
Abstract Datatypes for Real Numbers
in Type Theory

Mart́ın Hötzel Escardó1 and Alex Simpson2

1 School of Computer Science, University of Birmingham
2 LFCS, School of Informatics, University of Edinburgh

Abstract. We propose an abstract datatype for a closed interval of
real numbers to type theory, providing a representation-independent ap-
proach to programming with real numbers. The abstract datatype re-
quires only function types and a natural numbers type for its formula-
tion, and so can be added to any type theory that extends Gödel’s Sys-
tem T. Our main result establishes that programming with the abstract
datatype is equivalent in power to programming intensionally with rep-
resentations of real numbers. We also consider representing arbitrary real
numbers using a mantissa-exponent representation in which the mantissa
is taken from the abstract interval.

1 Introduction

Exact real-number computation uses infinite representations of real numbers
to compute exactly with them, avoiding round-off errors [16,2,3]. In practice,
such representations can be implemented as streams or functions, allowing any
computable (and hence a fortiori continuous) function to be programmed.

This approach of programming with representations of real numbers has
drawbacks from the programmer’s perspective. Great care must be taken to
ensure that different representations of the same real number are treated equiv-
alently. Furthermore, a programmer ought to be able to program with real num-
bers without knowing how they are represented, leading to more transparent
programs, and also allowing the underlying implementation of real-number com-
putation to be changed, e.g., to improve efficiency. In short, the programmer
would like to program with an abstract datatype of real numbers.

Various interfaces for an abstract datatype for real numbers have been in-
vestigated in the context of typed functional programming languages based on
PCF, e.g., [6,7,10,8,1,9], making essential use of the presence of general recur-
sion. In this paper, we consider the more general scenario of typed functional
programming with primitive recursion. This generality has the advantage that
it can be seen as a common core both to standard functional programming lan-
guages with general recursion (ML, Haskell, etc.), and also to the type theories
used in dependently-typed programming languages such as Agda [4], and proof
assistants such as Coq [13], in which all functions are total.

To maximize generality, we keep the type theory in this paper as simple
as possible. Our base calculus is just simply-typed λ-calculus with a base type

of natural numbers, otherwise known as Gödel’s System T. To this, we add a
new type constant I, which acts as an abstract datatype for the interval [−1, 1] of
real numbers, together with an associated interface of basic operations. Our main
result (Theorem 1) establishes that programming with the abstract datatype is
equivalent in power to programming intensionally with representations of reals.

The development in this paper builds closely on our LICS 2001 paper [11],
where we gave a category-theoretic universal property for the interval [−1, 1].
The interface we provide for the type I is based directly on the universal property
defined there. In [11], the definability power of the universal property was already
explored, to some extent, via a class of primitive interval functions on [−1, 1],
named by analogy to the primitive recursive functions. The role of a crucial
doubling function was identified, relative to which all continuous functions on
[−1, 1] were shown to be primitive-interval definable relative to oracles N→ N.

The new departure of the present paper is to exploit these ideas in a type-
theoretic context. The cumbersome definition of primitive interval functions is
replaced by a very simple interface for the abstract datatype I (Sect. 3). The
role of the doubling function is again crucial, with its independence from the
other constants of the interface now being established by a logical relations ar-
gument (proof of Prop. 4). And the completeness of the interface once doubling
is added (Theorem 1) is now established relative to the setting at hand (Sys-
tem T computability) rather than relative to oracles (Sect. 4). In addition, we
show that the type theoretic framework provides a natural context for proving
equalities between functions on reals (based on the equalities in Fig. 2), and
for programming on the full real line R via a mantissa-exponent representation
(Sect. 5).

2 Real-number Computation in System T

In this section, we recall how exact real-number computation is rendered possi-
ble by choosing an appropriate representation of real numbers. A natural first
attempt would be to represent real numbers using streams or functions to im-
plement one of the standard digit representations (decimal, binary, etc.). For
example, a real number in [0, 1] would be represented via a binary expansion as
an infinite sequence of 0s and 1s. As is well known (see, e.g., [5,6,7]), however,
such representations makes it impossible to compute even simple functions (on
the interval) such as binary average on real numbers. The technical limitation
here is that there is no continuous function {0, 1}ω × {0, 1}ω → {0, 1}ω that
given sequences α, β as input, representing x, y ∈ [0, 1] respectively, returns a
representation of x+y2 as result. In general, it is impossible to return even a single
output digit without examining all (infinitely many) input digits.

This problem is avoided by choosing a different representation. To be ap-
propriate for computation, any representation must be computably admissible
in the sense of [15]. Each of the examples below is a computably admissible
representation of real numbers, in the interval [−1, 1], using streams:

q0 : q1 : q2 : q3 : q4 : q5 : . . .

type I = [Int] -- Represents [-1,1] in binary using digits -1,0,1.

minusOne, one :: I

minusOne = repeat (-1)

one = repeat 1

type J = [Int] -- Represents [-n,n] in binary using digits |d| <= n

divideBy :: Int -> J -> I

divideBy n (a:b:x) = let d = 2*a+b

in if d < -n then -1 : divideBy n (d+2*n:x)

else if d > n then 1 : divideBy n (d-2*n:x)

else 0 : divideBy n (d:x)

mid :: I -> I -> I

mid x y = divideBy 2 (zipWith (+) x y)

bigMid :: [I] -> I

bigMid = (divideBy 4).bigMid’

where bigMid’((a:b:x):(c:y):zs) = 2*a+b+c : bigMid’((mid x y):zs)

affine :: I -> I -> I -> I

affine a b x = bigMid [h d | d <- x]

where h (-1) = a

h 0 = mid a b

h 1 = b

Fig. 1. Haskell programs using signed binary notation

of discrete data.

1. Fast Cauchy sequences: Require qi to be rational numbers in [−1, 1] such
that |qi+1−qi| ≤ 2−i for all i. The stream represents the real number limi qi.

2. Signed binary: Require qi ∈ {−1, 0, 1}. The stream represents the real num-
ber

∑
i≥0 2−(i+1) qi.

Many other variations are possible. Crucially, all computably admissible repre-
sentations are computably interconvertible. For representations used in practice,
the conversions can be defined in System T.

Both to illustrate the style of programming that is required with such rep-
resentations, and for later reference, Fig. 1 presents some simple functions on
real numbers, in Haskell, using signed binary notation. The code defines a type
I for the interval [−1, 1], and constants one and minusOne of type I, for the
streams 1:1:1:1:1:. . . and -1:-1:-1:-1:-1:. . . , which represent 1 and −1 re-
spectively. The function mid represents the binary average function, for which
we use a convenient algebraic notation:

x⊕ y =
x+ y

2
.

The function bigMid maps infinite streams of real numbers to real numbers, and
represents the function M: [−1, 1]ω → [−1, 1] defined by

M((xn)n) =
∑
n≥0

xn
2n+1

.

Finally, affine represents aff : [−1, 1]→ [−1, 1]→ [−1, 1]→ [−1, 1] defined by

aff x y z =
(1− z)x+ (1 + z) y

2
.

The type J and function divideBy just provide auxiliary machinery.
At this point, the selection of example functions in Fig. 1 will appear peculiar.

The reasons behind the choice will be clarified in Sect. 3.
Although presented in Haskell, the above algorithms can be formalized in al-

most any type theory containing a type of natural numbers and function types.
Moreover, the recursive structure of the algorithms is tame enough to be formu-
lated using primitive recursion. Thus a natural basic type theory for studying
this approach to real number computation is Gödel’s System T, see, e.g., [12],
which is simply-typed λ-calculus with a natural numbers type with associated
primitive recursion operator. Since this type theory will form the basis of the
rest of the paper we now review it in some detail.

Types (we include product types for convenience in Sect. 5) are given by:

σ ::= N | σ × τ | σ → τ .

These have a set-theoretic semantics with types being interpreted by their set-
theoretic counterparts:

[[N]] = N [[σ × τ]] = [[σ]]× [[τ]] [[σ → τ]] = [[σ]]→ [[τ]] .

We use standard notation for terms of the simply-typed λ-calculus; e.g., we
write Γ ` t : τ to mean that term t has type τ in type context Γ . The constants
associated with the type N are:

0 : N s : N→ N primrecσ : σ → (σ → N→ σ)→ N→ σ

with semantics defined by:

[[0]] = 0 [[s]] n = n+ 1

[[primrec]] x f 0 = x [[primrec]] x f (n+ 1) = f ([[primrec]] x f n) n .

We have two main interests in System T. The first is that it serves as a basic
functional programing language, for which, the standard strongly normalizing
and confluent β-reduction relation is used. The second is that System T serves
as the basis of a formal system for reasoning about equality between functions.
For this, we introduce axioms and rules for deriving typed equations of the form
Γ ` t = u : σ between terms t, u such that Γ ` t : σ and Γ ` u : σ. These rules
include the usual ones asserting that equality is a typed congruence relation.
Also, whenever Γ ` t : σ and t β-reduces to u, we have an equation Γ ` t = u : σ.
Finally, we add extensionality equations, which comprise the usual η-equalities
for product and function types, together with the rule below, which asserts the
uniqueness of the primrec iterator.

Γ ` t u v 0 = u : σ Γ, x :N ` t u v (s(x)) = v u (t u v x) : σ

Γ ` t u v = primrec u v : N→ σ

(The types of the component terms are not stated explicitly since they can be
inferred from the context.)

The term language of System T, in the version we are considering, can be
interpreted in any cartesian-closed category with natural numbers object; and
our equational rules are sound and complete with respect to such interpretations.

Exact-real-number computation can be carried out in System T by encoding
any of the usual computably admissible representation of [−1, 1] using the type
N→ N, and these representations are all interconvertible in System T.

We examine just the case of signed binary in detail. We consider a function
α : N→ N as encoding the signed binary stream

((α(0) mod 3)−1) : ((α(1) mod 3)−1) : ((α(2) mod 3)−1) : ((α(3) mod 3)−1) : . . .

All the Haskell programs in Fig. 1 are then routinely translatable into System T
terms of appropriate type. (Just a little effort is needed to translate the general
recursion into uses of primrec.)

Consider the function real : (N→ N)→ [−1, 1] defined by

real(α) =
∑
i≥0

2−(i+1) ((α(i) mod 3)− 1) .

We say that a function f : [−1, 1]k → [−1, 1] is T-representable if there exists a
closed term t : (N→ N)k → N→ N making the following diagram commute.

(N→ N)k
[[t]]- (N→ N)

[−1, 1]k

realk

?

f
- [−1, 1]

real

?

Since the vertical maps are topological quotients relative to the product (Baire
space) topology on N → N, and every T-definable [[t]] is continuous, it follows
that every T-representable function f is continuous.

The programs in Fig. 1, when recast as System T terms, provide examples
of representations of functions on reals. But programming in this style has the
disadvantages discussed in Sect. 1. Accordingly, we now turn to the alternative
approach of defining an abstract datatype for real numbers.

3 System I

We add a new type constant I to our base type theory to act as an abstract
datatype for the closed interval [−1, 1] of real numbers. In the case of System T,
we call the resulting extension System I; it has types

σ ::= N | I | σ × τ | σ → τ ,

and we extend the set-theoretic semantics with the clause

[[I]] = [−1, 1] .

The interface for the type will roughly implement the idea that the closed
interval is determined as the free convex set on 2 generators (−1 and 1) with
respect to affine maps. However, since the notion of convexity requires a pre-
existing interval for its formulation, we replace convexity with the existence
of iterated midpoints and we replace affineness with preservation of (iterated)
midpoints, following [11].

The term language is generated by adding the following new typed constants.
We pair each with its denotational interpretation in order to specify its intended
meaning. In doing so, we make use of the functions defined in Sect. 2.

1 : I [[1]] = 1

−1 : I [[−1]] = −1

m : I× I→ I [[m]](x, y) = x⊕ y
M : (N→ I)→ I [[M]] = M

aff : I→ I→ I→ I [[aff]] = aff

We have here adopted a convention that we shall continue to follow of using
sans-serif for λ-calculus constants and defined terms and using the same symbol
in roman the corresponding mathematical function.

Figure 2 presents equational axioms and rules extending those for System T.
A simple consequence of the equational rules for midpoints and iterated mid-
points is that

x, y :I ` m(x, y) = M(x, y, y, y, y, . . .) : I ,

where we write (x, y, y, y, y, . . .) as a convenient shorthand for the System I
term primrec (x) (λz : I. λn : N. y), i.e., the function that is x at 0, and y at
every natural number > 0. (Henceforth, we shall adopt other similar notational
shorthands, without discussion.) Thus the constant m is redundant, and could
be removed from the system. We include it, however, since the equations are
more perspicuous with m included as basic. In fact, m is used frequently in the
sequel, and we adopt the more suggestive notation t⊕u in preference to m(t, u).

We now develop some simple programming in System I, to explore its power
as a programming language for defining real numbers, and functions on them.

0 := (−1)⊕ 1

−x := aff 1 (−1) x

xy := aff (−x) x y

1

3
:= M(1,−1, 1,−1, 1,−1, 1,−1, . . .)

More generally, any rational number is definable using M applied to an eventually
periodic sequence of 1s and (−1)s. Even more generally, any real number with
a System-T-definable binary expansion is definable.

(m) Midpoint equations.

Γ ` m(t, t) = t : I Γ ` m(t, u) = m(u, t) : I

Γ ` m(m(t, u),m(v, w)) = m(m(t, v),m(u,w)) : I

(M) Iterated midpoint equations.

Γ ` M(t) = m(t(0), M(λi :N. t(i+ 1))) : I
Γ, i :N ` t(i) = m(u(i), t(i+ 1)) : I

Γ ` t(0) = M(u) : I

(a) Equations for aff.

Γ ` aff t u (−1) = t : I Γ ` aff t u 1 = u : I

Γ ` aff t u (m(v, w)) = m(aff t u v, aff t uw) : I

Γ, x : I, y : I ` f (m(x, y)) = m(f(x), f(y)) : I

Γ ` f = aff (f(−1)) (f(1)) : I→ I

(C) Cancellation
Γ ` m(t, v) = m(u, v) : I

Γ ` t = u : I

(E) Joint I-epimorphicity of m(· , 1) and m(· ,−1).

Γ, x :I ` f(m(x, 1)) = g(m(x, 1)) : I Γ, x :I ` f(m(x,−1)) = g(m(x,−1)) : I

Γ ` f = g : I→ I

Fig. 2. Equations for System I

Proposition 1. The following equalities are derivable from the axioms and rules
in Fig. 2 (without using (M), (C) and (E)).

−− x = x (x y) z = x (y z)

x⊕−x = 0 x (−y) = −(x y)

x 0 = 0 x (y ⊕ z) = (x y)⊕ (x z)

x y = y x

So far, we have seen that the type I supports the arithmetic of multiplication
and average, together with its expected equational properties. We now look at
possibilities for defining functions that arise in analysis. Suppose we have a
function f defined by a power series

f(x) =
∑
n≥0

an x
n

where an ∈ [−1, 1]. Then

1

2
f
(x

2

)
= M

n
anx

n (which abbreviates M(λn. anx
n)).

As a consequence, using the arithmetic defined above, the following are all de-
finable in System I.

1

2− x
:= M

n
xn

1

2
exp

(x
2

)
:= M

n

xn

n!
1

2
cos
(x

2

)
:= M

n
(1− parity(n)) (−1)

n
2
xn

n!

These (and other similar) examples cover many functions from analysis, in ver-
sions with very particular scalings. We shall return to the issue of scaling below.

All functions defined above are continuous and smooth on [−1, 1]. System I is
also powerful enough to define non-smooth functions. We present two examples,
exhibiting different degrees of non-smoothness. Define:

times∗(x, y) := aff (−1) x y

sq∗(x) := times∗(x, x)

g(x) := times∗
(

7

9
, sq∗(−sq∗(−x))

)
h(x) := M

i
g3(i+1)(x)

H(x) := M
i

(g3(i+1)(x))2

Here times∗ and sq∗ are so named because they encode multiplication and square
if the endpoints of the interval are renamed from [−1, 1] to [0, 1]. Keeping to our
convention that the interval is [−1, 1] the function g defined by g above is

g(x) =
1

9
x4 − 4

9
x3 − 2

9
x2 +

4

3
x

which satisfies g(0) = 0 and g′(0) = 4
3 . Hence, (gn)

′
(0) = (4

3)n. This leads to the
result below.

Proposition 2. 1. The function defined by h has derivative ∞ at 0.
2. The function defined by H has derivative∞ when 0 is approached from above,

and derivative −∞ when 0 is approached from below.

Since I is an abstract datatype, to compute with system I terms, we must
give the datatype an implementation. In Sect. 2, we have implicitly discussed one
such implementation in System T: the type N→ N implements I, and System T
versions of the programs in Fig. 1 implement the functions in the interface.
Given this implementation, Prop. 3 below is immediate. We say that a function
f : [−1, 1]k → [−1, 1] is I-definable if there exists a closed System I term u : Ik → I
such that [[u]] = f .

Proposition 3. Every I-definable function is T-representable.

The converse, however, does not hold. We use square brackets for the trun-
cation function [·] : R→ [−1, 1] defined by:

[x] := min(1, max(−1, x)) .

We write dbl for the function x 7→ [2x] : [−1, 1]→ [−1, 1].

Proposition 4. The function dbl is T-representable but not I-definable.

The non-definability of dbl shows that System I is, as already hinted above,
limited in its capacity for rescaling the interval.

We end the section with the proof of Prop. 4. Using the notation of Fig. 1, a
Haskell program computing dbl is:

dbl :: I -> I dbl (0:x) = x

dbl (1:1:x) = one dbl ((-1):(-1):x) = minusOne

dbl (1:0:x) = 1:(dbl (1:x)) dbl ((-1):0:x) = (-1):(dbl ((-1):x))

dbl (1:(-1):x) = 1:x dbl ((-1):1:x) = (-1):x

This is easily converted into a System T term, showing that dbl is T-representable.
The non-definability proof uses logical relations. For every type τ we define

a binary relation ∆τ ⊆ [[τ]]× [[τ]] by:

∆N(m,n) ⇐⇒ m = n

∆I(x, y) ⇐⇒ if x ∈ {−1, 1} or y ∈ {−1, 1} then x = y

∆σ→τ (f, g) ⇐⇒ ∀x, y ∈ [[σ]]. ∆σ(x, y) implies ∆τ (f(x), g(y))

∆σ×τ ((x, x′), (y, y′)) ⇐⇒ ∆σ(x, y) and ∆τ (x′, y′)

Lemma 1. For every System I constant c : τ , it holds that ∆τ ([[c]], [[c]]).

Proof. We consider two cases. To show that∆(N→I)→I(M,M), suppose∆N→I(f, f
′).

Then, for all n, we have ∆I(f(n), f ′(n)). We must show that if M(f) ∈ {−1, 1} or
M(f ′) ∈ {−1, 1} then M(f) = M(f ′). We consider just the case that M(f) = −1
(the others are similar). If M(f) = −1 then f(n) = −1, for all n ≥ 0. Since
∆I(f(n), f ′(n)), we have f ′(n) = −1, for all n ≥ 0. Thus M(f ′) = −1 = M(f).
We have thus shown that ∆I(M(f),M(f ′)) as required.

To show that ∆I→I→I→I(aff, aff), suppose

∆I(x, x
′) and ∆I(y, y

′) and ∆I(z, z
′) . (1)

We must show that if aff x y z ∈ {−1, 1} or aff x′ y′ z′ ∈ {−1, 1} then aff x y z =
aff x′ y′ z′. Suppose, without loss of generality, that aff x y z = −1, i.e.,
((1− z)x+ (1 + z) y)/2 = −1. Then there are three possible cases: (i) x = z =
−1; (ii) y = −1 and z = 1; (iii) x = y = −1. In each case, by (1), the correspond-
ing equations hold for x′, y′, z′. Thus indeed aff x′ y′ z′ = −1 = aff x y z. ut

Lemma 2. For every closed System I term t : τ , it holds that ∆τ ([[t]], [[t]]).

Proof. This is an immediate consequence of the previous lemma, by the funda-
mental lemma of logical relations. ut

Proposition 5. If f : [−1, 1] → [−1, 1] is I-definable and f(x) ∈ {−1, 1} for
some x ∈ (−1, 1) then f is a constant function.

Proof. Let x ∈ (−1, 1) be such that f(x) ∈ {−1, 1}. Consider any y ∈ (−1, 1).
Then ∆I(x, y). By Lemma 2, ∆I→I(f, f). Thus ∆I(f(x), f(y)), whence f(x) =
f(y). Thus f is constant on (−1, 1), hence on [−1, 1] since continuous. ut

The non-definability statement of Proposition 4 is an immediate consequence,
as are many other non-definability results. For example, cos(x) and cos(x2) are
not I-definable, even though 1

2 cos(x2) is (see above).

4 System II

We address the weakness identified above in the obvious way. System II (“dou-
ble I”) is obtained by adding dbl to System I.

dbl : I→ I [[dbl]] = dbl .

The equations from Fig. 2 are then augmented with:

(d) Equations for dbl:

Γ ` dbl(m(1, m(1, t))) = 1 : I Γ ` dbl(m(−1, m(−1, t))) = −1 : I

Γ ` dbl(m(0, t)) = t : I .

Proposition 6. 1. Using (m), (a) and (E) only, dbl is the unique (up to prov-
able equality) term of type I→ I for which equations (d) hold.

2. Using (m), (a) and (d) only, cancellation (C) is a consequence.

Using dbl, we can define, in System II, several useful functions (using the
square bracket truncation notation from Sect. 3).

[x+ y] := dbl(x⊕ y) max(0, x) := [[x− 1] + 1]

x	 y := x⊕ (−y) max(x, y) := dbl
([x

2
+ max (0, y 	 x)

])
[x− y] := dbl(x	 y) min(x, y) := −max(−x,−y)

|x| := max(−x, x)

Question 1. Are max(0, x), max(x, y) and |x| definable in System I?

(The logical relation used in the proof of Prop. 4 does not help here.)
Having defined truncated versions of arithmetic functions, a very useful way

of combining functions is by taking limits of Cauchy sequences. For fast Cauchy
sequences (see Sect. 2), a limit-finding function fastlim : (N→ I)→ I is definable:

fastlim := λf :N→ I. dbl
(

M
n

dbln+1(f(n+ 1)	 f(n))
)
.

We write fastlim for the function (N→ [−1, 1])→ [−1, 1] defined by fastlim.

Lemma 3. Let (xn)n be a sequence from [−1, 1]. If |xn+1−xn| ≤ 2−n, for all n,
then fastlim(n 7→ xn) is the limit of the (fast) Cauchy sequence (xn)n.

Of course, fastlim(n 7→ xn) always returns a value, even if (xn)n is non-convergent.
Also if (xn)n converges, but too slowly, then fastlim(n 7→ xn) need not be the
limit value.

We have seen that dbl is representable in System T. Thus the System T im-
plementation of System I extends to an implementation of System II. Naturally,
we say that f : [−1, 1]k → [−1, 1] is II-definable if there exists a closed System II
term u : Ik → I such that [[u]] = f . Proposition 7 below is immediate.

Proposition 7. Every II-definable function is T-representable.

The main result of the paper is the converse.

Theorem 1. Every T-representable function is II-definable.

The rest of this section is devoted to the proof of Theorem 1. We need some
auxiliary definitions.

Define glue : (I→ I)2 → I→ I by

glue := λ f g x. dbl

(
dbl

((
f

(
dbl

[
x+

1

2

])
⊕ g

(
dbl

[
x− 1

2

]))
	 1

2
f(1)

))
.

which, whenever f(1) = g(−1), satisfies

glue f g x =

{
f(2x+ 1) if −1 ≤ x ≤ 0

g(2x− 1) if 0 ≤ x ≤ 1 .

Next, for every k ≥ 1, we define a System II term:

apprk : N→ ((N→ N)
k → I)→ (Ik → I)

The base case appr1 is defined by primitive recursion on N to satisfy:

appr1 0 h = aff (h(−1)) (h(1)) (where −1 and 1 represent −1 and 1)

appr1 (n+ 1) h = glue (appr1 n (λx. h(x⊕ (−1)))) (appr1 n (λx. h(x⊕ 1))) .

Given apprk, the term apprk+1 is given by

apprk+1 n h x0 x1 . . . xk = appr1 n (λy0. apprk n (h y0) x1 . . . xk) x0 .

Let apprk be the denotation of apprk. If h : (N → N)k → [−1, 1] is real-
extensional then the application apprk n h produces a piecewise multilinear
approximation to the function h, with the argument types changed from N→ N
to [−1, 1].

More precisely, the apprk n function uses k-tuples of values from the set

Qn := {qin | 0 ≤ i ≤ 2n} where qin :=
i

2n−1
− 1

to form a lattice of (2n+1)k rational partition points in [−1, 1]k. The application
apprk n h then results in a function [−1, 1]k → [−1, 1] that agrees with h at the
partition points, and is (separately) affine in each coordinate between partition
points. It is also affine in the h argument. The lemma below formalises this.

Lemma 4. If h : (N→ N)k → [−1, 1] represents f : [−1, 1]k → [−1, 1] then:

1. For all r0, . . . , rk−1 ∈ Qn we have:

apprk n h r0 . . . rk−1 = f r0 . . . rk−1

2. For 0 ≤ j < k, 0 ≤ i < 2n, and 0 ≤ λ ≤ 1

apprk n h x0 . . . xj−1
(
i+λ
2n−1 − 1

)
xj+1 . . . xk−1 =

(1− λ) apprk n h x0 . . . xj−1 q
i
n xj+1 . . . xk−1

+λ apprk n h x0 . . . xj−1 q
i+1
n xj+1 . . . xk−1

Note that
(
i+λ
2n−1 − 1

)
= ((1− λ) qin + λ qi+1

n).

Also, if h1, h2 : (N→ N)k → [−1, 1] are real-extensional then

3. For 0 ≤ λ ≤ 1, we have:

apprk n ((1− λ)h1 + λh2) x0 . . . xk−1 =

(1− λ) apprk n h1 x0 . . . xk−1 + λ apprk n h2 x0 . . . xk−1

In fact, under the conditions of the lemma, λn. apprk n h is a sequence of
functions [−1, 1]k → [−1, 1] that converges pointwise, and hence uniformly, to h.
All that remains to be done is to extract a fast-converging subsequence, since
then h can be defined using the fastlim function. In order to get a handle on the
rate of convergence, we exploit the following classic fact [14]. (For α : N → N,
and k ∈ N, we write α�k for the sequence α(0), . . . , α(k − 1) ∈ Nk.)

Lemma 5 (Definable modulus of uniform continuity). Suppose we have
a closed System T term

t : (N→ N)→ (N→ N)

Then there exists a closed System T term

Ut : N→ N

satisfying: for all e ≥ 0, and for all β, γ : N → {0, 1, 2} such that β �Ut(e)=
γ �Ut(e), it holds that [[t]](β)�e= [[t]](γ)�e.

We now complete the proof of Theorem 1. Suppose t : (N → N)k → N → N
is a closed term that T-represents f : [−1, 1]k → [−1, 1]. Let Ut be a uniform
modulus for continuity for t on N → {0, 1, 2}, as given by Lemma 5. Let
gn : [−1, 1]k → [−1, 1] be defined by:

apprk (Ut(n+ 1)) (real ◦ t) : Ik → I .

Then for all x1, . . . , xk ∈ [−1, 1]

|f(x1, . . . , xn)− gn(x1, . . . , xn)| ≤ 2−n .

Therefore the term below II-defines f (where real is the easily defined system I
term of type (N→ N)→ I implementing the function real from Section 2).

λx0 . . . xk−1. fastlim (λn. apprk (Ut(n+ 1)) (real ◦ t)x0 . . . xk−1) .

5 Mantissa-exponent Representation

There are many ways of extending signed binary to represent the full real line.
Typically, one represents real number by a pair 〈α, z〉 where α ∈ {−1, 0, 1}ω,
is the signed binary representation of real(α) ∈ [−1, 1] and z ∈ Z. One natural
option is for 〈α, z〉 to represent the real number z + real(α), thus treating z as
an offset. Another is to use α as a mantissa and z as an exponent, giving the
real number 2z real(α). Again, both representations are intertranslatable.

In Systems I and II, a variation on such representations is available. Instead
of using signed binary to represent a number in [−1, 1], it is natural to use the
type I itself. Thus we can encode real numbers in Systems I and II, using the
type I× Z, where we write Z as an alternative notation for N to emphasise that
the type is being used to encode all (including negative) integers (and we shall
adopt similar suggestive notation for manipulation of integers). Curiously, under
this approach, even the most basic functions cannot be programmed using the
offset representation, so we are forced to use mantissa-exponent. Thus a term
〈t, u〉 : I×Z, represents the real number 2[[u]] [[t]], where we mildly abuse notation to
give u an interpretation [[u]] ∈ Z. We call this representation semi-extensional,
since it combines a continuous value t, which is extensional, with a discrete
scaling u, which is intensional. Although representations of real numbers are not
unique, the continuous part is determined once the scaling is fixed.

It is straightforward to extend our main definability result to a characterisa-
tion of functions on R definable in System II. We say that a function f : Rk → R
is T-representable, if there exists a System T term

t : ((N→ N)× Z)k → (N→ N)× Z

that computes f under mantissa-exponent representation. And we say that f is
I (resp. II)-representable if there exists a System I (resp. II) term

t : (I× Z)k → I× Z

that computes f under mantissa-exponent representation.

Theorem 2. A function f : Rk → R is T-representable if and only if it is II-
representable.

This result is essentially just an N-indexed version of Theorem 1. We omit the
proof for space reasons.

Curiously, we do not know whether dbl is necessary for Theorem 2.

Question 2. Is every II-representable function f : Rk → R also I-representable?

A positive answer may sound implausible. But we now show that surprisingly
many functions on real numbers can be defined in System I. At the same time,
we show that reasoning about equality between functions on R can be reduced
to equational reasoning in System I.

Equivalence between representations is given by the smallest equivalence re-
lation on [−1, 1]× Z satisfying

〈x,m〉 ∼
(x

2
, m+ 1

)
.

Indeed, this equivalence relation is defined explicitly by

〈x,m〉 ∼ 〈y, n〉 ⇐⇒ x

2max(m,n)−m =
y

2max(m,n)−n ,

where the right-hand-side is an equality expressible in System I.

Proposition 8. The relation ∼ is provably an equivalence relation in System I.

The intended formulation of the proposition is that the transitivity (symmetry
and reflexivity being trivial) of ∼ is a derivable inference rule in System I. The
proof makes essential use of cancellation (C) from Fig. 2.

The basic arithmetic operations on R are definable in System I.

0 := 〈0, 0〉
1 := 〈1, 0〉

−〈x,m〉 := 〈−x,m〉

〈x,m〉+ 〈y, n〉 :=
〈 x

2max(m,n)−m ⊕
y

2max(m,n)−n , max(m,n) + 1
〉

〈x,m〉 × 〈y, n〉 := 〈x y, m+ n〉

It is provable in System I that the above operations respect ∼. (Once again,
by this, we mean that the inference rule expressing this property is derivable.)
Also, the usual equations for the arithmetic operations are provable (commuta-
tivity, associativity, distributivity, etc.).

Since every rational number is System I definable, it follows that polynomials
with rational coefficients are I-representable. We now show that we can also
define limits of fast Cauchy sequences, as long the Cauchy sequences come with
a witness to their speed of convergence.

Suppose we have a sequence (xi)i given by x(−) : N→ I× Z, such that the

inequalities |xi+1 − xi| ≤ 2−(i+1) are witnessed by d(−) : N→ I satisfying

xi+1 − xi ∼ 〈di, −(i+ 1)〉 .

Then we define
lim
i

xi := x0 + 〈M
i
di, 0〉 .

Given the definability of rational polynomials and Cauchy limits, it is not implau-
sible that a positive answer to Question 2 might be modelled on a constructive
proof of the Stone-Weierstrass theorem. But this needs further investigation.

Another direction to explore is how much analysis can be developed using
the mantissa-exponent representation of real numbers with the mantissa taken
from our abstract datatype I. It would be interesting to explore this both using
just the equational logic of Systems I and II, and also in the richer context of
dependent type theory.

Acknowledgements. We would like to thank Jeremy Avigad, Ulrich Kohlenbach,
Yitong Li, John Longley and the anonymous referees for helpful suggestions.

References

1. A. Bauer, M.H. Escardó, and A. Simpson. Comparing functional paradigms for
exact real-number computation. volume 2380 of Lect. Not. Comp. Sci., pages
488–500, 2002.

2. H.J. Boehm. Constructive real interpretation of numerical programs. SIGPLAN
Notices, 22(7):214–221, 1987.

3. H.J. Boehm and R. Cartwright. Exact real arithmetic: Formulating real numbers
as functions. In Turner. D., editor, Research Topics in Functional Programming,
pages 43–64. Addison-Wesley, 1990.

4. A. Bove and P. Dybjer. Dependent types at work. Proceedings of Language Engi-
neering and Rigorous Software Development, LNCS, 5520:57–99, 2009.

5. L.E.J. Brouwer. Besitzt jede reelle Zahl eine Dezimalbruchentwicklung? Math.
Ann., 83:201–210, 1920.

6. P. Di-Gianantonio. A Functional Approach to Computability on Real Numbers.
PhD thesis, Università Degli Studi di Pisa, Dipartamento di Informatica, 1993.

7. P. Di-Gianantonio. Real number computability and domain theory. Information
and Computation, 127(1):11–25, 1996.

8. A. Edalat and M.H. Escardó. Integration in Real PCF. In Proceedings of the
Eleventh Annual IEEE Symposium on Logic In Computer Science, pages 382–393,
New Brunswick, New Jersey, USA, 1996.

9. A. Edalat and P. Di Gianantonio. A language for differentiable functions. In
Proceedings of FoSSaCS, 2013.

10. M.H. Escardó. PCF extended with real numbers. Theoret. Comput. Sci., 162(1):79–
115, 1996.

11. M.H. Escardó and A. Simpson. A universal characterization of the closed Euclidean
interval. In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, pages 115–128. IEEE Computer Society, 2001.

12. U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Monographs in Mathematics. Springer, 2008.

13. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

14. A. S. Troelstra. Some models for intuitionistic finite type arithmetic with fan
functional. J. Symbolic Logic, 42(2):194–202, 1977.

15. K. Weihrauch. Computable analysis. Springer, 2000.
16. E. Wiedmer. Computing with infinite objects. Theoret. Comput. Sci., 10:133–155,

1980.

