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Abstract

We extend the programming language PCF with a type for (total and partial)
real numbers. By a partial real number we mean an element of a cpo of intervals,
whose subspace of maximal elements (single-point intervals) is homeomorphic to
the Euclidean real line. We show that partial real numbers can be considered as
“continuous words”. Concatenation of continuous words corresponds to refinement
of partial information. The usual basic operations cons, head and tail used to ex-
plicitly or recursively define functions on words generalize to partial real numbers.
We use this fact to give an operational semantics to the above referred extension
of PCF. We prove that the operational semantics is sound and complete with re-
spect to the denotational semantics. A program of real number type evaluates to
a head-normal form iff its value is different from ⊥; if its value is different from ⊥
then it successively evaluates to head-normal forms giving better and better partial
results converging to its value.

Keywords: Exact real number computation. Domain Theory and Interval Analysis.
Denotational and operational semantics.

1 Introduction

There are several practical and theoretical approaches to exact real number
computation (see eg. [7–9,18,21,24,26,30,31,37,39,40,42]). However, the author
is not aware of any attempt to give denotational and operational semantics
to an implementable programming language with a data type for exact real
numbers. Most approaches to exact real number computation are based on
representation of real numbers in other data types, such as streams of digits
or rational numbers. P. di Gianantonio [9] discusses an extension of PCF with
streams and shows how to represent real numbers in this extension (see below).

In this paper we extend the programming language PCF [28] with a type
for real numbers. This type is interpreted as the cpo of intervals introduced
independently by R.M. Moore in the 60’s [25] and by D.S. Scott in the
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early 70’s [32]. In fact, such an extension was one of the problems left open
by G.D Plotkin [28]. It is straight-forward to give a denotational semantics to
such an extension, but it is not immediate how to give an operational seman-
tics to it. P. di Gianantonio also presents an extension of PCF with a ground
type interpreted as an algebraic cpo of real numbers, but he does not give an
operational semantics to it.

An important feature of our approach to exact real number computation is
that the programmer does not have access to representations within the pro-
gramming language and can think of real numbers as abstract entities in the
usual mathematical sense. Of course, the PCF interpreter has access only to
concrete representations. The correct interaction between the abstract level
and the concrete level is usually referred to as the Adequacy Property (of the
operational semantics with respect to the denotational semantics). At the de-
notational level, a PCF program is just a mathematical expression denoting
a number or a function. The task of the programmer is to find a mathemat-
ical expression denoting the entity that he or she has in mind. This entity
is usually given by unrestricted mathematical means. In this case the pro-
grammer has to find an equivalent PCF expression. The Adequacy Property
ensures that the entity denoted by the program will actually be computed by
the PCF interpreter, and this is why the programmer is not concerned with
representations.

We refer to the elements of the cpo of intervals as “partial real numbers”. The
domain of partial numbers is a non-algebraic continuous cpo. Its subspace of
maximal elements (single-point intervals) is homeomorphic to the Euclidean
real line, so that real numbers are special cases of partial real numbers. Notice
that no algebraic cpo can have this property.

We show that partial real numbers can be considered as “continuous words”,
in the sense that they can be given the structure of a monoid, in such a
way that it has a submonoid isomorphic to the monoid of words over any
finite alphabet. Moreover, as it is the case for words, the prefix preorder of
the monoid of continuous words coincides with its information order. This
coincidence is the basis for the successful interaction between the operational
and denotational semantics of PCF extended with real numbers.

Concatenation of continuous words have intuitive geometrical and compu-
tational interpretations. Geometrically, a concatenation of continuous words
corresponds to a rescaling of an interval followed by a translation (an affine
transformation). Computationally, a concatenation of continuous words corre-
sponds to refinement of partial information; in a concatenation xy the partial
real number y refines the information given by x, by selecting a subinterval
of x.
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The notion of length of words generalizes to partial real numbers. The length
of a partial real number is an extended non-negative real number, being in-
finity iff the partial number is maximal, and zero iff the partial number is
bottom. Roughly speaking, the length of a partial number x considered as a
partial realization of an unknown real number y gives the number of digits of
an expansion of y that x is able to give correctly. The concatenation operation
“adds lengths”, in the sense that the length function is a monoid homomor-
phism from the monoid of partial real numbers to the additive monoid of
non-negative extended real numbers.

The usual basic operations cons, head and tail used to explicitly or recursively
define functions on words generalize to partial real numbers. Geometrically,
the operation cons is an affine transformation (in analytic terms, a linear map)
on the unit interval, tail reverses the effect of cons, and head decides in which
half of the real line its argument lies, telling us nothing in ambiguous cases.

Concatenation of partial numbers can be infinitely iterated. This fact gives a
notion of meaningful infinite computation. The concatenation of finite initial
segments of infinite computations gives more and more information about the
final result, in such a way that every piece of information about the (ideal)
result is eventually produced in a finite amount of steps. In practice, the terms
of a computation can be taken as the partial numbers with distinct rational
end-points.

The interpretation of partial real numbers as continuous words is related to
a well-known approach to real number computation. Usual binary expansions
are not appropriate representations for real number computation; for instance,
multiplication by three is not computable if we read the expansions from left to
right [42]. But binary expansions of numbers in the signed unit interval [−1, 1]
allowing a digit −1 turn out to be effective [8,9,17,40–42]. In the domain of
partial numbers contained in the signed unit interval, infinite concatenations of
the partial numbers [−1, 0], [− 1

2
, 1

2
] and [0, 1] correspond to binary expansions

of numbers in the signed unit interval using the digits −1, 0 and 1 respectively.

We use the fact that partial real numbers can be considered as continuous
words to obtain an operational semantics for the extension of PCF referred
above. We prove that the operational semantics enjoys the following Adequacy
Property: a program of real number type evaluates to a head-normal form iff
its value is different from ⊥; if its value is different from ⊥ then it succes-
sively evaluates to head-normal forms giving better and better partial results
converging to its value.

To be accurate, the interpretation of partial numbers as continuous words
holds only for the domain of partial real numbers contained in the unit interval
(or any other compact interval). The domain of partial number contained in
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the unit interval is referred to as the lazy unit interval, and the domain of all
partial real numbers is referred to as the lazy real line. The above results are
extended from the lazy unit interval to the lazy real line via an action of the
lazy unit interval on the lazy real line.

Organization

In Section 2 we briefly introduce the domain-theoretic and topological aspects
of partial real numbers which are relevant to this paper. In Section 3 we develop
the idea that “partial real numbers are continuous words”. In Section 4 we
extend PCF with partial real numbers. Finally, in Section 5 we present some
concluding remarks and directions for further work.

2 The domain of partial real numbers

2.1 Domains

Our main references to Domain Theory are [3] and [16]. The widely circulated
notes [29] are an excellent introduction, but they do not cover (non-algebraic)
continuous cpos. The book [19] contains all the domain-theoretic material
needed to understand PCF (without real numbers) as well as a detailed ac-
count to PCF. In this paper a (continuous Scott) domain is defined to be a
bounded complete ω-continuous cpo; notice that a Scott domain is usually
defined to be a bounded complete ω-algebraic cpo. In Section 3 we make use
of elementary domain theory only, and therefore the reader can think of a
domain just as a bounded complete cpo. But in Section 4 we make essential
use of continuity, implicitly in the use of function spaces and explicitly in the
proof of the Adequacy Theorem 34.

When we refer to a dcpo as a topological space we mean its set of elements
under its Scott topology [3,16,35].

2.2 The lazy real line

We denote by R the set of non-empty compact subintervals of the real line
ordered by x v y iff x ⊇ y; see Moore [25] and Scott [32]. If we add a
bottom element to the continuous dcpo R, which can be concretely taken as
the interval (−∞, +∞), then R becomes a domain, referred to as the lazy real
line.
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For the topological connections between Domain Theory and Interval Anal-
ysis [25] see [15]. In particular, it is shown that the Scott open sets are the
Moore open upper sets. Since Moore restricts himself to monotone functions,
the results presented in [25] go through if we replace the Moore topology by
the Scott topology. See also [4] for more connections between Domain Theory
and Interval Analysis.

Following the points of view of both Moore and Scott, we do not consider
the elements of R as intervals. We instead consider them as generalized real
numbers, in a similar way that complex numbers are considered as generalized
real numbers, and we call them partial real numbers. The maximal partial real
numbers (that is, the singleton intervals) are identified with the real numbers.
This identification makes sense from a topological view, because the subspace
of maximal elements of R is homeomorphic to the Euclidean real line. Non-
maximal partial real numbers can be considered as partial realizations of real
numbers. For example, [3.14, 3.15] can be considered as a partial realization
of π (and of several other numbers). Hence the designation partial real number.

A subset of the lazy real line has a join iff it has an upper bound; when the
join exists, it is the intersection of the subset. Every subset of the lazy real line
has a meet, namely the least interval (most defined partial number) containing
the union of the set.

We denote the left and right end-points of a partial number x by x and x
respectively, so that x = [x, x].

Two partial numbers x and y have an upper bound iff they overlap. In this
case their join is the overlapping part; that is, x t y = [max(x, y), min(x, y)].
Dually, we have that their meet is given by x u y = [min(x, y), max(x, y)].

The way-below relation on the lazy real line is given by x ¿ y iff x = ⊥, or
x < y and y < x. Therefore, a basis for the lazy real line is given by the set
containing ⊥ and the non-maximal partial numbers with rational (respectively
dyadic) end-points. Recall that a dyadic number is a rational of the form m/2n.

2.3 Order of magnitude on the lazy real line

We define a strict order < on partial numbers (not to be confused with the
strict version @ of the information order or with the way-below order ¿) by
x < y iff x < y. This relation is clearly irreflexive, transitive, and asymmetric,
in the sense that x < y together with x > y is impossible.

We say that two elements x and y of a domain are consistent, written x ' y, if
they have a common upper bound. The consistency relation is always reflexive
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and symmetric, but not transitive, and it is preserved by monotone maps.

The following proposition is immediate:

Proposition 1 For all partial real numbers x and y, exactly one of the rela-
tions x < y, x ' y and x > y holds.

We define a relation ≤ on partial numbers (not to be confused with the in-
formation order v) by x ≤ y iff x ≤ y. This relation does not enjoy any of
the properties that an order relation should satisfy, and therefore the notation
can be misleading. We introduce it only for notational convenience.

2.4 The lazy unit interval

The set I of all partial numbers contained in the unit interval [0, 1] is a domain,
referred to as the lazy unit interval. The bottom element of I is the partial
number [0, 1]. Its way-below order is given by x ¿ y iff x = 0 or x < y, and
y < x or y = 1.

The lazy unit interval can be presented in a geometrically more convenient
form as follows. The unit square [0, 1]× [0, 1] under the componentwise order
induced by the usual order ≤ on [0, 1] is a continuous lattice, whose Lawson
topology coincides with the Euclidean topology on the unit square; see [16] for
a proof of these facts. If we consider the points below (equivalently, on the left
of) the diagonal which goes from (0, 1) to (1, 0), that is, the points (x, y) with
x + y ≤ 1, we get a triangle, which we refer to as the unit triangle. The unit
triangle is easily seen to be a domain. Its maximal elements are the points
(x, y) with x + y = 1, that is, the points on the diagonal.

It turns out that the unit triangle is isomorphic to the lazy unit interval. The
isomorphisms can be taken as (x, y) 7→ [1 − y, x] and [x, y] 7→ (y, 1 − x). We
can think of the unit triangle as a coordinate system for the lazy unit interval.

We have a similar fact for the lazy real line; a coordinate system for R is given
by the half-plane consisting of the points (x, y) with x + y ≤ 0. A coordinate
system for R⊥ is obtained by adding a point (−∞,−∞) to the half-plane.

3 Partial real numbers considered as continuous words

Subsections 3.1–3.7 are restricted to the lazy unit interval and Subsection 3.8
extends the results of these sections to the lazy real line.
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3.1 The prefix preorder of a monoid

Recall that a monoid is a set together with a binary associative operation and a
neutral element for this operation. It is customary to refer to this operation as
multiplication, but in this paper it is convenient to refer to it as concatenation.

By a word over an alphabet Σ we mean either a finite word in Σ∗ or an infinite
word in Σω. We denote the set of all words by Σ∞. Usual concatenation of
words, with the convention that xy = x if x is infinite, makes Σ∞ into a
monoid with neutral element the empty word ε.

In any monoid (M, ·, e) we can define a preorder, called its prefix preorder,
by x ≤ z iff xy = z for some y. In this case x is called a prefix of z and y
is called a suffix. This relation is reflexive because e is right neutral, and it
is transitive because the concatenation operation is associative. It has e as
its least element because e is left neutral. Monoid homomorphisms preserve
the least element and the prefix preorder, by the very definition of monoid
homomorphism. An element x is maximal iff it is left dominant, in the sense
that xy = x for every y. The meet of a set, when it exists, is the greatest
common prefix of the elements of the set.

The prefix preorder of the monoid Σ∞ makes the set Σ∞ into a Scott do-
main [35]. In particular, the prefix preorder is a partial order; that is, it is
antisymmetric. An element of Σ∞ is maximal iff it is an infinite word, and it
is finite in the domain-theoretic sense iff it is a finite word. The concatenation
operation seen as a function Σ∞ × Σ∞ → Σ∞ is not continuous, because it
is not even monotone. But it is continuous on its second argument. This can
be expressed by saying that left translations x 7→ ax are continuous for all
words a.

3.2 Left translations of a monoid

We denote a left translation x 7→ ax of a monoid (M, ·, e) by consa. Left
translations are monotone and consa(M) = ↑↑a, where ↑↑a = {x ∈ M |a ≤ x}.
An element a is left cancelable iff the translation consa is injective.

If x is left cancelable and x ≤ z, we denote the unique y such that xy = z
by z/x, so that x(z/x) = z. The basic properties of this (partially defined)
quotient operation are:

x/e = x

x/x = e
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(y/x)(z/y) = z/x

(xy)/z = (x/z)y

when the quotients are defined.

Let a be a left cancelable element of a monoid M . Then the co-restriction
of consa to its image is a bijection between the sets M and ↑↑a, with inverse
x 7→ x/a. Therefore M is a preordered set isomorphic to the set ↑↑a under the
inherited order, because consa is monotone.

The left cancelable elements of Σ∞ are the finite words. It follows that ↑↑a
is a domain isomorphic to Σ∞ for every finite word a. The subsection below
shows that the lazy unit interval has the same property for every non-maximal
partial number a, for a suitable concatenation operation on partial numbers.

3.3 Concatenation of partial real numbers

Define a binary operation (x, y) 7→ xy on I by

xy = [(x− x)y + x, (x− x)y + x]

That is, given x, y ∈ I, rescale and translate the unit interval so that it be-
comes x, and define xy to be the interval which results from applying the same
rescaling and translation to y. Then it is immediate that xy is a subinterval
of x. The rescaling factor is the diameter of x, namely x − x, and the trans-
lation constant is the left end-point of x. If x is maximal, then its diameter
is zero, so that xy = x. In order to simplify notation, we let κx stand for the
diameter of x and µx stand for the left end-point of x. This is the notation
of [23] for affine transformations. Notice that x = [µx, µx + κx]. Then we can
write

xy = κxy + µx

Theorem 2 (I, ·,⊥) is a monoid with the following properties:

(i) Its prefix preorder coincides with the information order of the domain I.
(ii) Its left cancelable elements are the non-maximal ones.
(iii) Its left translations preserve all meets and all existing joins.

Proof. Let x, y, z ∈ I. Then

xy = κxy + µx = κx[µy, µy + κy] + µx = [κxµy + µx, κx(µy + κy) + µx]
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Hence µxy = κxµy + µx and κxy = κxκy. Therefore

(xy)z = κxyz + µxy = κxκyz + κxµy + µx = κx(κyz + µy) + µx = x(yz)

Now, clearly x⊥ = x, because by definition⊥ = [0, 1] is rescaled and translated
so that it becomes x. Also, ⊥x = x because by definition ⊥ = [0, 1] is rescaled
and translated so that it becomes itself; hence ⊥x is the application of the
identity to x. Therefore (I, ·,⊥) is a monoid.

(i) By construction, x v xy. If x v z and x is maximal, then xy = x = z for
every y. The proof of item (ii) shows that if x v z and x is non-maximal then
there is a (unique) y such that xy = z.

(ii) A rescaling is reversible iff the rescaling factor is non-zero, a translation is
always reversible, and an element has diameter zero iff it is maximal.

(iii) The linear maps p 7→ κxp + µx are either increasing order isomorphisms
between the real line and itself (if κx > 0) or else constant maps (if κx = 0). 2

The above proof shows that the concatenation operation on partial numbers
“multiplies diameters”, in the sense that κxy = κxκy. Therefore κxy ≤ κx and
κxy ≤ κy, the equalities holding iff x = ⊥ or y = ⊥.

Concatenation of partial numbers has the following geometrical and compu-
tational interpretations. In a concatenation xy, the interval y refines the in-
formation given by x by selecting a subinterval of x. For example, the partial
numbers [0, 1], [0, 1

2
], [ 1

2
, 1], and [1

3
, 2

3
] respectively select the whole interval, the

first half, the second half, and the middle third part. Thus, concatenation of
partial numbers allows for incremental computation on partial real numbers,
also known as lazy evaluation (cf. Proposition 4). Hence the denomination lazy
unit interval.

There is yet another geometrical interpretation of concatenation, induced by
the isomorphism between the lazy unit interval and the unit triangle. The up-
per set of any non-maximal element x of the unit triangle is clearly a triangle,
isomorphic to the unit triangle via a rescaling of the unit triangle followed by
a translation. Thus, any element y can be interpreted either as an absolute
address of a point in the unit triangle or else as a relative address of a point in
the smaller triangle generated by x, namely the point xy, obtained by applying
the same rescaling and translation to y.

We finish this subsection with the following lemma:

Lemma 3 The bases of the lazy unit interval consisting of respectively all non-
maximal partial numbers and all non-maximal partial numbers with rational
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end-points are submonoids of (I, ·,⊥) closed under existing quotients, in the
sense that if b and c are basis elements with b v c then c/b is a basis element
too.

Proof. Existing quotients are given by

y/x = (y − µx)/κx =def [(y − µx)/κx, (y − µx)/κx)]

Therefore, if x and y have distinct (rational) end-points, so does y/x. 2

The basis consisting of all non-maximal partial numbers with dyadic end-
points is a submonoid, but it is not closed under existing quotients.

3.4 Infinitely iterated concatenations

Let M be a monoid with a partial prefix order and joins of non-decreasing
ω-chains, and let 〈xn〉n≥1 be a sequence of elements of M . Then we have that

x1 ≤ x1x2 ≤ · · · ≤ x1x2 · · · xn ≤ · · ·

The infinitely iterated concatenation of 〈xn〉n≥1 is defined to be the join of
these partial concatenations, informally denoted by x1x2 · · · xn · · ·. It is also
convenient to use the informal notation y1 t y2 t · · · t yn t · · · for the join of
a chain y1 ≤ y2 ≤ · · · ≤ yn ≤ · · ·.

An interval expansion of a partial real number x is a sequence of intervals
〈xn〉n≥1 such that x = x1x2 · · ·xn · · ·. For example, interval expansions formed
from the intervals

[
0,

1

10

]
,

[
1

10
,

2

10

]
, . . . ,

[
8

10
,

9

10

]
,

[
9

10
, 1

]

are essentially decimal expansions.

If we think of an infinitely iterated concatenation as a computation, the fol-
lowing proposition shows that we can compute in an incremental fashion if
left translations are continuous:

Proposition 4 (Infinite associativity) Let M be a monoid with infinitely
iterated concatenations. Then M satisfies the ω-associativity law
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x1(x2 · · · xn · · ·) = x1x2 · · ·xn · · ·

iff left translations preserve joins of non-decreasing ω-chains.

Proof. (⇒) Assume that the ω-associativity law holds, let 〈yn〉n≥1 be a non-
decreasing ω-chain of elements of M , and let 〈xn〉n≥1 be a sequence of elements
of M such that ynxn = yn+1. Then the join of the chain is the same as the
infinitely iterated concatenation of the sequence 〈xn〉n≥1 with y1 added as a
new first element, because y1x1x2 · · · xn = yn, as an inductive argument shows.
Therefore

a(y1 t y2 t · · · t yn t · · ·) = a(y1x1x2 · · · xn · · ·)
= ay1x1x2 · · · xn · · ·
= a t ay1 t ay1x1 t · · · t ay1x1 · · · xn t · · ·
= a t ay1 t ay2 t · · · t ayn t · · ·
= ay1 t ay2 t · · · t ayn t · · ·

(⇐) Assume that left translations preserve joins of non-decreasing ω-chains.
Then we have that

x1(x2 · · · xn · · ·) = x1(x2 t x2x3 t · · · t x2x3 · · ·xn t · · ·)
= x1x2 t x1x2x3 t · · · t x1x2x3 · · · xn t · · ·
= x1 t x1x2 t x1x2x3 t · · · t x1x2x3 · · · xn t · · ·
= x1x2 · · ·xn · · · 2

We denote the infinitely iterated concatenation xx · · · x · · · of a constant se-
quence with range x by xω. An immediate consequence of the above proposi-
tion is that xω is the least fixed point of consx for any monoid with infinite
concatenations.

Now let y1 ≤ y2 ≤ · · · ≤ yn ≤ · · · be a chain of left cancelable elements. Then
the sequence y1, y2/y1, y3/y2, . . . , yn+1/yn, . . . has the elements of the chain
as partial concatenations. Therefore the join of the chain is the same as the
infinite concatenation of the induced sequence.

Proposition 5 Consider the bases of I consisting of respectively all non-
maximal partial numbers and all non-maximal partial numbers with rational
end-points. Then there is a bijection between ω-chains of basis elements and
sequences of basis elements, taking any chain to a sequence whose infinitely
interated concatenation is the join of the chain. 2

11



Therefore we can replace ω-chains of basis elements by (arbitrary) sequences
of basis elements and work with infinitely iterated concatenations instead of
joins.

For monoids with infinitely interated concatenations, it is natural to ask ho-
momorphisms to preserve them.

Proposition 6 A monoid homomorphism preserves infinitely iterated con-
catenations iff it preserves joins of increasing ω-chains

Proof. Let h : L → M be a monoid homomorphism between monoids L
and M .

(⇒) Let 〈yn〉n≥1 be an non-decreasing ω-chain of elements of L having a join
and let 〈xn〉n≥1 be a sequence of elements of L such that ynxn = yn+1. Then
we have that

h(y1 t · · · t yn t · · ·)
= h(y1x1 · · · xn · · ·)
= h(y1)h(x1) · · ·h(xn) · · ·
= h(y1) t h(y1)h(x1) t · · · t h(y1)h(x1) · · ·h(xn) t · · ·
= h(y1) t · · · t h(yn) t · · ·

because h(yn)h(xn) = h(yn+1).

(⇐) Let 〈xi〉i≥1 be a sequence of elements of L having an infinitely iterated
concatenation. Then we have that

h (x1x2 · · · xn · · ·) = h (x1 t x1x2 t · · · t x1x2 · · · xn t · · ·)
= h(x1) t h(x1x2) t · · · t h(x1x2 · · · xn) t · · ·
= h(x1) t h(x1)h(x2) t · · · t h(x1)h(x2) · · ·h(xn) t · · ·
= h(x1)h(x2) · · ·h(xn) · · · 2

3.5 Continuous words

Concatenation of partial numbers in the lazy unit interval generalizes concate-
nation of words over any finite alphabet, in the following sense:

Proposition 7 For every finite n-letter alphabet Σ, the monoid Σ∞ is iso-
morphic to a submonoid of I. Moreover, the induced embedding of Σ∞ into I
is a continuous monoid homomorphism.
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Proof. Without essential loss of generality, we prove the claim for the two-
letter case Σ = {0, 2}. Let C be the submonoid of I finitely generated by the
partial numbers [0, 1/3] and [2/3, 1]. Then C clearly contains the partial num-
bers corresponding to the intervals successively produced in the construction
of the Cantor set. Hence the joins of strictly increasing ω-chains of elements
of C are the elements of the Cantor set. But these joins are the infinitely
iterated concatenations of the generators. The set C of finite and infinite con-
catenations of the generators is also a submonoid of I, which can be considered
as the monoid of partial Cantor numbers. It is easy to see that {0, 2}∞ is iso-
morphic to C. We know that {0, 2}∗ is the free monoid over {0, 2}. Hence there
is a unique monoid homomorphism h : {0, 2}∗ → C such that h(0) = [0, 1/3]
and h(2) = [2/3, 1]. But h has a unique continuous extension to {0, 2}∞, be-
cause monoid homomorphisms are monotone and {0, 2}∗ consists of the finite
elements (in the domain-theoretic sense) of {0, 2}∞. The resulting extension
is a monoid homomorphism. Since it takes an infinite word x to the element
of the Cantor set whose ternary expansion is x, it follows that h is a bijection,
and therefore a monoid isomorphism. 2

Therefore, the elements of the lazy unit interval can be considered as “continu-
ous words”. For any word x ∈ Σ∞ let length(x) ∈ [0,∞] denote the length of x
defined in the usual way. For any continuous word x ∈ I and any real number
b > 1 we define lengthb(x) ∈ [0,∞] to be − logb(κx). Thus, lengthb(x) = ∞
iff x is maximal, and lengthb(x) = 0 iff x is bottom.

If a continuous word x is a partial realization of an unknown real number y,
then lengthb(x) is the number of correct digits of an expansion to base b of y
that x allows us to know. For example, if we consider x = [0.143, 0.145] as a
partial realization of an unknown real number y then length10(x) is roughly 2.7,
meaning that x allows us to know two decimal digits of y.

Proposition 8 Consider [0,∞] as a monoid under addition and as a domain
under its prefix preorder (which coincides with its natural order).

(i) For every real number b > 1, lengthb : I → [0,∞] is a continuous monoid
homomorphism.

(ii) Let h be the embedding of the monoid of words over a finite n-letter
alphabet into I defined in Proposition 7. Then length = lengthn+1 ◦ h.

Proof. Routine verification. The first part follows from the fact that the con-
catenation operation multiplies diameters and that logarithms take multipli-
cation to addition. 2

Corollary 9 The infinitely iterated concatenation of a sequence of continuous
words is maximal iff the sum of the lengths of the continuous words is ∞.
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Proof. The length function is a continuous monoid homomorphism and a
partial number has infinite length iff it is maximal. 2

The following proposition allows us to prove some properties of real number
programs. We say that a map f : I → I is guarded if there is a real number
δ > 0 such that length(f(x)) ≥ length(x) + δ, called a guarding constant
for f . Clearly, left translations consa with a 6= ⊥ are guarded, with guarding
constant length(a).

Proposition 10 Any continuous guarded map f : I → I has a maximal
partial number as its unique fixed point.

Proof. Since length(fn(⊥)) ≥ nδ for every n and length is a continuous
homomorphism, length (

⊔
n fn(⊥)) ≥ supn nδ = ∞. This means that the least

fixed point of f is maximal. Therefore it is the unique fixed point of f . 2

3.6 Heads and tails of continuous words

We begin by considering the head and tail maps on words over the alphabet
Σ = {0, 1}.

Let σ range over Σ, and define maps tail : Σ∞ → Σ∞ and head : Σ∞ → Σ⊥

tail(ε) = ε

tail(σx) = x

head(ε) =⊥
head(σx) = σ

These maps are continuous, and we have that

tail(consσ(x)) = x

head(consσ(x)) = σ

Recall that a pair of continuous maps s : D → E and r : E → D between
dcpos D and E with the property that

r ◦ s = id

14



is called a section-retraction pair [3]. In this case s preserves all existing meets
and joins, and s ◦ r is an idempotent.

By definition, tail is a retraction and consσ is a section. Recall also that if in
addition the induced idempotent has

s ◦ rv id

then the pair of maps s and r are said to be an embedding-projection pair. The
pair of maps tail and consσ are not an embedding-projection pair, because for
example

cons0(tail(ε)) = 0 6v ε = id(ε)

Now define a continuous equality map (x, y) 7→ (x =⊥ y) : Σ⊥×Σ⊥ → {tt, ff}⊥
by

(x =⊥ y) =





tt if x, y ∈ Σ and x = y

⊥ if ⊥ ∈ {x, y}
ff if x, y ∈ Σ and x 6= y

and a continuous conditional map

(p, x, y) 7→ (if p then x else y) : {tt, ff}⊥ × Σ∞ × Σ∞ → Σ∞

by

if p then x else y =





x if p = tt

ε if p = ⊥
y if p = ff

Then we have that

x = if head(x) =⊥ 0 then cons0(tail(x)) else cons1(tail(x)) (1)

Manipulations of this equation lead to usual explicit and recursive definitions
of several functions. For example, it follows from (1) that the identity function
satisfies the equation
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id(x) = if head(x) =⊥ 0 then cons0(id(tail(x))) else cons1(id(tail(x)))

In fact, the identity function is the unique continuous map which satisfies the
functional equation

f(x) = if head(x) =⊥ 0 then cons0(f(tail(x))) else cons1(f(tail(x)))

The function that switches the rôles of the letters 0 and 1 can be given by the
the recursive definition

g(x) = if head(x) =⊥ 0 then cons1(g(tail(x))) else cons0(g(tail(x)))

In this subsection we look for a generalization of this theme for partial num-
bers. The first problem to be overcome is that continuous words have non-
integral lengths and in particular non-zero lengths < 1. Moreover, a continu-
ous word of length > 1 has infinitely many prefixes of length 1. Since the head
map on words extracts a prefix of length 1, it is not immediately clear what
the head map on continuous words should be for words of length < 1.

Under the embedding of Σ∞ into I defined in Proposition 7, if we put

l = [0, 1/3] and r = [2/3, 1]

then Equation (1) becomes

x = if x <⊥ 1
2

then consl(x/l) else consr(x/r) (1′)

where the conditional map is defined in the same way for partial numbers
and the continuous comparison map (x, y) 7→ (x <⊥ y) : I × I → {tt, ff}⊥ is
defined by

(x <⊥ y) =





tt if x < y

⊥ if x ' y

ff if x > y

Remark 11 If we had x <⊥ x = ff then this map would not be continu-
ous. 2

Then we need a continuous map taila : I → I, for any left cancelable partial
number a, with the property that

taila(x) = x/a for every x with x v a,
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that is, with the property that taila is a left-inverse of consa. A näıve attempt
to obtain such a map would be to put taila(x) = ⊥ if x 6v a. But then taila
would not be continuous.

Lemma 12 Let a ∈ I be a non-maximal element, let taila : I → I be any
continuous left inverse of consa, and let fa be the induced idempotent. Then
for every x ∈ I,

(i) a v fa(x)
(ii) fa(x) = x iff a v x
(iii) taila(x) = fa(x)/a

Proof. (1) a v consa(taila(x)) = fa(x).

(2) (⇒) Immediate consequence of (1) above. (⇐) If a v x then x = a(x/a)
and fa(x) = consa(taila(a(x/a))) = consa(x/a) = x.

(3) taila(x) = consa(taila(x))/a = fa(x)/a. 2

Thus, in order to obtain a continuous left inverse of consa we first look for a
continuous map fa enjoying properties (1) and (2) above. Assume that x ' a.
Then fa(x) v fa(x t a) = x t a, because x v x t a. Since a v x t a, by (1)
and (2) it is natural to let fa(x) be x t a. Then fa(x) can be thought as the
truncation of x to a, because x t a is the greatest subinterval of x contained
in a.

Lemma 13 Let a be an element of I. If joina : I → I is a monotone map
such that

joina(x) = x t a for all x ' a.

then joina(x) = a for all x < a and joina(x) = a for all x > a.

Proof. Here we write a to mean [a, a], of course. Assume that x < a. This
means that x < a. Then [x, a] v x. Hence a = joina([x, a]) v joina(x). There-
fore a = joina(x), because a is maximal. The other case is similar. 2

Lemma 14 For all non-maximal a ∈ I define maps joina, taila : I → I by
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joina(x) =





a if x < a

x t a if x ' a

a if x > a

taila(x) = joina(x)/a

Then joina and taila are continuous.

Proof.

joina(x) = max(a, min(x, a)) =def [max(a, min(x, a)), max(a, min(x, a))]

Hence

taila(x) = max(a, min(x, a))/a = (max(a, min(x, a))− µa)/κa

= max(0, min((x− µa)/κa, 1))

Since joina and taila are the pointwise extensions of the non-decreasing con-
tinuous maps

r 7→max(a, min(r, a)) : [0, 1] → [0, 1]

r 7→max(0, min((r − µa)/κa, 1)) : [0, 1] → [0, 1]

respectively, it follows that they are continuous (see Moore [25]). 2

Proposition 15 For all non-maximal a ∈ I, the maps consa and taila form
a section-retraction pair, with joina as the induced idempotent.

Proof. Immediate consequences of Lemmas 12 and 14. 2

Notice that the definition of joina makes sense even for maximal partial num-
bers a; in this case joina is a constant map with range a. If we define x� y =
joinx(y), then (I,�,⊥) is a monoid whose prefix preorder coincides with the
information order on I. Of course, this monoid is not isomorphic to the monoid
(I, ·,⊥) This shows that there are several essentially different ways of mak-
ing I into a monoid inducing the information order of I.
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The second problem to be overcome is that Equation (1′) is true only for a
restricted set of partial numbers x. This problem is partially solved by replac-
ing l and r by

L = [0, 1
2
] and R = [ 1

2
, 1]

respectively. By replacing the (sequential) conditional by the parallel one,
namely (p, x, y) 7→ (pif p then x else y) : {tt, ff}⊥ × I × I → I defined by

pif p then x else y =





x if p = tt

x u y if p = ⊥
y if p = ff

(cf. [28] and Subsection 4.5), the problem is completely solved. Recall that the
meet x u y is the greatest common prefix of the continuous words x and y.

Finally, for each r ∈ [0, 1] define headr : I → {tt, ff}⊥ by

headr(x) = (x <⊥ r)

Theorem 16 For any partial number x ∈ I,

x = pif head 1
2
(x) then consL(tailL(x)) else consR(tailR(x)) (1′′)

Proof. By virtue of Proposition 15, it suffices to check the crucial case x ' 1
2
.

Equation (1′′) is true in this case because

joinL(x) = [x, 1
2
] joinR(x) = [ 1

2
, x]

and therefore joinL(x) u joinR(x) = x. 2

Of course, there is nothing special about the number 1
2
and the partial numbers

[0, 1
2
] and [ 1

2
, 1]; the above theorem works for any binary partition of the unit

interval, and can be extended to any finite n-ary partition with n ≥ 2.

The idea behind the above theorem is strongly related to the ideas presented
in [14]; see Examples 18, 19, and 25. See also Smyth’s constructions of the
unit interval as inverse limits of finite topological structures [36].

Example 17 (Path composition) The parallel conditional can be used to
overcome the fact that x <⊥ x is ⊥ instead of ff.
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Let E be any domain, and let f, g : I → E be continuous maps. Then f and g
are (generalized) paths in the domain E. (The restrictions of f and g to the
singleton intervals are paths in the usual sense [20].) If f(1) = g(0) the paths
are said to be composable. Now define a continuous map h : I → E by

h(x) = pif x <⊥ 1
2

then f(2x) else g(2x− 1)

If the paths are composable, then h is a (generalized) composite path. Let us
check the crucial case x = 1

2
:

h( 1
2
) = pif 1

2
<⊥ 1

2
then f(2 1

2
) else g(2 1

2
− 1) = pif ⊥ then f(1) else g(0)

= f(1) u g(0) = f(1) = g(0)

Notice that the sequential conditional would produce ⊥ instead of f(1) u g(0),
and therefore h would be undefined at 1

2
.

If f and g are not composable, then h is a generalized composite path with a
jump at 1

2
, namely f(1)ug(0). For instance, if E = I and f and g are constant

maps with range 0 and 1, then h can be thought as a switch which turns on at
time 1

2
. In this case, the switch is in the transition state [0, 1] = 0u1 at time 1

2
.

Notice that even in this case h is Scott continuous, because it is a composition
of continuous maps. 2

The following recursive definitions generalize the recursive definition for real
numbers presented in [14] to partial real numbers.

Example 18 (Complement) We now derive a recursive definition of the
extension of the complement map r 7→ 1− r on [0, 1] to I given by

1− x = [1− x, 1− x]

Of course, for maximal partial numbers, this indeed coincides with the original
map, up to the identification of real numbers and maximal partial numbers.

We begin with the following observation:

(i) If x ⊆ L then 1− x ⊆ R.
(ii) If x ⊆ R then 1− x ⊆ L.

This leads one to write down the following set of incomplete equations:

1− consL(x) = 1− consR(· · ·)
1− consR(x) = 1− consL(· · ·)
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If we can fill the gaps with expressions depending on 1− x then we are almost
done. Routine algebra shows that the gaps can be filled in an essentially unique
way:

1− consL(x) = 1− consR(1− x)

1− consR(x) = 1− consL(1− x)

Now we reduce this two equations to a single equation, by means of the prim-
itive operations that we have introduced:

1− x = pif head 1
2
(x) then consR(1− tailL(x)) else consL(1− tailR(x))

This can be considered as a recursive definition of complement, because if we
eliminate recursion by means of the least fixed point operator then it is possible
to prove by fixed point induction [3] that complement is the least (in fact, the
unique) fixed point of the induced functional. We use fixed point induction in
conjunction with an induction principle for partial real numbers generalizing
the one introduced in [14].

It is illustrative to unfold 1− [a, b] for [a, b] ∈ I with 1/2 ∈ [a, b]:

1− [a, b] = pif ⊥ then consR(1− [2a, 1]) else consL(1− [0, 2b− 1])

= consR([0, 1− 2a]) u consL([2− 2b, 1])

= [ 1
2
, 1− a] u [1− b, 1

2
] = [1− b, 1− a]

Notice that the above recursive definition resembles a recursive definition with
respect to binary representation, with L and R corresponding to the digits 0
and 1 respectively. 2

Example 19 (Average) We now derive a recursive definition of the exten-
sion of the average operation

r ⊕ s =
r + s

2

given by

x⊕ y = [x⊕ y, x⊕ y]

The derivation follows the same pattern as the derivation of the recursive
definition of complement given in the above example.
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Initial observation:

(i) If x, y ⊆ L then x + y ⊆ L.
(ii) If x ⊆ L and y ⊆ R then x + y ⊆ C.
(iii) If x, y ⊆ R then x + y ⊆ R.

where C = [1/4, 3/4].

Incomplete equations:

consL(x)⊕ consL(y) = consL(· · ·)
consL(x)⊕ consR(y) = consC(· · ·)
consR(x)⊕ consL(y) = consC(· · ·)
consR(x)⊕ consR(y) = consR(· · ·)

Gaps filled:

consL(x)⊕ consL(y) = consL(x⊕ y)

consL(x)⊕ consR(y) = consC(x⊕ y)

consR(x)⊕ consL(y) = consC(x⊕ y)

consR(x)⊕ consR(y) = consR(x⊕ y)

Reduction to a single equation:

x⊕ y = pif head 1
2
(x) then pif head 1

2
(y) then consL(tailL(x)⊕ tailL(y))

else consC(tailL(x)⊕ tailR(y))
else pif head 1

2
(y) then consC(tailR(x)⊕ tailL(y))

else consR(tailR(x)⊕ tailR(y)),

In practice it may be convenient to use the more familiar notations

x < 1
2
, x/2, x/2 + 1/4, x/2 + 1

2
, min(2x, 1), and max(0, 2x− 1)

instead of

head 1
2
(x), consL(x), consC(x), consR(x), tailL(x), and tailR(x)

respectively, and even write 2x and 2x− 1 for the last two cases by an abuse
of notation. With this notation the above recursive definition becomes

x⊕ y = pif x < 1
2

then pif y < 1
2

then (2x⊕ 2y)/2
else (2x⊕ (2y − 1))/2 + 1/4

else pif y < 1
2

then ((2x− 1)⊕ 2y)/2 + 1/4
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else ((2x− 1)⊕ (2y − 1))/2 + 1
2

2

Example 20 (Multiplication) We now derive a recursive definition of mul-
tiplication, which is extended in the same way as average. During this example
juxtaposition means multiplication instead of concatenation. Again, the deriva-
tion follows the same pattern.

Initial observation:

(i) If x, y ⊆ L then xy ⊆ [0, 1/4].
(ii) If x ⊆ L and y ⊆ R then xy ⊆ [0, 1/2].
(iii) If x, y ⊆ R then xy ⊆ [1/4, 1].

Incomplete equations:

consL(x)× consL(y) = cons[0, 1/4](· · ·)
consL(x)× consR(y) = cons[0, 1/2](· · ·)
consR(x)× consL(y) = cons[0, 1/2](· · ·)
consR(x)× consR(y) = cons[1/4, 1](· · ·)

Gaps filled with expressions depending on x, y and xy:

consL(x)× consL(y) = cons[0, 1/4](xy)

consL(x)× consR(y) = cons[0, 1/2]

(
x + xy

2

)

consR(x)× consL(y) = cons[0, 1/2]

(
xy + y

2

)

consR(x)× consR(y) = cons[1/4, 1]

(
x + xy + y

3

)

Now we have to find a recursive definition of ternary average. In this case
there are eight cases to consider, but since the operation is permutative (per-
mutativity is the generalization of commutativity to n-ary operations), there
are really only four cases to consider. We omit the routine derivation and the
reduction to a single equation. 2

3.7 Computation rules for continuous words

The following lemma shows how to reduce expressions e denoting non-bottom
partial numbers to expressions of the form consa(e

′) with a 6= ⊥. Such an
expression is called a head-normal form. The idea is that if an expression e
has a head-normal form consa(e

′) then we know that its value is contained in a.
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Thus, a head-normal form is a partially evaluated expression. A better partial
evaluation of e is obtained by partially evaluating e′, obtaining a head-normal
form consb(e

′′), and applying rule (i) below to consa(consb(e
′′)) in order to

obtain the more informative head-normal form consab(e
′′) of e, and so on.

Lemma 21 For all non-maximal a, b ∈ I and all x ∈ I,

(i) consa(consb(x)) = consab(x)
(ii) taila(consb(x)) = Lω if b ≤ a
(iii) taila(consb(x)) = Rω if b ≥ a
(iv) taila(consb(x)) = consb/a(x) if a v b
(v) taila(consb(x)) = cons(atb)/a(tail(atb)/b(x)) if a ' b
(vi) headr(consa(x)) = tt if a < r
(vii) headr(consa(x)) = ff if a > r
(viii) pif tt then x else y = x
(ix) pif ff then x else y = y
(x) pif p then consa(x) else consb(y) =

consaub(pif p then consa/(aub)(x)
else consb/(aub)(y))

Proof. (i) This is the associativity law expressed in terms of left translations.
(ii) If b ≤ a then taila(bx) = 0 = [0, 1

2
]ω. (iii) Similar.

(iv) Equivalent to the fact that (bx)/a = (b/a)x.

(v) For all c ' x, consb(joinc(x)) = consb(c t x) = consb(c) t consb(x) =
joinbc(consb(x)), because left-translations preserve existing joins. Hence

taila(consb(x)) = joina(consb(x))/a = joinatb(consb(x))/a

= joinb((atb)/b)(consb(x))/a = consb(join(atb)/b(x))/a

= consb(cons(atb)/b(tail(atb)/b(x)))/a

= consatb(tail(atb)/b(x))/a = cons(atb)/a(tail(atb)/b(x))

The second step follows from the fact that joina(y) = joinatb(y) if a ' b and
b v y. The last step follows from the fact that (cy)/a = (c/a)y.

(vi–ix) Immediate. (x) It suffices to show that

consa(x) u consb(y) = consaub(consa/(aub)(x) u consb/(aub)(y))

Since left translations preserve meets and a = c(a/c) for all c, the result follows
by taking c = a u b. 2
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3.8 The lazy unit interval acting on the lazy real line

In this subsection we extend the results of the previous subsections from the
lazy unit interval to the lazy real line.

The concatenation operation

xy = κxy + µx

originally defined for x and y in the lazy unit interval makes sense for x and y
ranging over the lazy real line. With this extension, R becomes a monoid
too. But its prefix preorder does not coincide with its information order, and
it is due to this reason that we initially restricted ourselves to the lazy unit
interval. In fact, if y = ax this does not mean that y is contained in a. However,
if we know that x is in the lazy unit interval then y = ax do imply that y is
contained in a, even if y is not in the lazy unit interval. This is the content of
the following theorem.

Theorem 22 The map (x, y) 7→ xy : R × I → R is a (right) action of the
monoid (I, ·,⊥) on the monoid (R, ·, [0, 1]), inducing the information order
of R:

(i) For all x ∈ R and all y, z ∈ I, x⊥ = x and (xy)z = x(yz).
(ii) For all x, z ∈ R, x v z iff xy = z for some y ∈ I, such a y being unique

iff x is non-maximal.

Moreover, for all a ∈ R, the map riconsa : I → R⊥ defined by riconsa(x) = ax
preserves all meets and all existing joins. 2

Given x, z ∈ R with x v z and x non-maximal, denote the unique y ∈ I such
that xy = z by z/x.

For each non-maximal a ∈ R, define a strict continuous map irtaila : R⊥ → I
and a continuous non-strict map rrjoina : R⊥ → R⊥ by extending Lemma 14
in the obvious way, so that

irtaila(x) = x/a if x v a

Finally, for each non-maximal a ∈ R define a strict continuous map rrconsa :
R⊥ →R⊥ by

rrconsa(x) = ax

Proposition 23 For all non-maximal a ∈ R, the maps riconsa and irtaila
form a section-retraction pair, with rrjoina as the induced idempotent. 2
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Thus, I is a retract of R⊥, in many ways. In particular,

(i) ricons[0,1] : I → R⊥ is the inclusion,
(ii) irtail[0,1] : R⊥ → I is a “truncated projection”, and
(iii) rrjoin[0,1] : R⊥ →R⊥ is the co-extension of the truncated projection.

Example 24 (Addition) We obtain a recursive definition of addition in R⊥
by reducing addition to the average operation on I defined in Example 19. First
notice that

x + y = pif x < 0 ∨ y < 0 then 2
(

x+1
2

+ y+1
2

)
− 2

else pif x > 1 ∨ y > 1 then 2
(

x
2

+ y
2

)

else 2
(

x+y
2

)

where ∨ is “parallel or” [28]. Hence

x + y = pif x < 0 ∨ y < 0 then 2
(

x+1
2

+ y+1
2

)
− 2

else pif x > 1 ∨ y > 1 then 2
(

x
2

+ y
2

)

else 2 out(in(x)⊕ in(y))

where in = irtail[0,1] : R⊥ → I and out = ricons[0,1] : I → R⊥.

The operation out is of fundamental importance in this recursive definition; it
is this operation that makes the above recursive definition “get off the ground”.
More formally, this is a non-strict operation, and some non-strict operation
is needed if the fixed point operator (used to solve the above equation) is to
produce a non-bottom solution. If we want to avoid using intermediate maps
on the unit interval in recursive definitions of maps on the real line, we can use
the non-strict operation rrjoin to get off the ground. See example below. 2

Multiplication on R⊥ can be obtained in a similar way from multiplication
on I.

Example 25 (Logarithm) The following recursive definition of the loga-
rithm function logb, with b > 1, is based on [14]. We first reduce the cal-
culation of logb(x) for x arbitrary to a calculation of logb(x) for x ⊆ [1, b],
so that logb(x) ⊆ [0, 1], and then recursively consider the cases x =

√
x′ and

x =
√

bx′′. Notice that such x′ and x′′ are again contained in [1, b], and that
both cases hold iff x =

√
b iff x2 = b. Also, the reduction process diverges if x

contains non-positive numbers.

logb(x) = pif x > b then logb(x/b) + 1
else pif x < 1 then logb(bx)− 1

else rrjoin[0,1]

(
pif x2 < b then logb(x

2)
2

else logb(x
2/b)+1
2

)
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Recall that rrjoin[0,1](x) = max(0, min(x, 1)). The application of the map rrjoin
therefore seems redundant, because the tests preceding the recursive call of the
logarithm function in the argument of rrjoin would ensure that the result is
contained in [0, 1]. But the logarithm function is what the recursive definition is
defining and therefore it has to ensure that this is indeed the case. As explained
in Example 24, such a map is needed to “get off the ground”. 2

The head-normal forms for R⊥ are taken as the expressions of the form
riconsa(e).

Lemma 26 For all non-maximal a ∈ R and b ∈ I, and all x ∈ I,

(i) (a) rrconsa(rrconsb(x)) = rrconsab(x)
(b) rrconsa(riconsb(x)) = riconsab(x)
(c) riconsa(consb(x)) = riconsab(x)

(ii) irtaila(riconsb(x)) = Lω if b ≤ a
(iii) irtaila(riconsb(x)) = Rω if b ≥ a
(iv) irtaila(riconsb(x)) = consb/a(x) if a v b
(v) irtaila(riconsb(x)) = cons(atb)/a(tail(atb)/b(x)) if a ' b
(vi) rheadr(riconsa(x)) = tt if a < r
(vii) rheadr(riconsa(x)) = ff if a > r
(viii) pif tt then x else y = x
(ix) pif ff then x else y = y
(x) pif p then riconsa(x) else riconsb(y) =

riconsaub(pif p then riconsa/(aub)(x)
else riconsb/(aub)(y)

where the parallel conditional, the comparison map, and the head map for R⊥
are defined in the same way as for I. Notice that the above lemma is Lemma 21
with “r” and “i” inserted in appropriate places.

4 PCF extended with real numbers

We introduce two successive extensions of PCF, first with a type for the lazy
unit interval (Subsection 4.2) and then with a further type for the lazy real
line (Subsection 4.3). We also discuss the issues of canonical evaluation and of
deterministic evaluation of PCF programs containing parallel features (Sub-
sections 4.4 and 4.5 respectively).

For the reader’s convenience we introduce the basic notions of PCF needed in
this paper (Subsection 4.1). See [19] for an excellent textbook account to PCF.
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4.1 The programming language PCF

This section is based on [28], with minor adaptations and simplifications con-
venient to our needs, and can be safely skipped and used as a reference.

Given a collection of symbols called ground types, the set of types is the least
set containing the ground types and containing the formal expression (σ → τ)
whenever it contains σ and τ . The greek letters σ and τ range over types. We
let (σ1, . . . , σn, τ) stand for (σ1 → (σ2 → · · · (σn → τ) · · ·)).

Given a collection L of formal constants, each having a fixed type, and a family
of formal variables {ασ

i } (i ≥ 0) for each type σ, the L-terms are given by the
following inductive rules:

(i) Every variable ασ
i is an L-term of type σ.

(ii) Every constant of type σ is an L-term of type σ.
(iii) If M and N are L-terms of types (σ → τ) and σ respectively then (MN)

is an L-term of type τ .
(iv) If M is an L-term of type τ then (λασ

i M) is an L-term of type σ → τ .

When L is understood from the context it need not be used as a prefix. The
letters L, M , and N range over terms. The letter c range over constants. We
denote the fact that a term M has type σ by M : σ. Notice that every term has
a unique type. Terms of the form (MN) are called combinations. Terms of the
form (λαM) are called abstractions. Parentheses around combinations and
abstractions are sometimes omitted with the convention that juxtaposition
associates to the left. We also omit parentheses in type expressions with the
convention that → associates to the right.

The set of free variables of a term M is FV(M), inductively defined by

(i) FV(ασ
i ) = {ασ

i }
(ii) FV(c) = ∅
(iii) FV(MN) = FV(M) ∪ FV(N)
(iv) FV(λασ

i M) = FV(M)− {ασ
i }

A term M is closed if FV(M) = ∅ and open otherwise. Programs are closed
terms of ground type. The idea is that the ground types are the data types and
programs produce data, via the operational semantics. The remaining terms
are significant as subprograms.

[N/α]M is the result of replacing all free occurrences of the variable α in M
by N , making the appropriate changes in the bound variables of M so that
no free variables of N become bound.

28



4.1.1 The languages LDA, LPA and LPA+∃

The ground types for the language LDA are N and T, and its constants are

tt : T ff : T
ifσ : (T, σ, σ, σ) for σ ground
Yσ : (σ → σ) → σ for each σ
kn : N for each natural number n
(+1) : N → N, (−1) : N → N, (= 0) : N → T

The language LPA is the language LDA extended by the constants

pifσ : (T, σ, σ, σ) for σ ground

The language LPA+∃ is the language LPA extended with the constant

∃ : (N → T) → T

4.1.2 Denotational semantics

A collection of domains for PCF is a family {Dσ}σ of domains, one for each
type σ, such that Dσ→τ = [Dσ → Dτ ]. It is standard if DT is the flat domain
of truth values and DN is the flat domain of natural numbers.

An interpretation of a language L is a collection {Dσ}σ of domains for PCF
together with a mapping

c 7→AJcK : L → ⋃
σ

{Dσ}

which is type-respecting, in the sense that if c : σ then AJcK ∈ Dσ.

An interpretation is standard if it interprets the constants tt, ff , ifσ, Yσ,
kn, (+1), (−1), (= 0), pifσ and ∃ respectively as tt, ff, the sequential condi-
tional, the fixed point operator, the natural number n, the successor function,
the predecessor function, the test for zero, the parallel conditional and the
continuous existential quantifier (whose definition is deliberately omitted).

An interpretation 〈{Dσ}σ,A〉 induces a denotational semantics Â for L.

First, the set Env of environments is the set of type-respecting functions from
the set of variables to

⋃
σ{Dσ}. It is ranged over by ρ. If α : σ and x ∈ Dσ

then ρ[x/α] is the environment which maps α to x and any other variable α′

to ρ(α′). The undefined environment ⊥ maps each variable of type σ to the
bottom element of the domain Dσ.
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The denotational semantics

M 7→
(
ρ 7→ ÂJMK(ρ)

)
: Terms → (Env → ⋃

σ

{Dσ})

is inductively defined by:

(i) ÂJαK(ρ) = ρ(α)
(ii) ÂJcK(ρ) = AJcK
(iii) ÂJMNK(ρ) = ÂJMK(ρ)

(
ÂJNK(ρ)

)

(iv) ÂJλαMK(ρ)(x) = ÂJMK(ρ[x/α]) (with x ∈ Dσ if α : σ)

Informally,

(i) A variable denotes what the environment assigns to it.
(ii) A constant denotes what the interpretation assigns to it.
(iii) If a term M denotes the function f : D → E and a term N denotes the

value x ∈ D then the combination MN denotes the value f(x) ∈ E.
(iv) If a term M denotes the value yx ∈ E in an environment which assigns

the value x ∈ D to the variable α, then the abstraction λαM denotes the
function f : D → E defined by f(x) = yx.

If M is closed then its denotation does not depend on the environment, in the
sense that ÂJMK(ρ) = ÂJMK(ρ′) for all ρ and ρ′.

In order to simplify notation, we let JMK stand for the denotation ÂJMK(⊥)
of a closed term M with respect to an implicit semantics Â. Also, for any
term M , we let JMK(ρ) stand for ÂJMK(ρ).

4.1.3 Operational semantics

The operational semantics of LDA is given by an immediate reduction relation,
defined by the following rules:

(i) (λαM)N → [N/α]M
(ii) YM → M(YM)
(iii) (+1)kn → kn+1, (−1)kn+1 → kn

(iv) (= 0)k0 → tt, (= 0)kn+1 → ff
(v) if ttMN → M , if ffMN → N

(vi) M → M ′
MN → M ′N , N → N ′

MN → MN ′ if M is if , (+1), (−1) or (= 0)

We omit the reduction rules of the languages LPA and LPA+∃. The reduction
relation preserves types, in the sense that if M → M ′ and M has type σ, so
does M ′.
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Evaluation is given by a partial function Eval from programs to constants,
defined by

Eval(M) = c iff M →∗ c

It is well-defined because if M →∗ c and M →∗ c′ then c = c′.

The following theorem is often referred to as the Adequacy Property of PCF.
It asserts that the operational and denotational semantics coincide.

Theorem 27 (Plotkin [28], Theorem 3.1) For any LDA program M and
constant c,

Eval(M) = c iff JMK = JcK.

Proof. Lemma 29 below. 2

The following definitions are introduced to formulate and prove Lemma 29.

The predicates Compσ are defined by induction on types by:

(i) If M : σ is a program then M has property Compσ iff JMK = JcK implies
Eval(M) = c.

(ii) If M : σ → τ is a closed term it has property Compσ→τ iff whenever
N : σ is a closed term with property Compσ then MN is a term with
property Compτ .

(iii) If M : σ is an open term with free variables α1 : σ1, . . . , αn : σn then it
has property Compσ iff [N1/α1] · · · [N2/αn]M has property Compσ when-
ever N1, . . . , Nn are closed terms having properties Compσ1

, . . ., Compσn

respectively.

A term of type σ is computable if it has property Compσ.

If M : σ → τ and N : σ are closed computable terms, so is MN and also a
term M : (σ1, . . . , σn, τ) is computable iff M̃N1 . . . Nn is computable whenever
the terms N1 : σ1, . . . , Nn : σn are closed computable terms and M̃ is a closed
instantiation of M by computable terms.

In the following definitions α has to be chosen as some variable of appropriate
type in each instance. Define terms Ωσ by Ωσ = Yσ(λαα) for σ ground and
Ωσ→τ = λαΩτ , and define terms Y(n)

σ by Y(0)
σ = Ωσ and Y(n+1)

σ = λα(Y(n)
σ α).

Then JYσK =
⊔

nJYn
σK for any standard interpretation.
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Now define the syntactic information order 4 as the least relation between
terms such that

(i) Ωσ 4 M : σ and Y(n)
σ 4 Yσ,

(ii) M 4 M , and
(iii) if M 4 M ′ : σ → τ and N 4 N ′ : σ then λαN 4 λαN ′ and also

MN 4 M ′N ′.

Lemma 28 (Plotkin [28], Lemma 3.2) If M 4 N and M → M ′ then
either M ′ 4 N or else for some N ′, N → N ′ and M ′ 4 N ′.

Proof. By structural induction on M and cases according to why the imme-
diate reduction M → M ′ takes place. 2

We include the proof of the following lemma since we are going to extend it
to PCF with real numbers:

Lemma 29 (Plotkin [28], Lemma 3.3) Every LDA-term is computable.

Proof. By structural induction on the formation rules of terms:

(1) Every variable is computable since any closed instantiation of it by a
computable term is computable.

(2) Every constant other than the Yσ’s is computable. This is clear for con-
stants of ground type. Out of +1, −1, = 0, and if we only consider −1 as an
example. It is enough to show (−1)M computable when M is a closed com-
putable term of type N. Suppose J(−1)MK = JcK. Then c = km for some m
and so JMK = m + 1. Therefore as M is computable, M →∗ km+1 and so
(−1)M →∗ km = c.

(3) If M : σ → τ and N : σ are computable, so is the combination MN . If
MN is closed so are M and N and its computability follows from clause ii of
the definition of computability. If it is open, any closed instantiation L of it by
computable terms has the form M̃Ñ where M̃ and Ñ are closed instantiations
of M and N respectively and therefore themselves computable which in turn
implies the computability of L and hence of MN .

(4) If M : τ is computable, so is the abstraction λαM . It is enough to show
that the ground term LN1 · · ·Nn is computable when N1, · · · , Nn are closed
computable terms and L is a closed instantiation of λαM by computable
terms. Here L must have the form λαM̃ where M̃ is an instantiation of all
free variables of M , except α, by closed computable terms. If JLN1 · · ·NnK =
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JcK, then we have J[N1/α]M̃N2 · · ·NnK = JLN1 · · ·NnK = JcK. But [N1/α]M̃
is computable and so too therefore is M̃N2 · · ·Nn. Therefore LN1 · · ·Nn →
[N1/α]M̃N2 · · ·Nn →∗ c, as required.

(5) Each Yσ is computable. It is enough to prove YσN1 · · ·Nk is computable
when N1, · · · , Nk are closed computable terms and YσN1 · · ·Nk is ground.
Suppose JYN1 · · ·NkK = JcK. Since JYσK =

⊔
nJYn

σK, JY(n)N1 · · ·NkK = JcK
for some n. Since JΩσK = ⊥ for σ ground, Ωσ is computable for σ ground.
From this and (1), (3), and (4) proved above it follows that every Ωσ and
Y(n)

σ is computable. Therefore Y(n)N1 · · ·Nk →∗ c and so by Lemma 28,
YN1 · · ·Nk →∗ c, concluding the proof. 2

This lemma extends to the languages LPA and LPA+∃. It suffices to show that
pif and ∃ are computable, with respect to appropriate reduction rules.

4.2 The programming language PCFI

We let L range over the languages LDA, LPA and LPA+∃, and LI denote the
extension of L with a new ground type I and the following new constants:

(i) consa : I → I
(ii) taila : I → I
(iii) headr : I → T
(iv) pif I : (T, I, I, I)

for each non-bottom a ∈ I with distinct rational end-points and each rational
r ∈ (0, 1). We refer to the ground type I as the real number type, and to
programs of real number type as real programs.

4.2.1 Denotational semantics

We let DI = I and we extend the standard interpretation A of L to LI by

(i) AJconsaK = consa

(ii) AJtailaK = taila
(iii) AJheadrK = headr

(iv) AJpif IKpxy = pif p then x else y
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4.2.2 Operational semantics

We extend the immediate reduction relation → of L to LI by the following
rules:

(i) consa(consbM) → consab M
(ii) taila(consbM) → YconsL if b ≤ a
(iii) taila(consbM) → YconsR if b ≥ a
(iv) taila(consbM) → consb/a M if a v b and a 6= b
(v) taila(consbM) → cons(atb)/a(tail(atb)/b M)

if a ' b, a 6v b, b 6v a, b 6≤ a, and a 6≤ b

(vi) headr(consaM) → tt if a < r
(vii) headr(consaM) → ff if a > r
(viii) pif ttMN → M , pif ffMN → N
(ix) pif L (consaM) (consbN) →

consaub(pif L (consa/(aub) M) (consb/(aub) N))
if a u b 6= ⊥

(x) N → N ′
MN → MN ′ if M is consa, taila, headr or pif

(xi) M → M ′
pifLM → pifLM ′ N → N ′

pifLMN → pifLMN ′

These rules are well-defined by virtue of Lemma 3 and because the extra
conditions on them which are not present in Lemma 21 ensure that no bottom
elements and no maximal elements are produced as subscripts of cons or tail.
It may seem that there is a missing self-evident reduction rule for taila, namely
the rule taila(consaM) → M ; see remark after Lemma 35.

Notice that the immediate reduction rules for the parallel conditional are non-
deterministic. The following lemma shows that this non-determinism does not
produce inconsistencies:

Lemma 30 M → N implies JMK(ρ) = JNK(ρ) for all terms M and N and
any environment ρ.

Proof. This is true for the language L, and remains true for the extended
language LI by virtue of Lemma 21. 2

The partial map Eval on programs M of truth-value and natural number type
is defined in the same way as for L. It is well-defined by virtue of Lemma 30,
because no two different constants have the same interpretation. We extend
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Eval to a multi-valued map on real programs M by

Eval(M) = {a ∈ I|M →∗ consaM
′ for some M ′};

that is, a ∈ Eval(M) iff M has a head-normal form consaM
′.

4.2.3 Soundness of the operational semantics

Lemma 31 For all real programs M , a ∈ Eval(M) implies a v JMK.

Proof. By Lemma 30, if M →∗ consaM
′ then JMK = JconsaM

′K = aJM ′K.
Therefore a v JMK, because the information order on partial numbers coin-
cides with the prefix preorder. 2

Theorem 32 (Soundness) For any real program M ,

⊔
Eval(M) v JMK

Proof. The join exists because JMK is an upper bound of the set Eval(M).
Therefore the result follows from Lemma 31. 2

4.2.4 Completeness of the operational semantics

By virtue of Lemma 31, for any real program M we have that Eval(M) is empty
if JMK = ⊥. The following theorem states a stronger form of the converse:

Theorem 33 (Completeness) For any real program M ,

⊔
Eval(M) w JMK

Proof. Lemma 35 below. 2

The soundness and completeness properties in the senses of Theorems 32
and 33 can be referred together as the Adequacy Property.

Theorem 34 PCF extended with real numbers enjoys the Adequacy Property.

The recursive definitions given in Examples 18, 19, 20, 24, and 25 give rise
to PCF programs in the obvious way. It would be a formidable task to syn-
tactically prove the correctness of the resulting programs by appealing to the
operational semantics given by the reduction rules. However, a mathematical
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proof of the correctness of a recursive definition allows us to conclude that the
induced programs indeed produce correct results, via an application of the
Adequacy Theorem. In fact, this is the point of denotational semantics.

We extend the inductive definition of the predicates Compσ by the following
clause:

A real program M has property CompI if for every non-bottom partial
number x ¿ JMK (as close to JMK as we please) there is some a ∈ Eval(M)
with x v a.

If we read the relation x ¿ y as “x is a piece of information about y” then
the above definition says that a real program is computable if every piece of
information about its value can be produced in a finite number of reduction
steps.

The domain-theoretic justificative for continuity of computable functions is
that it is a finiteness condition [29,32,34,35]; a function f is continuous if a
finite amount of information about f(x) depends only on a finite amount of
information about x. The continuity of a domain, which amounts to its way-
below relation being well-behaved, gives us a general and abstract framework
for consistently talking about “pieces of information”. Then it should come as
no surprise that Lemma 35 makes essential use of the way-below relation and
of the continuity of the primitive functions.

The following lemma, which extends Lemma 29, establishes the Completeness
Theorem:

Lemma 35 Every term is computable.

Proof. It suffices to extend the inductive proof of Lemma 29. We have to:

(i) slightly modify the proof for the case of abstractions, because it mentions
constants and we have added new constants;

(ii) extend the proof of computability of the terms Yσ to the new types; and
(iii) show that the new constants are computable.

(i) If M is computable so is λαM :

It is enough to show that the ground term LN1 · · ·Nn is computable when
N1, · · · , Nn are closed computable terms and L is a closed instantiation of λαM
by computable terms. Here L must have the form λαM̃ where M̃ is an in-
stantiation of all free variables of M , except α, by closed computable terms.
Since [N1/α]M̃ is computable, so is [N1/α]M̃N2 · · ·Nn. Since LN1 · · ·Nn →
[N1/α]M̃N2 · · ·Nn and the reduction relation preserves meaning, in order to
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evaluate LN1 · · ·Nn it suffices to evaluate [N1/α]M̃N2 · · ·Nn.

(ii) Yσ is computable for all new types:

In order to prove that Yσ is computable for all new types it suffices to show
that the term Y(σ1,...,σk,I)N1 · · ·Nk is computable whenever N1 : σ1, . . . , Nk : σk

are closed computable terms.

It follows from (i) above that the terms Y(n)
σ are computable for all new types,

because the proof of computability of Y(n)
σ for old types depends only on the

fact that variables are computable and that the combination and abstraction
formation rules preserve computability.

The syntactic information order 4 on L extends to LI , and Lemma 28 is easily
seen to remain true by a routine extension of its inductive proof.

Let x ¿ JYN1 · · ·NkK be a non-bottom partial number. By a basic property
of the way-below relation of any continuous dcpo, there is some n such that
x ¿ JY(n)N1 · · ·NkK, because JYK =

⊔
nJY(n)K. Since Y(n) is computable,

there is a c ∈ Eval(Y(n)N1 · · ·Nk) with x v c. Since there is a term M with
Y(n)N1 · · ·Nk →∗ conscM and Y(n) 4 Y, it follows from Lemma 28 that
YN1 · · ·Nk →∗ conscM for some M and therefore c ∈ Eval(YN1 · · ·Nk).

(iii) The new constants are computable:

In order to prove that one of the new constants c is computable it suffices to
show that if M1, . . . , Mn are closed computable terms such that cM1 . . .Mn

has real number type, then cM1 . . .Mn is computable.

(iii)(a) consa is computable:

Let M be a computable real program and let x ¿ JconsaMK = aJMK be
a non-bottom partial number. We have to produce c ∈ Eval(consaM) with
x v c. Let b ¿ JMK with x ¿ ab. If b = ⊥ then we can take c = a.
Otherwise let b′ ∈ Eval(M) with b v b′. Then we can take c = ab′, because
consaM →∗ consa(consb′M

′) → consab′M
′ for some M ′.

(iii)(b) taila is computable:

Let M be a computable real program and let y ¿ JtailaMK = taila(JMK) be a
non-bottom partial number. We have to produce c ∈ Eval(tailaM) with y v c.
Since taila is continuous, there is some x ¿ JMK such that y ¿ taila(x). Let
b ∈ Eval(M) with x v b. It follows that b 6v a, because y 6= ⊥ and if b v a
then y ¿ taila(x) v taila(b) v taila(a) = ⊥. Then exactly one of the following
four cases holds:

(t1) b ≤ a
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(t2) a ≤ b
(t3) a v b
(t4) a ' b, a 6v b, b 6≤ a, and a 6≤ b

which have the following proofs:

(t1) In this case tailaM →∗ taila(consbM
′) → YconsL for some M ′. Hence

y ¿ JtailaMK = JYconsLK. Since YconsL is a computable term, there
is some c ∈ Eval(YconsL) ⊆ Eval(tailaM) with y v c.

(t2) This case is handled similarly.
(t3) Since x v b, we have that taila(x) v taila(b) = b/a, and since y v taila(x),

we have that y v b/a. Therefore we can take c = b/a, because tailaM →∗

taila(consbM
′) → consb/aM

′ for some M ′.
(t4) Since x v b, we have that taila(x) v taila(b) = (a t b)/a, and since

y v taila(x), we have that y v (a t b)/a. Therefore we can take c = (a t
b)/a, because tailaM →∗ taila(consbM

′)) → cons(atb)/a(tail(atb)/bM
′)

for some M ′.

(iii)(c) headr is computable:

Assume that JheadrMK = headr(JMK) 6= ⊥ for a computable real program M .
Then there is an x ¿ JMK such that either x < r or else x > r, because headr

is continuous. Let c ∈ Eval(M) with x v c. Then either c < r or else c > r.
Hence there is some M ′ such that either headrM →∗ headr(conscM

′) → tt
or else headrM →∗ headr(conscM

′) → ff respectively. Therefore if x < r
then Eval(headrM) = tt and if x > r then Eval(headrM) = ff .

(iii)(d) pif is computable:

It suffices to show that pifLMN is computable whenever JLK = ⊥ and M
and N are computable programs, because the case JLK 6= ⊥ is immediate. Let
x ¿ JpifLMNK. Then x ¿ JMK u JNK. Hence x ¿ JMK and x ¿ JNK. Let
a ∈ Eval(M) and b ∈ Eval(N) with x v a and x v b. Then x v a u b and
a u b ∈ Eval(pifLMN), because pifLMN →∗ pifL(consaM)(consbN) →
consaub(pifL(consa/(aub)M)(consb/(aub)N)).

This concludes the proof of Lemma 35. 2

The proof for taila implicitly shows that a reduction rule taila(consaM) → M
would be useless. This can be explicitly explained as follows. If M denotes⊥, so
does taila(consaM). Hence there is no point in reducing taila(consaM) before
reducing M to a head-normal form. If M has a head-normal form conscM

′,
then taila(consaM) reduces to taila(consacM

′), which in turn reduces to
conscM

′. In practice, However, this rule (and possibly more rules) can be
included for efficiency reasons.
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4.3 The programming language PCFR

We let LR denote the extension of LI with a new ground type R and the
following new constants:

(i) rrconsa : R → R
(ii) riconsa : I → R
(iii) irtaila : R → I
(iv) rheadr : R → T
(v) pifR : (T,R,R,R)

for each a ∈ R with distinct rational end-points and each rational number r.

We let DR = R⊥ and we extend the standard interpretation A of LI to LR in
the obvious way:

(i) AJrrconsaK = rrconsa

(ii) AJriconsaK = riconsa

(iii) AJirtailaK = irtaila
(iv) AJrheadrKx = rheadr

(v) AJpifRKpxy = pif p then x else y

The reduction rules for LR are given by Lemma 26, with the same restric-
tions as for the reduction rules for LI . The Computability Lemma 35 and the
Adequacy Theorem 34 routinely generalize to LR.

4.4 Canonical evaluation

Although we have that for all real programs M and N ,

JMK = JNK iff
⊔

Eval(M) =
⊔

Eval(N),

it is not the case that JMK = JNK iff Eval(M) = Eval(N). (But JMK = JNK iff
Eval(M) and Eval(N) are cofinal.) Moreover, Eval(M) may contain some in-
tentional information. For example, suppose that a program M : I denotes 1/2.
Then it can be the case that Eval(M) contains L (take M = consL(YconsR)).
In this case we can observe that JMK ≤ 1/2, which is certainly not an observ-
able property of 1/2 [1,34,35,38]. In fact, this property is not observable in
the evaluation of all programs denoting 1/2 (the program M = YconsC is a
counter-example).
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Both problems can be solved by hiding the intensional information contained
in Eval(M) as follows. Add an immediate reduction rule

consaM → consb(consa/bM) if b v a and b 6= a,

and define a strong head-normal form to be a real program of the form
consa(consbM) with 0 < b < 1. It follows that a real program M has a
strong head-normal form consa(consbM

′) iff a ¿ JMK, because a ¿ x iff
there is some b such that 0 < b < 1 and ab v x. Now, for all real programs M ,
define

Eval′(M) = {a ∈ I|M has a strong head-normal form consa(consbM
′)}.

With this definition it is immediate that
⊔

Eval′(M) =
⊔

Eval(M) and

JMK = JNK iff Eval′(M) = Eval′(N),

because

Eval′(M) = {a ∈ I|a ¿ JMK and a has distinct rational end-points}.

It is also possible to show that, for any standard enumeration of the rational
numbers, the set Eval′(M) is recursively enumerable. Recall that an enumera-
tion r0, r1, . . . , rn, . . . of the rational numbers is standard if there are recursive
maps s, p, q : N→ N such that

rn = (−1)s(n) p(n)

q(n)
,

and recall that the basic operations and predicates on rational numbers are
recursive with respect to any standard enumeration. In order to prove that
Eval′(M) is recursively enumerable it is necessary to assign Gödel numbers
to terms and show that the reflexive and transitive closure of the immediate
reduction relation is recursively enumerable with respect to the Gödel num-
bering.

In practice we do not need this modification, because the intensional infor-
mation present in Eval(M) is not accessible within the language. In fact, it is
even desirable to shorten the set Eval(M); see the subsection below.

4.5 Deterministic evaluation

By imposing a strategy on the application of the reduction rules, it is possible
to eliminate the non-determinism and turn Eval(M) into a finite or infinite

40



sequence with the partial number JMK as its iterated concatenation, for any
real program M . We omit the details; but see below. For efficiency reasons, any
practical functional programming language for exact real number computation
based on the above ideas should have its evaluation implemented in this way.

The papers [8] and [22] give practical and theoretical explanations for the need
of non-deterministic or parallel features in real number computation when we
do not allow intensional operations. Notice that Bishop and Bridges [6] need
an intensional operation in order to do constructive analysis, even for defining
the basic operations on real numbers.

The above strategy eliminates the non-determinism of evaluation at the cost
of simulating the parallel evaluation of the condition and the branches of the
parallel conditional, until either the condition becomes true or false, or else
both branches become a head-normal form. Perhaps it is possible to make
use of abstract interpretation [2] in order to eliminate some instances of the
parallelism.

5 Concluding remarks and further work

A useful extension of PCF with real numbers should be fully abstract and have
all computable elements and functions definable. We are currently investigat-
ing the definability credentials of our extension. Our notion of computability
is taken from [33]. We already know that the computable real numbers, the
basic arithmetic operations, some trigonometric functions, and the logarith-
mic functions are definable. We conjecture that LR

PA+∃ has all computable
elements and functions definable (and therefore it is fully abstract).

Such an extension would be useful to mechanize the ideas presented in [10–
12]. In an ongoing joint work with A. Edalat [13], we have shown that it is
relatively easy to extend the language presented in this paper with a primitive
for Riemann integration, by using the methods presented in [11]. We are also
investigating methods for handling the more general theory of integration
presented in loc. cit. within the language introduced in this paper.

Although such an approach to exact real number computation may seem to
produce inefficient programs, it nevertheless provides a theoretical tool to
prove computability without resorting to awkward indexings or representa-
tions. Recall that we do not need to know the operational semantics of the
language in order to program in it, although it may be desirable to know it
in order to obtain efficient programs. Once we know how to solve a prob-
lem theoretically, we can proceed to translate the solution to a real-life pro-
gramming imperative language. Moreover, we do think that it is possible to
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extend real-life functional programming languages such as Haskell, Miranda,
ML [5,27] with a relatively efficient treatment of real numbers based on con-
tinuous words, so that the theoretical solution can be readily used in practice.
In such an approach it is desirable to include the basic arithmetic operations
and other usual functions occurring in analysis as primitive.

In an even more practical approach, we can restrict ourselves to the partial real
numbers with floating-point end-points. But we cannot hope Theorem 33 to
hold, due to the presence of round-off errors (equivalently, due to the fact that
there are finitely many floating-point numbers). Nevertheless, any produced
result is guaranteed to be a correct partial realization of the ideal result. We
emphasize that the best produced result can be worse than the best machine
representable partial realization, this time due to round-off errors alone. More-
over, two distinct programs with the same value can concretely evaluate to
distinct partial realizations of their ideal value, again due to round-off errors. In
fact, the (correct) restriction of the concatenation operation to floating-point
partial numbers does not satisfy the associativity property; it only satisfies
the subassociativity law (xy)z v x(yz), in such a way that the fundamen-
tal computation rule consa(consb(x)) → consab(x) introduces information loss.
Such an implementation of PCF extended with real numbers is close to the
ideas presented in [25]. Notice that Interval Analysis as introduced in loc. cit.
remains an active area of research.

Since Automata Theory is based on monoids of words, it seems plausible that
the monoid of continuous words could also be used to generalize automata to
real numbers in a natural way.
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