
Chapter 3:

forall_C :: Quant Baire
forall_C(p) = p(ifs(forall_C(\s -> p(cons(0,s))), c))

/\ p(ifs(forall_C(\s -> p(cons(1,s))), c))

Notice that arbitrary choices already occur in this case. Binary conjunction
can be regarded as quantification over the two-point discrete space, and
hence we can equivalently write:

forall_C(p) =
forall_2(\x -> p(ifs(forall_C(\s -> p(cons(x,s))), c)))

By allowing the quantifier over the two-point discrete space to vary, we
finally get the required program:

tych :: (Seq a, Seq (Quant a)) -> (Quant (Seq a))
tych(u,quants)(p) =
forall(\x -> p(ifs(forall’(\s -> p(cons(x,s))), u)))

where forall = hd(quants)
u’ = tl(u)
quants’ = tl(quants)
forall’ = tych(u’,quants’)

For this we need to generalize the types of the head, tail and cons maps:

hd :: Seq a -> a
tl :: Seq a -> Seq a
cons :: (a, Seq a) -> Seq a

We keep the same definitions of the functions as in Chapter 2.
In the remainder of this section we prove that the program tych satisfies

the required property. As discussed at the beginning of this chapter, our
proof uses the Scott model of a fragment of our language, which is essentially
PCF, and relies on computational adequacy as reported in Chapter 12.15.

128 Sample applications

But notice that the specification of the program is purely operational: Given
a sequence of quantifiers for subsets of a data type, produce the quantifier
for the product. We use denotational semantics to prove that the program
satisfies this operational specification. At the time of writing, we don’t know
of any operational proof (but recall that an operational specification and
proof of correctness for a particular case of this program has been provided
in Chapter 3.11).

IfD is the domain that interprets the data type a, then the interpretation
of the program tych in the model is the least continuous solution in

A : (N⊥ → D)× (N⊥ → ((D → S) → S)) → (((N⊥ → D) → S) → S),

of the equation

A(u, α)(p) = α0(λx.p(if A(u′, α′)(λs.p(cons(x, s))) thenu)),

Equivalently, as explained in Chapter 12.14, it is the least fixed point of the
explicitly defined functional

Φ(A) = λ(u, α). λp. α0(λx. p(if A(u′, α′)(λs. p(cons(x, s))) thenu)).

Here u′ and α′ denote the tails of the sequences u and α, the function cons is
the evident interpretation of the cons program, and the if-then construction
denotes the evident interpretation of the ifs program. Notice that the
functional Φ is continuous, as required to apply fixed-point techniques of
Chapter 12.14, because functions which are λ-definable from continuous
functions are themselves continuous (all required exponentials exist in this
context, as explained in the previous chapter).

For the sake of clarity and simplicity of exposition, we replace occur-
rences of function spaces with domain N⊥ by countable cartesian powers
and we write some function spaces using the equivalent exponent notation:

A : Dω × (SD → S)ω → (SDω → S).

The readers can easily check that this doesn’t make any essential difference.
By Lemma 12.15, the least continuous solution is A =

⊔
nAn, where

A0(u, α)(p) = ⊥,
An+1(u, α)(p) = α0(λx.p(if An(u′, α′)(λs.p(cons(x, s))) thenu)).

In order to prove that this function A satisfies the required specification,
we need to prove a slightly more general proposition. For each natural
number k, define

A(k)(u, α)(p) = A(u(k), α(k))(λs.p(s(k))),

13.1 A computational version of the countable Tychonoff theorem 129

where t(k)
i = ti+k for any sequence t. A simple induction on k using the

equation that A satisfies shows that

A(k)(u, α)(p) = αk(λx.p(if A(k+1)(u, α)(λs.p(cons(x, s))) thenu(k))).

Hence, if we define

A
(k)
0 (u, α)(p) = ⊥,

A
(k)
n+1(u, α)(p) = αk(λx.p(if A(k+1)

n (u, α)(λs.p(cons(x, s))) thenu(k))),

we conclude that A(k) =
⊔

iA
(k)
n , because continuous maps commute with

directed joins.
Now suppose that Qi is a sequence of compact subspaces of D with

corresponding sequence of quantifiers αi : SD → S, and let u ∈
∏

iQi. We
show that A(k)(u, α) : SDω → S is the quantifier of

∏
iQi+k. The case we are

interested in is k = 0 because A(0) = A by construction.
We first show that, for every k and every p ∈ (Dω → S), if p(s) = > for

all s ∈
∏

iQi+k, then A(k)(u, α)(p) = >.
We proceed by induction on a suitably defined uniform modulus of con-

tinuity m(p, k) of p with respect to k (and with respect to the above fixed
data). For each s ∈

∏
iQi+k we have p(s) = > by assumption and hence

there is some finite ts v s such that already p(ts) = > by continuity of p.
Since the sets ↑ ts form an open cover of

∏
iQi+k, we conclude by the clas-

sical Tychonoff theorem that finitely many of them already cover
∏

iQi+k,
say ↑ ts1 , . . . , ↑ tsl

. Now, if t is finite, there is a smallest n such that tn′ = ⊥
for all n′ ≥ n. Call this the size of t, and let m(p, k) denote the maximum
of the sizes of ts1 , . . . , tsl

.
By construction, if m(p, k) = 0 then p(⊥) = >, and an easy verification

shows that if m(p, k) = n + 1 then m(λs.p(cons(x, s)), k + 1) = n for any
x in Qk. These are the only two properties of the uniform modulus of
continuity that we use.

To conclude the first part of the proof, we show by induction on m that
the equation A

(k)
m+1(u, α)(p) = > holds for every k and every predicate p

with p(s) = > for all s ∈
∏

iQi+k and with m = m(p, k).

Base case: If m(p, k) = 0 then

A
(k)
1 (u, α)(p) = αk(λx.p(if ⊥ thenu(k))) = αk(λx.p(⊥)) = αk(λx.>) = >,

as required

130 Sample applications

Induction step: If m(p, k) = m+ 1 then m(λs.p(cons(x, s)), k+ 1) = m. By
the induction hypothesis, for any x ∈ Qk we have that

A
(k+1)
m+1 (u, α)(p) = (λs.p(cons(x, s))) = >

and hence

A
(k)
m+2(u, α)(p) = αk(λx.p(if > thenu(k))) = αk(λx.p(u(k))) = αk(λx.>) = >,

because αk quantifies over Qk by assumption, as required. This concludes
the first part of the proof.

For the second and last part of the proof, we show that for every k
and p, if A(k)(u, α)(p) = > then p(s) = > for all s ∈

∏
iQi+k. The premise

is equivalent to saying that there is an n with A(k)
n (u, α)(p) = >. We proceed

by induction on such n.

Base case: The claim holds vacuously by definition of A(k)
0 .

Induction step: Assume that

A
(k)
n+1(u, α)(p) = αk(λx.p(if A(k+1)

n (u, α)(λs.p(cons(x, s))) thenu(k))) = >

Then
p(if A(k+1)

n (u, α)(λs.p(cons(x, s))) thenu(k)) = >,
for every x ∈ Qk because αk quantifies over Qk by assumption. Fix an
arbitrary x ∈ Qk. If

A(k+1)
n (u, α)(λs.p(cons(x, s)) = ⊥

then
if A(k+1)

n (u, α)(λs.p(cons(x, s)) thenu(k) = ⊥
and hence p(⊥) = > which gives p(cons(x, s)) = > for every for every
s ∈

∏
iQi+k+1. Otherwise,

A(k+1)
n (u, α)(λs.p(cons(x, s)) = >

and hence the induction hypothesis gives

λs.p(cons(x, s)) = >

and we again conclude that p(cons(x, s)) = > for every s ∈
∏

iQi+k+1.
Because x ∈ Qk was arbitrary, we conclude that p(t) = > for every t ∈∏

iQi+k, as required.

If the parallel disjunction operation on the Sierpinski space is available,
we don’t need to be given the arbitrary choice:

13.2 Universal quantification for boolean-valued predicates 131

ptych :: Seq (Quant a) -> (Quant (Seq a))
ptych(qs)(p) = tryfrom(0)
where tryfrom(n) = f(n,qs)(p) \/ tryfrom(n+1)

f(0,qs)(p)=p(bot)
f(n+1,qs)(p)=q(\x -> f(n,qs’)(\s -> p(cons(x,s))))
where q = hd(qs)

qs’ = tl(qs)

We refer to this as the parallel Tychonoff program. A similar correctness
proof using uniform moduli of continuity is left to the reader. We don’t now
how to remove the choice without using the parallel operation or whether
this is possible.

The above development can be summarized as follows:

13.1 Theorem (Effective Tychonoff) A product of an r.e. sequence
of computationally compact spaces is computationally compact.

13.2 Universal quantification for boolean-valued
predicates

We claimed in Chapter 3.13 that integer-valued continuous functions on the
Cantor space have decidable equality. To prove this claim, we first consider
universal quantification for boolean-valued predicates. A program for this
task was discovered by Berger [13, 15]:

forall_C :: (Baire -> Bool) -> Bool

We are concerned with predicates p ∈ (Baire → Bool) such that for all
s ∈ C, where C ⊆ Baire is the Cantor space, p(s) 6= bot. We don’t
care what happens outside the Cantor space. Using the conventions of
Chapter 3.13, the space of such predicates is denoted by (C → T), where
T = {True, False} ⊆ Bool is the subspace of booleans.

The specification is that, for p ∈ (C → T), forall_C(p) = True if
p(s) = True for all s ∈ C and forall_C(p) = False otherwise. We first
define

epsilon_C :: (Baire -> Bool) -> Baire

with the specification that epsilon_C(p) is in C for any p ∈ (C → T), and
p(epsilon_C(p)) = True if there is some s ∈ C with p(s) = True. It follows
that

132 Sample applications

exists_C :: (Baire -> Bool) -> Bool
exists_C(p) = p(epsilon_C(p))

gives rise to a function such that exists_C(p) = True if p(s) = True for
some s ∈ C and exists_C(p) = False if p(s) = False for all s in the Cantor
space. Hence the desired universal quantification functional can be defined
by

forall_C(p) = not(exists_C(\s -> not(p(s))))

The technique to define the ε-operator is the same as the one we have used
in Chapter 3 to define the quantification functional for Sierpinski-valued
predicates: We imagine the predicate as a binarily branching tree, and we
recursively try the left and right branches, starting from the root. In fact,
the readers can check that the function that we implement satisfies the
stronger requirement that, for any predicate p ∈ (C → T), epsilon_C(p)
is the infimum of the set {s ∈ C | p(s) = True} in the lexicographic order
of the Cantor space, where of course the infimum of the empty set is the
maximum point of C, namely the constantly 1 sequence:

epsilon_C :: (Baire -> Bool) -> Baire
epsilon_C(p) = if p(l) then l else r

where l = cons(0,epsilon_C(\s -> p(cons(0,s))))
r = cons(1,epsilon_C(\s -> p(cons(1,s))))

To prove that this works, we proceed in the same way as in Chapter 3, by
induction on the uniform modulus of continuity of p, which exists for p in
(C → T). We omit the details, referring the reader to [13] or [15]. Interested
readers can amuse themselves running some tests such as

forall_C(\s -> exists_C(\t -> s(t(0)+t(1)) == t(s(1)+s(2))))
exists_C(\s -> forall_C(\t -> s(t(0)+t(1)) == t(s(1)+s(2))))

and observing the answers True and False in finite times despite the fact
that the Cantor space is uncountable.

13.3 Decidability of equality for integer-valued functions on the Cantor space133

13.3 Decidability of equality for integer-valued func-
tions on the Cantor space

Of course, it follows that the space (C → Z) of (Baire → Int) is discrete,
where Z is the subspace of non-divergent integers:

equal_CtoT :: ((Baire -> Int), (Baire -> Int)) -> Bool
equal_CtoT(p,q) = forall_C(\s -> p(s) == q(s))

Cf. Chapter 3.13. This may be surprising at first sight, but should become
a triviality after we realize that it is possible to algorithmically construct
the finite tree that represents a function in the space (C → Z).

13.4 The tree of an integer-valued function on the
Cantor space

We have alluded to the representing trees of predicates a number of times.
The binary tree of an integer-valued function on the Cantor space can be
algorithmically constructed as follows. Firstly, one defines the data type of
binary trees:

data Tree = Leaf Int | Branch Tree Tree
deriving (Show,Eq)

(The interpretation of this data type in the Scott model is the canonical
solution of a domain equation, a subject that we haven’t touched in these
notes — see e.g. [111], [123], [3] or [55]). The deriving directive instructs
the language processor to create a method for writing down trees (when we
want to output them) and another to define equality for those trees which
are finite and don’t have bottom branches or bottom values at the leaves.
A program for converting a predicate into its representing tree is

isconstant_C :: (Baire -> Int) -> Bool
isconstant_C(p) =

forall_C(\s -> forall_C(\t -> p(s) == p(t)))

tree_C :: (Baire -> Int) -> Tree
tree_C(p) = if isconstant_C(p)

then Leaf (p(c))
else Branch (tree_C(\s -> p(cons(0,s))))

(tree_C(\s -> p(cons(1,s))))

134 Sample applications

Recall that c is an arbitrary, definable element of the Cantor space (Sec-
tion 13.1).

The produced tree is finite for p ∈ (C → Z). Of course, one can easily
recover such a predicate from its tree:

pred_C :: Tree -> (Baire -> Int)
pred_C(Leaf n) = \s -> n
pred_C(Branch l r) = \s -> if hd(s) == 0

then pred_C(l)(tl(s))
else pred_C(r)(tl(s))

However, we don’t recover the same function. We recover an equivalent one
in the space (C → Z), in the sense of Chapter 3.13. If we do this again,
however, we do get the same function. That is, we have a retraction [112]
that picks canonical representatives of equivalence classes.

13.5 The supremum of the values of a function

We finish with two programs by Simpson [118], the first of which is is related
to Proposition 9.13. It computes the supremum of the values of a function
f ∈ (C → C) in the lexicographic order of C:

sup_C :: (Baire -> Baire) -> Baire
sup_C(f) = let d = hd(f(c)) in

if forall_C(\s -> hd(f(s)) == d)
then cons(d,sup_C(\s -> tl(f(s))))
else maxlex(sup_C(\s -> f(cons(0,s))),

sup_C(\s -> f(cons(1,s))))

maxlex :: (Baire,Baire) -> Baire
maxlex(s,t) = if hd(s) < hd(t) then t

else if hd(s) > hd(t) then s
else cons(hd(s),maxlex(tl(s),tl(t)))

Recall again that c is an arbitrary, definable element of the Cantor space.
This relies on the equations

sup(consd ◦ f) = cons(d, sup f)
sup f = max(sup(f ◦ cons0), sup(f ◦ cons1)),

where consd(s) = cons(d, s). These equations, in the case of continuous
functions f : [0, 1] → R, with consd(x) = (d+ x)/2, were previously consid-
ered by Edalat and Escardó [33] in order to define a related, but different

13.6 Definite integration 135

algorithm for computing suprema of functions defined on a compact inter-
val of real numbers with values on the real numbers via the interval-domain
approach discussed in Chapter 6.4.

13.6 Definite integration

Replacing the maximum operator by the average operator x⊕y = (x+y)/2,
the Riemann integration functional satisfies analogous equations,∫ 1

0
consd ◦ f = cons(d,

∫ 1

0
f)∫ 1

0
f =

∫ 1

0
f ◦ cons0⊕

∫ 1

0
f ◦ cons1,

which were also used by Edalat and Escardó in order to compute integrals
using the interval-domain approach. Using signed-digit binary expansions as
in Chapter 6.3, Simpson [118] developed functional programs for computing
suprema and definite integrals, based on these equations and the above use
of Berger’s quantification functional.

13.7 Notes

The Tychonoff program presented above was discovered during the Barbados
meeting for which the first version of this set of notes was prepared, just in
time to be presented in the last lecture. We don’t know whether the effective
Tychonoff Theorem 13.1 has been formulated or proved before.

Bibliography

[1] Abramsky, S., Domain theory in logical form, Ann. Pure Appl. Logic
51 (1991), pp. 1–77. 4, 1

[2] Abramsky, S., R. Jagadeesan and P. Malacaria, Full abstraction for
PCF, Inform. and Comput. 163 (2000), pp. 409–470. 4.3

[3] Abramsky, S. and A. Jung, Domain theory, in: S. Abramsky, D. Gab-
bay and T. Maibaum, editors, Handbook of Logic in Computer Science,
Oxford science publications 3, Clarendon Press, Oxford, 1994 pp. 1–
168. 6, 12.7, 13.4

[4] Amadio, R. and P.-L. Curien, “Domains and Lambda-Calculi,” CUP,
1998. 7

[5] Awodey, S., L. Birkedal and D. Scott, Local realizability toposes and a
modal logic for computability, Math. Struct. Comput. Sci. 12 (2002),
pp. 319–334.

[6] Bauer, A., A relationship between equilogical spaces and type two ef-
fectivity, MLQ Math. Log. Q. 48 (2002), pp. 1–15.

[7] Bauer, A., Equilogical spaces as imaginary spaces (2003), university
of Ljubljana. Presented at the Workshop on Domains, Topology and
Constructive Logic, LMU, Department of Mathematics, University of
Munich, 1-2 November 2003. 10.2

[8] Bauer, A. and L. Birkedal, Continuous functionals of dependent types
and equilogical spaces, Lec. Not. Comput. Sci. 1862 (2000), pp. 202–
216.

[9] Bauer, A., L. Birkedal and D. Scott, Equilogical spaces, Theoret. Com-
put. Sci. . 10.2

137

138 Bibliography

[10] Bauer, A., M. Escardó and A. Simpson, Comparing functional
paradigms for exact real-number computation, Lect. Not. Comp. Sci.
2380, 2002, pp. 488–500. 6.4

[11] Bauer, A. and D. Scott, A new category for semantics (2001), notes
from D.S. Scott’s talk at MFCS 2001. CMU, available from Scott’s
web page. 3.14

[12] Beeson, M., “Foundations of Constructive Mathematics,” Springer,
New York, 1985. 3.11

[13] Berger, U., “Totale Objekte und Mengen in der Bereichstheo-
rie,” Ph.D. thesis, Mathematisches Institut der Universität München
(1990). 3.14, 13.2

[14] Berger, U., Total sets and objects in domain theory, Ann. Pure Appl.
Logic 60 (1993), pp. 91–117.

[15] Berger, U. and P. Oliva, Modified bar recursion and classical dependent
choice (to appear). 13.2

[16] Bird, R. and P. Wadler, “Introduction to Functional Programming,”
Prentice-Hall, New York, 1988. 2.1

[17] Bourbaki, N., “General Topology,” Addison-Wesley, London, 1966. 5

[18] Brattka, V., Computability over topological structures, in: S. Cooper
and S. Goncharov, editors, Computability and Models, Kluwer Aca-
demic, 2003 pp. 93–136.

[19] Brattka, V. and P. Hertling, Topological properties of real number rep-
resentations, Theoret. Comput. Sci. 284 (2002), pp. 241–257.

[20] Brouwer, L., Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?,
Math. Ann. 83 (1920), pp. 201–210.

[21] Brown, R., “Topology,” Ellis Horwood Ltd., Chichester, 1988, second
edition.

[22] Coquand, T., S. Sadocco, G. Sambin and J. Smith, Formal topolo-
gies on the set of first-order formulae, J. Symbolic Logic 65 (2000),
pp. 1183–1192. 3.14

[23] Crole, R., “Categories for Types,” Cambridge University Press, Cam-
bridge, 1993. 8.6

Bibliography 139

[24] Davey, B. A. and H. A. Priestley, “Introduction to lattices and order,”
Cambridge University Press, New York, 2002, second edition, xii+298
pp. 2

[25] Day, B. J. and G. M. Kelly, On topological quotient maps preserved
by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970),
pp. 553–558.

[26] DeJaeger, F., An approach to effective functionals on the real numbers
via filter spaces, Topology Proceedings 26 (2001–2002), pp. 485–504.

[27] DeJaeger, F., M. Escardó and G. Santini, On the computational con-
tent of the Lawson topology, presented at MFPS XVI, available at
Escardó’s web page. 9.14

[28] Di Gianantonio, P., Real number computability and domain theory,
Inform. and Comput. 127 (1996), pp. 11–25.

[29] Dubuc, E., Concrete quasitopoi, Lect. Notes Math. 753, 1979 pp. 239–
254. 10.2

[30] Dubuc, E. and J. Penon, Objets compacts dans les topos, J. Austral.
Math. Soc. Ser. A 40 (1986), pp. 203–217. 3.14

[31] Dugundji, J., “Topology,” Allin and Bacon, Inc., Boston, 1966. 5

[32] Edalat, A., Domains for computation in mathematics, physics and
exact real arithmetic, Bulletin of Symbolic Logic 3 (1997), pp. 401–
452. 6.5

[33] Edalat, A. and M. Escardó, Integration in Real PCF, in: Proceedings of
the Eleventh Annual IEEE Symposium on Logic In Computer Science,
New Brunswick, New Jersey, USA, 1996, pp. 382–393. 13.5

[34] Edalat, A. and M. Escardó, Integration in Real PCF, Inform. and
Comput. 160 (2000), pp. 128–166.

[35] Egli, H. and R. Constable, Computability concepts for programming
languages, Theoret. Comput. Sci. 2 (1976), pp. 133–145. 12.7

[36] Eilenberg, S., Cartesian spaces and local compactess (1985), columbia
University, unpublished manuscript. 8.6

140 Bibliography

[37] Erker, T., M. Escardó and K. Keimel, The way-below relation of func-
tion spaces over semantic domains, Topology Appl. 89 (1998), pp. 61–
74.

[38] Ershov, Y., Computable functionals of finite types, Algebra Logic 11
(1972), pp. 203–242.

[39] Ershov, Y., Continuous lattices and A-spaces, Soviet Mathematics
Doklady 13 (1973), pp. 1551–1555.

[40] Escardó, M., PCF extended with real numbers, Theoret. Comput. Sci.
162 (1996), pp. 79–115.

[41] Escardó, M., Real PCF extended with ∃ is universal, in: A. Edalat,
S. Jourdan and G. McCusker, editors, Advances in Theory and For-
mal Methods of Computing: Proceedings of the Third Imperial College
Workshop, April 1996 (1996), pp. 13–24.

[42] Escardó, M., Injective spaces via the filter monad, Topology Proceed-
ings 22 (1997), pp. 97–110.

[43] Escardó, M., PCF extended with real numbers: A domain-theoretic ap-
proach to higher-order exact real number computation, Technical Re-
port ECS-LFCS-97-374, University of Edinburgh (1997), phD thesis
at Imperial College. 6.5

[44] Escardó, M., Effective and sequential definition by cases on the reals
via infinite signed-digit numerals, Electron. Notes Theor. Comput. Sci.
13 (1998). 6.3

[45] Escardó, M., A metric model of PCF (1998), LFCS, University of
Edinburgh. Presented at the Workshop on Realizability Semantics and
Applications, Federated Logic Conference, Trento, June 29–July 12,
1999. Available at the author’s web page.

[46] Escardó, M., Properly injective spaces and function spaces, Topology
Appl. 89 (1998), pp. 75–120. 12.16

[47] Escardó, M., Function-space compactifications of function spaces,
Topology Appl. 120 (2002), pp. 441–463.

[48] Escardó, M., Mathematical foundations of functional programming
with real numbers (2003), university of Birmingham, lecture notes for
a course in the Midlands Graduate School, available at the author’s
web page.

Bibliography 141

[49] Escardó, M. and R. Flagg, Semantic domains, injective spaces and
monads, Electron. Notes Theor. Comput. Sci. 20 (1999).

[50] Escardó, M. and R. Heckmann, Topologies on spaces of continuous
functions, Topology Proceedings 26 (2001–2002), pp. 545–564. 8, 9.6

[51] Escardó, M., M. Hofmann and T. Streicher, On the non-sequential
nature of the interval-domain model of exact real-number computation,
Math. Struct. Comput. Sci. (to appear).

[52] Escardó, M., J. Lawson and A. Simpson, Comparing categories of
(core) compactly generated spaces, Topology Appl. (To appear). 10.2

[53] Escardó, M. and T. Streicher, Induction and recursion on the partial
real line with applications to Real PCF, Theoret. Comput. Sci. 210
(1999), pp. 121–157.

[54] Gierz, G., K. Hofmann, K. Keimel, J. Lawson, M. Mislove and
D. Scott, “A Compendium of Continuous Lattices,” Springer, 1980.
3, 11.2, 12.9, 12.16

[55] Gierz, G., K. Hofmann, K. Keimel, J. Lawson, M. Mislove and
D. Scott, “Continuous Lattices and Domains,” Cambridge University
Press, 2003. 3, 11.2, 12.6, 12.7, 12.9, 12.16, 13.4

[56] Gordon, A. D., Bisimilarity as a theory of functional programming,
Theoret. Comput. Sci. 228 (1999), pp. 5–47, mathematical founda-
tions of programming semantics (New Orleans, LA, 1995). 2.8

[57] Gunter, C. A., “Semantics of Programming Languages—Structures
and Techniques,” The MIT Press, London, 1992. 2.8

[58] Heckmann, R., Power domains and second-order predicates, Theoret.
Comput. Sci. 111 (1993), pp. 59–88. 11.5

[59] Heckmann, R., A non-topological view of dcpo’s as convergence spaces,
Theoret. Comp. Sci. 305 (2003), pp. 159–186.

[60] Heckmann, R. and M. Huth, Quantitative semantics, topology, and
possibility measures, Topology Appl. 89 (1998), pp. 151–178.

[61] Hennessy, M. and R. Milner, Algebraic laws for nondeterminism and
concurrency, J. Assoc. Comput. Mach. 32 (1985), pp. 137–161.

142 Bibliography

[62] Hofmann, K. and J. Lawson, The spectral theory of distributive con-
tinuous lattices, Trans. Amer. Math. Soc. 246 (1978), pp. 285–310.
3.14

[63] Hofmann, K. and M. Mislove, Local compactness and continuous lat-
tices, in: Continuous Lattices, Lect. Notes Math. 871, 1981, pp. 209–
248. 11.3

[64] Hyland, J., Filter spaces and continuous functionals, Ann. Math. Logic
16 (1979), pp. 101–143. 10.2

[65] Hyland, J. M. E., First steps in synthetic domain theory, in: Category
theory (Como, 1990), Lecture Notes in Math. 1488, Springer, Berlin,
1991 pp. 131–156. 0.5

[66] Hyland, J. M. E. and C.-H. L. Ong, On full abstraction for PCF: I, II
and III, Inform. and Comput. 163 (2000), pp. 285–408. 4.3

[67] Hyland, M., Function spaces in the category of locales., in: Continuous
lattices, Lect. Notes Math. 871, 1981, pp. 264–281. 9.9

[68] Isbell, J., General function spaces, products and continuous lattices,
Math. Proc. Camb. Phil. Soc. 100 (1986), pp. 193–205. 8.6, 12.16

[69] Johnstone, P., “Stone Spaces,” Cambridge University Press, Cam-
bridge, 1982. 4, 11.2, 12.16

[70] Johnstone, P., Open locales and exponentiation, in: Mathematical ap-
plications of category theory (Denver, Col., 1983), Amer. Math. Soc.,
Providence, RI, 1984 pp. 84–116. 3.14, 9.1

[71] Johnstone, P., Vietoris locales and localic semilattices, in: Continuous
lattices and their applications (Bremen, 1982), Dekker, New York,
1985 pp. 155–180.

[72] Johnstone, P., “Sketches of an Elephant: a Topos Theory Com-
pendium,” Oxford University Press, 2002. 3.14, 8.6

[73] Jones, M. et al., hugs online, . 2.1

[74] Jung, A., Stably compact spaces and the probabilistic powerspace con-
struction, in: J. Desharnais and P. Panangaden, editors, Domain-
theoretic Methods in Probabilistic Processes, Electron. Notes Theoret.
Comp. Sci. 87 (2004), 15pp.

http://cvs.haskell.org/hugs/

Bibliography 143

[75] Kahn, G., The semantics of a simple language for parallel program-
ming, in: Information processing 74 (Proc. IFIP Congress, Stockholm,
1974), North-Holland, 1974 pp. 471–475.

[76] Keimel, K. and G. Gierz, Halbstetige Funktionen und stetige Verbände,
in: R.-E. Hoffmann, editor, Continuous Lattices and Related Topics,
Mathematik-Arbeitspapiere 27, Universität Bremen, 1982, pp. 59–67.
12.16

[77] Keimel, K. and J. Paseka, A direct proof of the Hofmann-Mislove the-
orem, Proc. Amer. Math. Soc. 120 (1994), pp. 301–303. 11.3

[78] Kelley, J., “General Topology,” D. van Nostrand, New York, 1955. 5

[79] Kleene, S., “Introduction to Metamathematics,” North-Holland,
1952.

[80] Kleene, S., Countable functionals, in: Constructivity in mathematics:
Proceedings of the colloquium held at Amsterdam, 1957 (edited by A.
Heyting), Studies in Logic and the Foundations of Mathematics (1959),
pp. 81–100.

[81] Ko, K.-I., “Complexitity Theory of Real Functions,” Birkhauser,
Boston, 1991.

[82] Kock, A., “Synthetic differential geometry,” London Mathematical So-
ciety Lecture Note Series 51, Cambridge University Press, Cambridge,
1981. 0.5

[83] Kreisel, G., Interpretation of analysis by means of constructive func-
tionals of finite types, in: Constructivity in mathematics: Proceedings
of the colloquium held at Amsterdam, 1957 (edited by A. Heyting),
Studies in Logic and the Foundations of Mathematics (1959), pp. 101–
128.

[84] Lambek, J. and P. Scott, “Introduction to Higher Order Categorical
Logic,” CUP, 1986. 8.6

[85] Lawson, J., Spaces of maximal points, Math. Struct. Comput. Sci. 7
(1997), pp. 543–555.

[86] Longley, J., When is a functional program not a functional program?,
in: Proc. 4th International Conference on Functional Programming,
Paris (1999), pp. 1–7. 3.11, 4.3

144 Bibliography

[87] Longley, J., The sequentially realizable functionals, Ann. Pure Appl.
Logic 117 (2002), pp. 1–93. 4.3

[88] Longo, G., Some topologies for computations, in: Proceedings of
Géométrie au XX siècle, 1930 - 2000, Paris .

[89] Mac Lane, S., “Categories for the Working Mathematician,” Springer,
1971. 6

[90] McLarty, C., “Elementary Categories, Elementary Toposes,” Claren-
don Press, Oxford, 1992. 8.6

[91] Menni, M. and A. Simpson, Topological and limit-space subcategories
of countably-based equilogical spaces, Math. Struct. Comput. Sci. 12
(2002), pp. 739–770.

[92] Milner, R., Fully abstract models of typed λ-calculi, Theoret. Comput.
Sci. 4 (1977), pp. 1–22.

[93] Mislove, M., Topology, domain theory and theoretical computer sci-
ence, Topology Appl. 89 (1998), pp. 3–59.

[94] Myhill, J. and J. C. Shepherdson, Effective operations on partial recur-
sive functions, Z. Math. Logik Grundlagen Math. 1 (1955), pp. 310–
317.

[95] Nerode, A., Some Stone spaces and recursion theory, Duke Math. J.
26 (1959), pp. 397–406.

[96] Normann, D., “Recursion on the countable functionals,” Lec. Not.
Math. 811, Springer, Berlin, 1980, viii+191 pp.

[97] Normann, D., Computability over the partial continuous functionals,
J. Symbolic Logic 65 (2000), pp. 1133–1142.

[98] Normann, D., Hierarchies of total functionals over the reals, Theoret.
Comput. Sci. (to appear). 6.4

[99] Paulson, L., “ML for the working programmer,” Cambridge University
Press, Cambridge, 1991. 2.1

[100] Pitts, A., Operationally-based theories of program equivalence, in: Se-
mantics and logics of computation (Cambridge, 1995), Publ. Newton
Inst. 14, Cambridge Univ. Press, Cambridge, 1997 pp. 241–298. 2.8

Bibliography 145

[101] Plotkin, G., LCF considered as a programming language, Theoret.
Comput. Sci. 5 (1977), pp. 223–255. 2, 2.8, 4.2, 12.14, 12.15

[102] Plotkin, G., Tω as a universal domain, J. Comput. System Sci. 17
(1978), pp. 209–236. 12.1

[103] Plotkin, G., Pisa notes on domains (1983), department of Computer
Science, University of Edinburgh. Available at the author’s web page.
2, 2.8, 12.7

[104] Plotkin, G., Ignorance and uncertainty (2003), lectures given at
McGill University’s Bellairs Research Institute, Barbados. 3.14

[105] Poigné, A., Basic category theory, in: Handbook of logic in computer
science, Vol. 1, Oxford Univ. Press, New York, 1992 pp. 413–640. 6

[106] Pour-El, M. and J. Richards, “Computability in analysis and physics,”
Perspectives in Mathematical Logic, Springer, Berlin, 1989, xii+206
pp.

[107] Robinson, E., Logical aspects of denotational semantics, Lec. Not.
Comput. Sci. 283, 1987 pp. 238–253.

[108] Rogers, H., “Theory of Recursive Functions and Effective Computabil-
ity,” McGraw-Hill, New York, 1967. 1, 3.12, 4.1, 4.3

[109] Rosolini, G., Equilogical spaces and filter spaces, Rend. Circ. Mat.
Palermo (2) Suppl. 64 (2000), pp. 157–175, categorical studies in Italy
(Perugia, 1997). 10.2

[110] Rosolini, G. and T. Streicher, Comparing models of higher type com-
putation, Electron. not. Comput. Sci. 23 (1999), p. 7. 10.2

[111] Scott, D., Continuous lattices, Lec. Not. Math. 274, 1972, pp. 97–136.
1, 12.16, 13.4

[112] Scott, D., Data types as lattices, SIAM J. Comput. 5 (1976), pp. 522–
587. 1, 13.4

[113] Scott, D., A type-theoretical alternative to CUCH, ISWIM and
OWHY, Theoret. Comput. Sci. 121 (1993), pp. 411–440, reprint of
a 1969 manuscript. 1, 4.2, 12.15

146 Bibliography

[114] Scott, D., A new category? Domains, spaces and equivalence relations
(1996), computer Science Department, Carnagie Mellon University.
Available at the author’s web page. 3.13

[115] Scott, D., Effective versions of equilogical spaces, Electron. Notes
Theor. Comput. Sci. 35 (2000).

[116] Scott, D., A new category for semantics, Lec. Not. Comput. Sci. 2136
(2001), pp. 1–2.

[117] Simmons, G., “Introduction to Topology and Modern Analysis,”
McGraw-Hill, New York, 1963. 5

[118] Simpson, A., Lazy functional algorithms for exact real functionals, Lec.
Not. Comput. Sci. 1450 (1999), pp. 323–342. 13.5, 13.6

[119] Simpson, A., Towards a convenient category of topological domains, in:
Proceedings of 13th ALGI Workshop, RIMS, Kyoto University, 2003.

[120] Smyth, M., Effectively given domains, Theoret. Comput. Sci. 5 (1977),
pp. 256–274. 6.4, 12.7

[121] Smyth, M., Power domains and predicate transformers: a topological
view, Lec. Not. Comput. Sci. 154, 1983, pp. 662–675. 3, 1

[122] Smyth, M., Topology, in: S. Abramsky, D. Gabbay and T. Maibaum,
editors, Handbook of Logic in Computer Science, Oxford science pub-
lications 1, Clarendon Press, Oxford, 1992 pp. 641–761. 3, 1, 6.1

[123] Smyth, M. and G. Plotkin, The category-theoretic solution of recursive
domain equations, SIAM J. Comput. 11 (1982), pp. 761–783. 13.4

[124] Stoltenberg-Hansen, V., I. Lindström and E. Griffor, “Mathematical
theory of domains,” CUP, 1994, xii+349 pp.

[125] Stoltenberg-Hansen, V. and J. Tucker, Concrete models of compu-
tation for topological algebras, Theoret. Comput. Sci. 219 (1999),
pp. 347–378.

[126] Stone, M. H., The theory of representations for Boolean algebras,
Trans. Amer. Math. Soc. 40 (1936), pp. 37–111.

[127] Stone, M. H., Applications of the theory of Boolean rings to general
topology, Trans. Amer. Math. Soc. 41 (1937), pp. 375–481.

Bibliography 147

[128] Streicher, T., Mathematical foundations of functional programming
(2003), department of mathematics, University of Darmstadt. Avail-
able at the author’s web page. 8, 12.15

[129] Sutherland, W. A., “Introduction to metric and topological spaces,”
Clarendon Press, Oxford, 1975, xiii+181 pp. 5, 9.6

[130] Taylor, P., “Practical foundations of mathematics,” CUP, 1999,
xii+572 pp.

[131] Taylor, P., Geometric and higher order logic in terms of abstract Stone
duality, Theory Appl. Categ. 7 (2000), pp. No. 15, 284–338. 3.14

[132] Taylor, P., Local compactness and the Baire category theorem in ASD:
a feasibility study, Electron. Notes Theor. Comput. Sci. 69 (2002).
11.5

[133] Taylor, P., Sober spaces and continuations, Theory Appl. Categ. 10
(2002), pp. No. 12, 248–300. 3.14, 11.5

[134] Taylor, P., Subspaces in abstract Stone duality, Theory Appl. Categ.
10 (2002), pp. No. 13, 301–368.

[135] Tennent, R. D., Denotational semantics, in: Handbook of logic in com-
puter science, Vol. 3, Oxford Sci. Publ., Oxford Univ. Press, New
York, 1994 pp. 169–322. 2.8

[136] Townsend, C. and S. Vickers, A universal characterization of the dou-
ble power locale, Theoret. Comput. Sci. (to appear). 9.1, 11.5

[137] Tsuiki, H., Computational dimension of topological spaces, Lec. Not.
Comput. Sci. 2064 (2001), pp. 323–335.

[138] Turing, A., A correction., Proc. Lond. Math. Soc., II. Ser. 43 (1936),
pp. 544–546. 6.3

[139] Turing, A., On computable numbers, with an application to the
Entscheidungsproblem., Proc. Lond. Math. Soc., II. Ser. 42 (1936),
pp. 230–265. 6.3

[140] Vickers, S., “Topology via Logic,” CUP, 1989. 5, 1, 9

[141] Vickers, S., The double powerlocale and exponentiation: a case study
in geometric logic (2001), available at the author’s web page. 9.1

148 Bibliography

[142] Weihrauch, K., “Computable analysis,” Springer, 2000, x+285 pp. 9,
2.8, 6.3

[143] Weihrauch, K. and C. Kreitz, Representations of the real numbers and
the open subsets of the set of real numbers, Ann. Pure and Appl. Logic
35 (1987), pp. 247–260. 6.3

[144] Wiedmer, E., Computing with infinite objects, Theoret. Comput. Sci.
10 (1980), pp. 133–155. 6.3

[145] Winskel, G., “The formal semantics of programming languages,”
Foundations of Computing Series, MIT Press, Cambridge, MA, 1993,
xx+361 pp., an introduction. 2.8

Index

++, 49
B, 34
C, 34
N , 34
T0 separation axiom, 102
T1 separation axiom, 101
f , 71
Ω, 49
S, 67
Top, 94
f̄ , 111
v, 101, 113
⊥, 23
χU , 30, 67
∃, 36, 69
∀, 35, 68
λ-definable function, 76
λ-expressions, 75
λ-polynomials, 75
λ-terms, 75
λ, 21, 74
λ-calculus, 74
7→, 74
↑S, 102
↑↑b, 115
�, 114
T̂op, 94
(X → Y), 44, 72
Y X , 72
(a -> b), 31
(a,b), 21
->, 21
/\, 32
::, 21
==, 22
Baire, 21

Bool, 21
False, 21
Nat, 20
Open, 31
Quant, 40
S, 24
T, 24, 34
True, 21
\, 21
\/, 32
a, 23
apart_B, 22
bot, 23
cons, 21
data, 21
equal_N, 35
forall_C, 37, 38, 124, 129
hd, 21
if-then-else, 21
interl’, 22
interl, 21
ptych, 128
tl, 21
tych, 125
type, 21

admissible representation, 62
affirmable property, 15
Alexandroff open, 80
algebraic, 118
apartness map, 68

Baire data type, 21
Baire space, 21, 34
basis, 115
bottom, 23, 31

149

150 Index

bound, 75

Cantor space, 34
Cantor topology, 57
Cantor tree, 37
cartesian closed, 72, 82, 83
characteristic function, 30, 67
closed, 30, 90
coarser, 79
compact, 35, 68, 118
compact-open topology, 43, 82
completely prime, 102
computable, 30
computational adequacy, 120
conjoining, 79
cons, 21
context, 76
continuous, 30, 97, 114
continuous lattice, 118
continuous map of quasi-spaces, 96
continuous Scott domain, 116
convergence space, 95
core-compact, 82

data language, 19, 25
dcpo, 113
definable, 30
defined, 76
denotational semantics, 108
densely injective, 111
difficult, 59, 124
directed, 113
directed complete poset, 113
discrete, 35, 68
divergent, 23
domains, 112
dominance, 91
don’t know, 133
don’t know, 88, 91, 123, 126

easy, 27, 36, 60, 67, 68, 81, 86, 99, 103–
105, 110, 127

environment, 24, 33, 59, 110
equality map, 68
equilogical spaces, 44, 46, 96

equivalent, 26
evaluation map, 79
exercise, 34–36, 41, 42, 58, 59, 84, 86,

90, 104, 119
experiment, 26
exponentiable, 79
exponential, 72
external, 24
external data, 26

finer, 79
finite, 118
finite character, 57
free, 75
Fubini’s rule, 77, 86
fully abstract, 121
fully complete, 121
functional, 19
functional programming, 20

generalized topological spaces, 94
generalized topologies, 94

halting problem, 23
halting problem, 24, 36, 56
halting set, 51, 56
hard, 17, 38, 70
Haskell, 19
Hausdorff, 35, 68
head, 21

immediate, 20, 34, 45, 77, 82, 90, 96, 99,
100, 104, 115

implicit definitions, 20
induced, 80
injective spaces, 111
interesting, 7, 45, 59, 69, 78, 82, 86, 88,

93, 104
internal, 24
interpolation property, 115
Isbell topology, 81

join-linear, 104

Kleene trees, 37

Index 151

lambda-calculus, 74
lawless sequences, 27
left to the reader, 39, 84, 109, 129
locales, 78, 91, 100

meet-linear, 101
modulus of continuity, 36, 37
monotone, 32, 58

natural function space, 73
natural topology, 72
nested, 104
non-trivial, 36, 39, 70, 123

observable, 53
observable property, 15
obvious, 35, 46, 49
open, 30, 67
operational preorder, 31, 102
operationally equivalent, 26
oracles, 27
overt, 36

parallel Tychonoff program, 129
PCF, 9, 48
PCF++, 48
PCF++

Ω , 48
polynomial function, 76
polynomials, 75
programmable, 30
programmable data, 26
programming language, 19
Prolog, 46

quasi-space, 96
quasi-topology, 96
question, 78, 108

real part, 94
real topological spaces, 93
realizer, 60
recursive definitions, 120
relative, 34
relatively continuous, 110
relatively discrete, 109
relatively Hausdorff, 110

remarkable, 68, 111
restriced λ-calculus, 74
routine, 39, 40, 86, 87, 91, 97, 105, 112,

118

saturation, 102
Scott domain, 119
Scott model, 108, 121
Scott open, 80, 113
semidecidable, 53
sequential Tychonoff program, 124
sequentially, 53
Sierpinski data type, 24
Sierpinski space, 10, 67
simply typed λ-calculus, 74
sober, 102
space, 33
space of observations, 11
space of booleans, 34
space of natural numbers, 34
space of observations, 46
specialization order, 101
splitting, 79
subspace, 21
supercompact, 116
surpring, 55
surprising, 10, 47, 131
synthetic, 11

tail, 21
Taylor, 7, 45, 46, 69, 91, 106
tight, 111
top, 24, 31
top hat, 94
topology of cont. convergence, 96
topos, 91
transpose, 71
trivial, 88, 96, 101, 119, 124, 131
Turing-universal, 121
Tychonoff theorem, 108
Tychonoff program, 124, 129, 133, see

parallel Tychonoff program, see
sequential Tychonoff program

Tychonoff theorem, 12, 88, 108, 123–125,
127, 133

152 Index

types, 75

uniform modulus of continuity, 37

way below, 114

	Contents
	Preface
	Organization
	Intended audience
	Prerequisites and supporting material
	Topology of data types
	Synthetic topology
	Synthetic topology of data types

	I Topology of data types
	Smyth's dictionary
	Notes

	Operational notions of data
	Computational set-up
	Functional programming
	The Baire data type
	Divergence and points at infinity
	The Sierpinski data type
	Internal and external views of data
	Operational equivalence
	Notes

	Synthetic topology of data types
	Continuous maps of data types
	Open and closed subsets of data types
	Digression --- the operational preorder
	Intersections and unions of open sets
	Spaces
	The Baire and Cantor spaces
	Continuous maps of spaces
	Open and closed subsets of spaces
	Discrete and Hausdorff spaces
	Compact and overt spaces
	Compactness of the Cantor space
	Basic topology
	Revision of the notion of space
	Notes

	Computability versus classical continuity
	The Myhill--Shepherdson and Rice--Shapiro theorems
	Classical topology of data types
	Notes

	Revised and expanded edition of Smyth's dictionary
	Computationally induced classical topologies
	The Cantor space
	The Kahn domain
	The real line
	The interval domain
	Notes

	II Topology of classical spaces
	Synthetic formulation of classical topological notions
	Open subspaces
	Hausdorff spaces
	Discrete spaces
	Compact subspaces
	A classically invisible notion
	Notes

	Function spaces in classical topology
	Exponentials and natural function spaces
	Exponential laws
	The restricted, simply typed -calculus
	Exponentiable spaces
	Characterization of exponentiable spaces
	Notes

	Classical topology via the -calculus
	Notes

	Imaginary exponentials
	Generalized topological spaces
	Examples of categories of generalized spaces
	Notes

	The Hofmann--Mislove representation theorem
	Compact saturated sets
	Sobriety
	A representation theorem for continuous universal quantifiers
	A representation theorem for continuous existential quantifiers
	Notes

	III Domain theory, topology and denotational semantics
	Injective spaces, domains and function spaces
	Introduction
	Densely injective spaces
	Densely injective spaces and function spaces
	Topology from order and conversely
	Directed complete posets
	The Scott topology of a dcpo
	Continuous dcpos
	Topological view of continuous dcpos
	Order-theoretic view of densely injective spaces
	Continuous Scott domains and function spaces
	Continuous lattices, injective spaces and exponentiable spaces
	Algebraic dcpos
	Scott domains
	Fixed points, function spaces and recursive definitions
	The Scott model of PCF and its fundamental properties
	Notes

	Sample applications
	A computational version of the countable Tychonoff theorem
	Universal quantification for boolean-valued predicates
	Decidability of equality for integer-valued functions on the Cantor space
	The tree of an integer-valued function on the Cantor space
	The supremum of the values of a function
	Definite integration
	Notes

	Bibliography
	Index

