
The Peirce Translation

Martı́n Escardó

University of Birmingham, UK

Paulo Oliva

Queen Mary University of London, UK

Abstract

We develop applications of selection functions to proof theory and computational
extraction of witnesses from proofs in classical analysis. The main novelty is a
translation of minimal logic plus Peirce’s law into minimal logic, which we refer
to as the Peirce translation, as it eliminates uses of Peirce’s law. When combined
with modified realizability this translation applies to full classical analysis, i.e.
Peano arithmetic in the language of finite types extended with countable choice
and dependent choice. A fundamental step in the interpretation is the realizability
of a strengthening of the double-negation shift via the iterated product of selection
functions. In a separate paper we have shown that such a product of selection
functions is equivalent, over system T, to modified bar recursion.

Keywords: Peirce’s law, negative translation, countable choice, dependent choice

1. Introduction

Negative translations, also known as double negation translations, underpin
virtually all computational interpretations of classical logic, arithmetic and analy-
sis. First introduced as a way to reduce the consistency of classical arithmetic to
that of intuitionistic arithmetic, these translations have proven to be useful also in
computer science [12], set theory [1], arithmetic, and analysis [16].

Most negative translations are based on the so-called continuation monad, which
associates each type A with a new type

KA ≡ (A→ R)→ R.

Email addresses: m.escardo@cs.bham.ac.uk (Martı́n Escardó),
paulo.oliva@eecs.qmul.ac.uk (Paulo Oliva)

Preprint submitted to Annals of Pure and Applied Logic June 9, 2011

When R = ⊥ this corresponds to the double negation ¬¬A of A. In this paper we
consider a different translation based on the Peirce monad

JA ≡ (A→ R)→ A.

We call this the Peirce monad because the algebras of J are formulas satisfying
Peirce’s law JA → A. We have shown in [9] that the construction J over any
cartesian closed category gives rise to a strong monad, with a monad morphism
ε ∈ JA 7→ φ ∈ KA from J to K as

φp = p(ε(p)). (1)

Both J and K are strong monads, in the sense that we have morphisms

A× TB → T (A×B),

for T ∈ {J,K}, satisfying certain equations. As a consequence of strength we
also have a product operation

TA× TB → T (A×B).

In previous work [9, 6], we investigated the monad J from a general perspective,
and showed that the product operation corresponding to the monad J can be seen as
computing optimal strategies for a general definition of sequential games (cf. [10]).
We have called elements ε ∈ JA selection functions for the typeA, as these can be
viewed as selecting an element εp ∈ A for any given mapping p ∈ A→ R. In the
concrete case when R is the set of booleans B, if ε always selects x = εp such that
p(x) holds, whenever that is possible, this corresponds to Hilbert’s ε-operator in his
ε-calculus. Moreover, as in the ε-calculus one can define the existential quantifier
from the ε-terms, we can also view elements of KA as quantifiers. Equation (1)
says that any selection functions defines a quantifier.

In [6], the first author considered the particular case where the object A is a
domain, and the objectR is the domain of boolean values. The particular quantifier
φ studied was the bounded existential quantifier ∃S for a subset S of A, with the
requirement that ε(p) be an element of S such that if p(s) holds for some s ∈ S,
then p(ε(p)) holds, i.e. Equation (1), for all p ∈ A → R. The set S ⊆ A
is called exhaustible if the quantifier φ = ∃S is computable, and searchable if
additionally there is a computable functional ε ∈ JA satisfying (1). It turns out
that any searchable set (of total elements) is topologically compact, and, mimicking
the Tychonoff theorem from topology, it was shown that searchable sets are closed
under countable products. This relies on a countable-product functional of type

(JA)n → JAn (n ≤ ω),

2

which can be obtained by iterating the binary product of the monad J discussed
above.

In [9], we considered much more general choices for A and R (objects of a
cartesian closed category), and for φ (e.g. supremum functional when R are the
reals in the category of sets, or in suitable categories of spaces). Moreover, we
considered the above product in more generality, allowing the object A to vary, i.e.
having type ∏

i<n

JAi → J

(∏
i<n

Ai

)
(n ≤ ω).

The case n = ω is restricted to a category of continuous maps of certain topo-
logical spaces, which include Kleene–Kreisel spaces of continuous functionals,
and requires that the type R be topologically discrete to be well defined. This in-
cludes the natural numbers N and the booleans B = {0, 1}, of course, but also
more general the types defined by induction in [6, Definition 4.12], for instance
R = ((N→ B)→ N). The need for discreteness is justified in [9, Remark 5.11].

We have shown that this iteration is an instance of the bar recursion scheme. In
[7] we have established relations between this new form of bar recursion and the
more traditional instances, such as Spector’s bar recursion [16] and modified bar
recursion [2, 3].

In the present paper we work with the category whose objects are formulae in
HAω and morphisms are proofs of entailments, written in natural deduction style
using λ-calculus notation [13], where we often regard the morphisms as realizers
written in Gödel’s system T. For the choices T = J or T = K, or more generally
any strong monad T , one has the intuitionistic laws

T (A→ B)→ TA→ TB (functor)

A→ TA (unit)

TTA→ TA (multiplication)

A ∧ TB → T (A ∧B) (strength).

In the terminology of [1], the construction T is a lax modal operator. It turns out
that the infinite product of selection functions realizes, in the sense of modified
realizability, the following shift principle for T = J , assuming that the type of
realizers of the formula R is topologically discrete:

T -shift : ∀nTA(n)→ T∀nA(n).

The well-known double negation shift is the case T = K with R = ⊥, but it
is realized only for special types of formulae A, including those in the image of

3

the negative translation, whereas the J-shift is realized for all formulae A. We
also show that the double negation shift for formulas A in the image of a negative
translation follows from the J-shift. With this, we will get an alternative way of
interpreting classical analysis and extracting computational witnesses via infinite
products of selection functions.

We plan to investigate the use of the product of selection functions for extrac-
tion of computational content from proofs involving countable/dependent choice,
as done by Seisenberger [14] with modified bar recursion. Based on the experimen-
tal results and theoretical conjectures of [6, Section 8.10] and [5], we conjecture
that the product of selection functions will give rise to more efficient computational
extraction of witnesses.

We stumbled upon the Peirce translation when studying products of selection
functions in [9], after noticing that the J construction is a monad and its algebras
are formulas that satisfy Peirce’s law. The Peirce translation comes automatically
out of this observation. Our aim here is to investigate the features of such a trans-
lation and the role of the product of selection functions on the interpretation of
arithmetic and analysis.

Finally, let us briefly discuss the relation between the Peirce translation and
the usual negative translations. First, the Peirce translation does not interpret ex-
false-quodlibet (efq), as most of the standard negative translations do. This can
be viewed as a feature, as it gives a clear separation between classical reason-
ing (Peirce’s law) and the role of falsity (efq). In practice, however, this means
that in order to apply the Peirce translation to classical proofs we must first apply
an “elimination of efq” procedures which takes us to minimal logic plus Peirce’s
law (Theorem 5.2). It is then not hard to show that the Peirce translation when
combined with the efq-elimination procedure is equivalent to the usual negative
translation. It is in the interpretation of analysis that the Peirce translation comes
out more naturally than the negative translation, as the J-shift can be interpreted
for arbitrary formulas whereas the K-shift only holds for a particular class of for-
mulas (Theorem 4.3). And, for such formulas the K-shift follows from the J-shift
(Proposition 4.2). In summary, we believe the Peirce translation gives a conceptu-
ally cleaner explanation to the interpretation of the classical countable choice, but
probably in practice, when applying the translation to concrete classical proofs, it
might be better to use the standard negative translations.

This is a journal version of the paper [8]. We have improved the formulation
and expanded several passages of the conference version, as well as included all
proofs and the new Section 6.3 on weak König’s lemma.

4

2. Preliminaries

2.1. Products of Selection Functions

As mentioned above, we use the infinite product of selection functions to inter-
pret the classical countable and dependent choice. In this section we briefly recall
these product functionals which were first defined and studied in [9, 7].

Definition 2.1 (Products of selection functions) Given selection functions ε ∈
JX and δ ∈ JY , define their product ε⊗ δ ∈ J(X × Y) as

(ε⊗ δ)(p) = (a, b(a))

where

a = ε(λx.p(x, b(x))

b(x) = δ(λy.p(x, y)).

Similarly, given ε ∈ JX and a family of selection functions δ ∈ X → JY , define
their dependent product ε⊗d δ ∈ J(X × Y) as

(ε⊗d δ)(p) = (a, b(a))

where

a = ε(λx.p(x, b(x))

b(x) = δ(x)(λy.p(x, y)).

We have also considered in [9] the functional obtained by iterating these binary
products on an infinite sequence of selection functions.

Definition 2.2 (Iterated products of selection functions) The iterated product of
a family of selection functions ε ∈ Πk∈NJXk is defined in [9] by the equation

psk(ε)
J(Πi≥kXi)

= εk ⊗
(
psk+1(ε)

)
.

For ε : Πk∈N((Πj<kXj) → (JXk)) and s : Σk∈N(Πj<kXj), define the iterated
dependent product of selection functions as

PSs(ε)
J(Πi≥kXi)

= εs ⊗d
(
λxXk .PSs∗x(ε)

)
.

The recursive definitions for ps and PS uniquely define functionals in the mod-
els of partial and total continuous functionals (cf. [9]). Finally, we remark that ps
and PS are actually inter-definable over system T, as shown in [7].

5

2.2. Formal Setting

Let ML stand for minimal logic, i.e. intuitionistic logic without the ex-falso-
quodlibet axiom scheme EFQ : ⊥ → A (see e.g. [18]). We denote by HA the
formal system of Heyting arithmetic based on minimal logic, rather than intuition-
istic logic. Given a formal system S we write Sω for the finite type generalisation
of S with a neutral treatment of equality (cf. [17]). Hence, Heyting arithmetic in
all finite types is denoted by HAω. We use X,Y, Z for variables ranging over finite
types.

Let us denote by T -logic the extension of ML with the T -elimination axiom

T -elim : TA→ A.

Thus classical logic amounts to K-logic if we choose R = ⊥ in the definition
of K. Similarly, we refer as T -arithmetic (TA) to the extension of HA with the
T -elimination axiom. Then Peano arithmetic (PA) is K-arithmetic for R = ⊥.

Although in HAω one does not have dependent types, we will develop the rest
of the paper working with types such as Πi∈NXi rather than the special case Xω,
when all Xi are the same. The reason for this generalisation is that the results
developed below become clearer. Moreover, they go through for the more general
setting where this simple form of dependent type is permitted. Nevertheless, we
hesitate to define a formal extension of HAω with such dependent types, leaving
this for future work. We believe that the techniques of Coquand and Spivack [4]
allow to generalise our results to Martin-Löf Type Theory, but we also leave this
for future work.

We often write ΠiXi for Πi∈NXi. If x has type Xn and s has type Πi<nXi

then s ∗ x is the concatenation of s with x, which has type Πi≤nXi. When x : X0

and α : Πi>0Xi then x ∗ α is the concatenation of x with the stream α, which has
type ΠiXi. Moreover, [α](n) stands for the initial segment of the infinite sequence
α of length n, i.e.

[α](n) = 〈α(0), α(1), . . . , α(n− 1)〉.

For a fixed formula R, we write JRA for (A → R) → A, i.e. the selection
functions for A. Using this notation, the usual Peirce’s law corresponds to the
principle of J-elimination

PLR : JRA→ A.

We first observe that the construction JRA has the same properties as that of a
strong monad (from category theory).

Lemma 2.3 (Monad) The following are provable in ML

6

[A→ B]β [A]α

B
(I)

R
(β)

(A→ B)→ R
(III)

A→ B [A]α

B
(I)

R
(α)

A→ R
(II)

A

[A→ B]

[A→ B]
(I)

A→ R
(II)

A

B
(I)

R

(A→ B)→ R
(III)

A→ B

B

Figure 1: Derivation of Lemma 2.3 (iii)

(i) A→ JRA

(ii) JRJRA→ JRA

(iii) JR(A→ B)→ JRA→ JRB.

Proof All can be proved directly. Point (i) follows by weakening, while point
(ii) makes use of three contractions over A → R. The proof of (iii) is a bit
trickier so we spell out the details here: Assume (I) B → R and (II) JRA and (III)
JR(A→ B), we derive B as shown in Figure 1. �

2.3. Bar induction and continuity

Several proofs in the paper rely on two non-classical principles which we state
here: The principle of continuity

CONT : ∀qΠiXi→R∀α∃n∀β([α](n)
Xn= [β](n)→ q(α)

R
= q(β))

with R topologically discrete, and the scheme of relativised quantifier-free bar
induction BI

Q(〈 〉)
∧

∀α∈Q∃nP ([α](n))
∧

∀s ∈ Q(∀x[Q(s ∗ x)→ P (s ∗ x)]→ P (s))

→ P (〈 〉),

7

where Q(s) is an arbitrary predicate, P (s) a quantifier free predicate in the lan-
guage of HAω, and α ∈ Q and s ∈ Q are shorthands for ∀nQ([α](n)) and Q(s)
respectively.

3. T -translation

It is well known that several forms of the negative translation can be understood
in terms of the continuation monad K. It is also well known that any monad T
gives rise to a proof translation (see e.g. [1]). Here we consider the T -translation
inductively defined as

P T = TP

(A ∧B)T = AT ∧BT

(A ∨B)T = T (AT ∨BT)

(A→ B)T = AT → BT

(∃xA)T = T (∃xAT)

(∀xA)T = ∀xAT .

That is, we prefix T in front of atomic formulae, disjunctions and existential quan-
tifications. For T = K and R = ⊥, this amounts to the standard Gödel-Gentzen
negative translation [18], and for R = A, with A a Σ0

1-formula, this corresponds to
Friedman’s A-translation [11] of the negative translation.

From well-known properties of monads on cartesian closed categories, one
sees by induction that any C in the image of the T -translation is a T -algebra and
in particular TC → C is provable. Putting all this together we have that TC → C
is provable in minimal logic, for formulae C in the image of the T -translation. For
T = K and R = ⊥ the T -elimination principle TC → C amounts to double
negation elimination. For T = J this is the instance ((C → R) → C) → C of
Peirce’s law, and hence we also refer to the J-translation as the Peirce translation.

Because of the monad morphism J → K, anyK-algebra is a J-algebra, which
gives the standard fact that the usual negative translations also eliminate Peirce’s
law. Notice that the implication JA→ KA can be reversed if and only if R→ A.
In fact, a main difference between the K-translation and the J-translation is that
the former also eliminates ex-falso-quodlibet EFQ (⊥ → A), whereas the latter is
sound with respect to EFQ but does not eliminate it.

The following facts are well known (see e.g. [1]) and are easily proved by in-
duction on formulae, although they are usually stated for intuitionistic logic rather
than minimal logic.

8

Lemma 3.1 For any strong monad T , assuming that (TA)T is equivalent to TAT ,
we have

1. ML ` TAT → AT .

2. ML + T -elim ` AT → A.

3. ML + T -elim ` A if and only if ML ` AT .

The above lemma allows one to extract realizing functions for Π0
2-theorems

in minimal arithmetic with Peirce’s law without ever going through intuitionistic
logic. We will see later that the main obstacle for a realizability interpretation of
classical logic is the EFQ, which says that a realizer for falsity must be turned into
a realizer for an arbitrary formula. That forces all negated formulas to be empty
of realizers and hence blocks any direct use of realizability to proofs in classical
logic. The well-known remedy is to use Friedman’s trick of the A-translation,
which effectively eliminates EFQ and hence allows one to inject computational
content into negated formulas. The next theorem shows that Friedman’s trick is
not necessary if one starts with a classical proof that does not make use of EFQ.

Theorem 3.2 Assume that P (x, y) → R and that the variable y is not free in R.
If

ML + J-elim ` ∀x∃yP (x, y)

then also

ML ` ∀x∃yP (x, y).

Proof First notice that under the assumption P (x, y)→ R we have

(i) ML ` JP (x, y)→ P (x, y),

(ii) ML ` J∃yP (x, y)→ ∃yP (x, y).

If ML + J-elim ` ∀x∃yP (x, y) then ML + J-elim ` ∃yP (x, y), and hence
Lemma 3.1 gives ML ` J∃yJP (x, y), which by (i) and (ii), implies that ML `
∃yP (x, y). �

9

The first part of the next proposition shows that if multiple instances of J-
elimination are used in a proof, for different parameters R, one can reduce to a
single instance with the conjunction of all the parameters. For example, this can be
applied to the above theorem if one needs to use several instances of Peirce’s law.
The second part shows that the J- and K-translations coincide over intuitionistic
logic.

Proposition 3.3
1. ML + JR0∧R1-elim ` JR0-elim ∧ JR1-elim.
2. For R ≡ ⊥ we have that ML + EFQ ` AK ↔ AJ .

Proof The first part is routine verification. The second part follows from Propo-
sition 4.2. �

Putting Theorem 3.2 and Proposition 3.3 together with obtain:

Corollary 3.4 (Folklore) Assume P (x, y) → Ri, for all 0 ≤ i ≤ n, with y 6∈
FV(Ri). If

ML + PLR0 + . . .+ PLRn ` ∀x∃yP (x, y)

then also

ML ` ∀x∃yP (x, y).

Proof Let R :≡ R0∧ . . .∧Rn. First note that P (x, y)→ Ri implies P (x, y)→
R and hence both (over ML)

(i) JRP (x, y)→ P (x, y)

(ii) JR∃yP (x, y)→ ∃yP (x, y).

Assuming ML + PLR0 + . . .+ PLRn ` ∀x∃yP (x, y) by Lemma 3.3 we get ML +
PLR ` ∃yP (x, y). Theorem 3.1 then implies ML ` JR∃yJRP (x, y), which by (i)
and (ii) implies that ∃yP (x, y) is provable in ML. �

Remark 3.5 (call/cc) The type of the continuation passing style translation of
call/cc can be written as JKX −→ KX , an instance of Peirce’s law, as observed
by Griffin [12]. Its λ-term can be reconstructed as follows:

1. KX is a K-algebra, with structure map KKX
µ−→ KX .

2. Because we have a morphism J −→ K, every K-algebra is a J-algebra:

JA −→ KA
α−→ A.

3. call/cc is what results for A = KX and α = µ:

JKX −→ KKX
µ−→ KX.

10

3.1. Arithmetic
If a formula does not have occurrences of disjunction or existential quantifi-

cation, its T -translation only prefixes T to atomic formulae, and hence the T -
translations of the Peano axioms follow from the Peano axioms. Moreover, the
T -translation of each instance of the induction axiom is again an instance of induc-
tion. This shows that the T -translation maps TA into HA.

4. Countable Choice and Shift Principles

Contrary to arithmetic, discussed just above, the T -translation does not map
TAω + ACN into HAω + ACN, where ACN is the axiom of countable choice

ACN : ∀nN∃xX A(n, x)→ ∃f∀nA(n, fn),

and this failure applies to the particular cases T = J and T = K too. In fact, the
T -translation of ACN is

ACTN : ∀nT∃xAT (n, x)→ T∃f∀nAT (n, fn),

which is not an instance of ACN. In order to overcome this, the following was first
observed by Spector [16] for the special case T = K and R = ⊥, where

T -shift(A) : ∀nNTA(n)→ T∀nA(n).

Proposition 4.1 ACN + T -shift ` ACTN .
Proof Let us show that HAω + ACN + T -shift ` ACTN . Applying T -shift to the
premise ∀nT∃xAT (n, x) of ACTN , we deduce that T∀n∃xAT (n, x). Functoriality
of T applied to ACN with A instantiated to AT gives

T∀n∃xAT (n, x)→ T∃f∀nAT (n, fn),

and hence we get T∃f∀nAT (n, fn) by modus ponens, which is the conclusion
of ACTN . �

It follows from Lemma 3.1 and Proposition 4.1 that the T -translation maps the
theory TAω+ACN into HAω+ACN+T -shift. In the context of the dialectica inter-
pretation, Spector showed that a form of bar recursion, now known as Spector bar
recursion, realizes the double negation shift (DNS), which amounts to the T -shift
for T = K and R = ⊥. Moreover, via different forms of bar recursion with R a
Σ0

1 formula, it is shown in [2, 3] how computational information can also be ex-
tracted via (modified) realizability from proofs in classical analysis in the presence
of countable choice. But the K-shift is established only for formulae ∃xAK where
AK is in the image of the K-translation. Now notice that for any formula AK we
have ⊥ → ∃xAK .

11

Proposition 4.2 Over minimal logic, if R→ A then J-shift(A)→ K-shift(A).
Proof We know that JA→ KA for any A, and the assumption R→ A is easily
seen to give the converse, and hence JA ↔ KA. Notice that if KA → JA holds
then R→ A, and hence the assumption R→ A is optimal. �

Hence the following gives an alternative way of realizing the K-shift for the
purposes of extracting witnesses from classical proofs with countable choice. The
notions in the assumptions of the following theorem are defined in [3, 17]. The
restriction on R is needed for the infinite product to be well-defined [9], and notice
that it is fulfilled if R is Σ0

1 or a Harrop formula.

Theorem 4.3 (HAω + BI + CONT) If the type of realizers of the formula R is
topologically discrete, then ps0 mr J-shift(A).
Proof We fully prove a stronger result in Section 6.2. �

We emphasise that this theorem states that the infinite product functional itself
realizes the shift principle, in the sense that the type of ps using dependent types,
i.e. ΠiJAi → JΠiAi, directly corresponds to the logical formula J-shift(A). This
is in contrast with the work discussed above, where the bar recursive functionals in
question do not have the type of the principle they realise, and instead are used in
order to define functionals that realize shift principles. For instance, modified bar
recursion, when written with dependent types, has type

Πs((A|s| → R)→ ΠnAn)→ KΠnAn,

which does not correspond directly to the logical formula K-shift(A).
We regard as rather striking the fact that a functional that was originally intro-

duced to mimic a theorem from topology in a computational setting, as discussed
in the introduction, turns out to have a natural logical reading related to traditional
work in proof theory, and we think that this deserves further investigation. In sum-
mary, the J-shift can be seen as a logical analogue of the Tychonoff theorem from
topology.

Before moving to the treatment of dependent choice, let us observe that the fol-
lowing apparent generalisation of the T -shift is equivalent over HA to the original
formulation.

Proposition 4.4 The T -shift principle is equivalent to the course-of-values T -shift

T c-shift(A) : ∀n(∀k<nA(k)→ TA(n))→ T∀nA(n).

Proof It is straightforward that T c-shift implies the T -shift. Conversely, assume
∀n(∀k <nA(k) → TA(n)). By the extension law (B → TC) → (TB → TC)
of strong monads in a cartesian closed category and induction on n, we deduce that
∀n(∀k < nTA(k) → TA(n)). Hence ∀nTA(n) by course-of-values induction,
and the T -shift gives the desired result. �

12

The reason we formulate this course-of-values variant of T -shift is because
T c-shift is directly realizable by the iteration of the dependent product PS.

Theorem 4.5 (HAω + BI + CONT) If the formula R has a discrete type of real-
izers then PS〈〉mr Jc-shift(A).

In Section 6.2 we show that PS in fact also realizes a more general logical
principle that implies full dependent choice. But first, let us discuss the simpler
case of dependent choice for numbers.

5. Dependent Choice for N

We now compare TAω and HAω with respect to the axiom of dependent choice

DCX : ∀nN, xX∃yXAn(x, y)→ ∀x0∃α(α0 = x0 ∧ ∀nAn(αn, αn+1)).

In this section we focus on the simpler case when X = N. In Section 6.2 below
we consider the general case.

Proposition 5.1 DCN + T -shift ` DCTN .

Proof The argument is essentially the same as that of Proposition 4.1, but one
applies the T -shift twice, to move T outside two numerical universal quantifiers. �

Hence, the T -translation maps TA+DCN into HA+DCN+T -shift. In general,
however, when X is an arbitrary type, not just N, the situation is subtler, because
the T -shift will not be available for T = J (let alone T = K). The case T = K
has been addressed in [2, 3], and in Section 6.2 below we address the case T = J
(which has the case T = K as a corollary).

The following theorem (cf. Proposition 1 of [3]) shows how one can extract
witnesses from proofs of Π0

2-statements in classical analysis via the J-translation
and the J-shift (as opposed to via the negative translation and the double negation
shift).

Theorem 5.2 If

PAω + ACN + DCN ` ∀xX∃nN P (x, n)

then one can extract a term t in system T + ps such that

MAω + BI + CONT ` P (x, tx)

where MAω denotes arithmetic in all finite types based on minimal logic.

13

Proof By prefixing each atomic formula with a double negation, EFQ is elimi-
nated. Hence the assumption of the theorem implies

MAω + J⊥-elim + ACN + DCN ` ∀x∃n¬¬P (x, n).

Because the proof is in ML, we can replace ⊥ by any formula, which we take to
be R ≡ ∃nP (x, n)

MAω + JR-elim + ACN + DCN ` ∀x∃n((P (x, n)→ R)→ R).

Hence,

MAω + JR-elim + ACN + DCN ` ∀x∃nP (x, n).

By the J-translation we have

MAω + ACJN + DCJN ` ∀xJ∃nJP (x, n),

and, by the choice of R we have J∃nJP (x, n)→ P (x, n). Therefore,

MAω + ACJN + DCJN ` ∀x∃nP (x, n).

We are now done because ACJN and DCJN follow, in MAω + ACN + DCN, from
J-shift, which, by Theorem 4.3, is realized by ps, and because ACN and DCN have
simple modified realizability witnesses. �

6. Full Dependent Choice

We have discussed how one normally interprets the axiom of countable choice
computationally by reducing it to the computational interpretation of the double
negation shift (cf. [16, 2, 3] and Theorem 5.2 above). When it comes to the com-
putational interpretation of the dependent choice

DC : ∀n, x∃yBn(x, y)→ ∀x0∃α[α0 = x0]∀nBn(αn, α(n+ 1)),

however, one normally does it directly, as it seems not possible to reduce the neg-
ative translation of DC using the simple double negation shift. In this section,
continuing the discussion started in Section 4, we show that what is needed in or-
der to approach this from a logical point of view is a dependent variant of the shift
principle.

14

6.1. Weak dependent choice

We start our analysis, however, with the special case of the weak dependent
choice wDC

∀nN(∀i<n ∃xXiAi(x)→ ∃xXnAn(x))→ ∃α∀nAn(α(n)),

and the following generalisation of the J-shift, which we call the course-of-values
J-shift,

Jc-shift : ∀n(∀i<nA(i)→ JA(n))→ J∀nA(n).

As shown in Proposition 4.4, the principle Jc-shift follows from J-shift by a sim-
ple application of course-of-values induction. The next lemma shows that the
J-translation of the weak dependent choice wDC can be reduced to the standard
countable choice plus Jc-shift.

Lemma 6.1 ACN + Jc-shift ` wDCJ .

Proof wDC is ML equivalent to

∀n(∃sA(s)→ ∃xAn(x))→ ∃α∀nAn(α(n)),

where A(s) = ∀i < |s|Ai(si). Let B(n) be ∃xAn(x). Assume the premise of
wDCJ , i.e.

∀n(∀i<nB(i)→ JB(n)).

By the course-of-values J-shift we have J∀nB(n), that is, J∀n∃xAn(x). By ACN
we obtain the conclusion of wDCJ . �

Theorem 6.2 (HAω + BI + CONT) PS〈 〉mr Jc-shift.

We formulate and prove a stronger version of this in Theorem 6.4.

6.2. Full Dependent Choice

We can generalise wDC so that the witness for point n might dependent on all
witnesses Ai for k < n. Suppose An is a predicate on finite sequence Πk≤nXk,
then

DCseq : ∀s(∀j< |s|Aj([s](j + 1))→ ∃xA|s|(s ∗ x))→ ∃α∀nAn([α](n+ 1)),

which we call the dependent choice for finite sequences. Essentially the same
axiom was proposed by Monika Seisenberger in [14, Section 2.3]. For the sake of
completeness, we include a proof that our formulation is equivalent to DC:

15

Lemma 6.3 DCseq and DC are equivalent over PAω.
Proof Let us first show how DCseq can be used to prove the usual formulation
of dependent choice. Consider

Ax0n (s) ≡ (|s| = n+ 1) ∧ (s0 = x0) ∧ ∀i<(|s| − 1)Bi(si, si+1),

It is easy to show that the hypothesis ∀n, x∃yBn(x, y) implies

∀s(∀i< |s|Ax0i ([s](i+ 1))→ ∃xAx0|s|(s ∗ x)).

Therefore, by DCseq we get ∃α∀nAx0n ([α](n+ 1)), which implies

∃α(α(0) = x0 ∧ ∀nBn(α(n), α(n+ 1))).

For the other direction, assume a predicate An(s) is given, such that the premise of
DCseq holds. Define

Bn(s, t) ≡ (|s| = n)→
(|t| = n+ 1 ∧ [s](n) = [t](n) ∧ (∀i< |s|Ai([s](i+ 1))→ An(t))).

This says that if all non-empty initial segments of s satisfy Ai then t also satisfies
An. The assumed premise of DCseq implies ∀n∀s∃tBn(s, t), which by DC gives

∀s0∃α(α(0) = s0 ∧ ∀nBn(α(n), α(n+ 1))).

Considering s0 = 〈 〉, we conclude that

∃α∀nBn(α(n), α(n+ 1)).

By construction of Bn, if we take β(i) = (α(i + 1))i we get a witness for the
conclusion of DCseq, as required. �

We now argue that DCseq is the natural generalisation of the course-of-values
Jc-shift, discussed in Section 6.1. Consider the binary case of Jc-shift

JA(0) ∧ (A(0)→ JA(1))→ J(A(0) ∧A(1)).

First, suppose that each A(n) is a predicate on finite sequences of length n, i.e. of
the form A(n) = ∃sΠi<nXiBn(s). We then have

J∃sB0(s) ∧ (∃sB0(s)→ J∃tB1(t))→ J(∃sB0(s) ∧ ∃tB1(s)).

We are interested in the case when the finite sequence witnessing Bn is required to
be an extension of a finite sequence witnessing Bi, for i < n,

J∃sB0(s) ∧ ∀s(B0(s)→ J∃xB1(s ∗ x))→ J∃t(B0([t](0)) ∧B1([t](1))).

The generalisation of this to infinite many predicates is precisely DCseq.
Based on this observation, we now show that PS, which in Theorem 6.2 is

claimed to realize Jc-shift, also realizes the J-translation of DCseq directly.

16

Theorem 6.4 (HAω + BI + CONT) LetR be a Σ0
1-formula. Then PS〈〉mrDCJseq.

Proof Assume the realizer for ∃yYnAn(s∗y) has typeXn(s) ≡ Σy∈YnZn(s∗y).
Moreover, assume we are given functionals ε and q such that

ε mr ∀s(∀i< |s|Ai([s](i+ 1))→ J∃yA|s|(s ∗ y))

q mr ∃α∀nAn([α](n+ 1))→ R.

Then ε and q have types

∏
s

∏
i<|s|

Zi([s](i+ 1))→ JX|s|(s)

 and
∑

α∈ΠiYi

∏
n

Zn([α](n+ 1))→ R,

respectively. We need to show that

PS〈〉(ε)(q)mr ∃α∀nAn([α](n+ 1)).

For a sequence of pairs t : Πi<n(Vi×Wi) we write t0 : Πi<nVi for the projection of
the sequence on all first elements. In what follows, t is a sequence of pairs where
the first elements of each pair t0 determine the type of the second elements of each
pair, and hence t has the type

∏
i<nXi([t

0](i)) ≡
∏
i<n

∑
y∈Yi Zi([t

0](i) ∗ y)).
We prove ∀tP (t) by relativised bar induction (cf. [3]), where

P (t) ≡ PSt(ε)(qt)mr ∃α∀nA|t|+n(t0 ∗ [α](n+ 1)).

The bar induction will be relativised to the predicate

Q(t) ≡ ∀i< |t| (timr ∃yAi([t0](i) ∗ y)).

The first hypothesis Q(〈〉) of the bar induction is vacuously true. We now prove
the two remaining hypothesis (i) and (ii).

(i) ∀αQ∃kP ([α](k)). Given α satisfying Q, let k be a point of continuity of q at
α (here we are using the discreteness of the type of realizers of R, which follows
from the fact that R is a Σ0

1-formula). We must show P ([α](k)), i.e.

PS[α](k)(ε)(q[α](k))mr ∃β∀nAk+n(([α](k))0 ∗ [β](n+ 1)).

Let 〈γ, δ〉 = PS[α](k)(ε)(q[α](k)). The above follows from, for all n,

(†) δ(n)mrAk+n(([α](k))0 ∗ [γ](n+ 1)),

which we establish by course-of-values induction as follows. Unfolding the defi-
nition of PS, (†) is equivalent to

(ε[α](k)∗r(λx.q[α](k)∗r∗x(PS[α](k)∗r∗x(ε)(q[α](k)∗r∗x))))1 mrAk+n(([α](k))0∗[γ](n+1)),

17

where r = [PS[α](k)(ε)(q[α](k))](n) and x : Xk+n([α](k) ∗ r). By the fact that k is
a point of continuity of q at α, this is equivalent to

(ε[α](k)∗r(λx.q[α](k)∗r∗x(0)))1 mrAk+n(([α](k))0 ∗ [γ](n+ 1)).

Hence, by the assumption on ε it remains to show that [α](k) ∗ r ∈ Q and that

λx.q[α](k)∗r∗x(0)mr ∃yYk+nAk+n(([α](k))0 ∗ [γ](n) ∗ y)→ R.

The first follows by the hypothesis of the course-of-values induction. The second
follows from the assumptions on q using [α](k) ∗ r ∈ Q.

(ii) ∀sQ(∀t, x(Q(s ∗ t ∗ x) → P (s ∗ t ∗ x)) → P (s)). Let s ∈ Q be given, and
assume

(1) ∀t, x(Q(s ∗ t ∗ x)→ P (s ∗ t ∗ x)).

We must show P (s), i.e.

PSs(ε)(qs)mr ∃α∀nA|s|+n(s0 ∗ [α](n+ 1)).

Again let 〈γ, δ〉 = PSs(ε)(qs). It is enough to show that

(PSs(ε)(qs)(n))1 mrA|s|+n(s0 ∗ [γ](n+ 1)),

which, by the definition of PS is

(εs∗r(λx.qs∗r∗x(PSs∗r∗x(ε)(qs∗r∗x))))1 mrA|s|+n(s0 ∗ [γ](n+ 1)),

where r = [PSs(ε)(qs)](n). This can be reduced to proving

(2) λx.qs∗r∗x(PSs∗r∗x(ε)(qs∗r∗x)))mr ∃yA|s|+n(s0 ∗ [γ](n) ∗ y)→ R.

Now, assume x is such that Q(s ∗ r ∗ x). Then, by (1) we have, P (s ∗ r ∗ x), i.e.

(3) PSs∗r∗x(ε)(qs∗r∗x)mr ∃α∀nA|s∗r∗x|+n((s ∗ r ∗ x)0 ∗ [α](n+ 1)).

By the assumption on q we have that (3) implies (2), which concludes the proof
that ∀tP (t), and the desired result follows by considering t = 〈〉. �

Corollary 6.5 If

PAω + ACN + DCseq ` ∀xX∃nNP (x, n)

then one can extract a term t in system T + ps such that

HAω + BI + CONT ` P (x, tx).

Proof ACN and DCseq are modified-realizable in system T. The result follows
because ps is inter-definable with PS (cf. [7]), and hence Jd-shift is modified-
realizable in T + ps. �

18

6.3. Weak König’s Lemma
It has been shown by the Reverse Mathematics programme [15] that Weak

König’s lemma,

WKL : ∀n∃sB∗
(|s| = n ∧ T (s))→ ∃αBω∀nT ([α](n)),

is one of the most fundamental theorems in mathematics. Here T (s) is assumed to
be a Π0

1 predicate, and to be prefix-closed, i.e. T (s ∗ t)→ T (s). It is folklore that
WKL can be proved using choice, although we have not been able to find a refer-
ence with an explicit formulation and proof of this. In this section we show that
WKL follows rather directly from DCseq of type B for Π0

1 formulas, and hence it
can be easily interpreted using the interpretation of DCseq given above. Moreover,
we observe that WKL in turn easily implies DCseq for Π0

1 formulas, so that these
two principles are equivalent.

Proposition 6.6

1. Π1-DCB
seq implies WKL, over PAω.

2. WKL implies Π0
1-DCB

seq, over HAω.

Proof (1): Given a Π1 predicate T (s) assumed to satisfy

(∗) ∀n∃s(|s| = n ∧ T (s))

we define another Π1 predicate

An(s) = (|s| = n) ∧ ∀k∃t(|t| = k ∧ T (s ∗ t)).

Now, by classical logic, (∗) implies

∀s(∀j< |s|Aj([s](j))→ A|s|(s ∗ 0) ∨A|s|(s ∗ 1)).

By DCseq we have an α satisfying ∀nAn([α](n)), i.e.

∃α∀n∀k∃t(|t| = k ∧ T ([α](n) ∗ t)).

Taking k = 0 we obtain the conclusion of WKL.

(2): For the other direction, given a Π1 predicate An(s), where s : B∗, we
define a Π1-tree as

T (s) = ∀i< |s|Ai([s](i)).

T (s) is the prefix-closure ofAn(s). Moreover, assumingAn(s) satisfies the premise
of DCseq

∀s(∀j< |s|Aj([s](j))→ ∃xA|s|(s ∗ x))

19

one can show by induction that T (s) satisfies the premise of WKL, i.e. the condi-
tion (∗) of previous proof. By WKL we have ∃α∀kT ([α](k)), which by definition
of T (s) is

∃α∀k∀i<k Ai([α](i)).

This clearly implies the conclusion of DCseq. �

Acknowledgements. We thank Thomas Powell for carefully proofreading and
spotting an error in a previous version of this paper. The second author also grate-
fully acknowledges support of the Royal Society (grant 516002.K501/RH/kk).

Bibliography

[1] P. Aczel. The Russell-Prawitz modality. Math. Structures Comput. Sci.,
11(4):541–554, 2001. Modalities in type theory (Trento, 1999).

[2] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the
axiom of choice. The Journal of Symbolic Logic, 63(2):600–622, 1998.

[3] U. Berger and P. Oliva. Modified bar recursion and classical dependent
choice. Lecture Notes in Logic, 20:89–107, 2005.

[4] T. Coquand and A. Spiwack. A proof of strong normalisation using domain
theory. Logical Methods in Computer Science, 3(4):4:12, 16, 2007.

[5] M. H. Escardó. Infinite sets that admit fast exhaustive search. In Proceedings
of LICS, pages 443–452, 2007.

[6] M. H. Escardó. Exhaustible sets in higher-type computation. Logical Methods
in Computer Science, 4(3):paper 4, 2008.

[7] M. H. Escardó and P. Oliva. Computational interpretations of analysis via
products of selection functions. In F. Ferreira, B. Lowe, E. Mayordomo, and
L. M. Gomes, editors, Computability in Europe 2010, LNCS, pages 141–150.
Springer, 2010.

[8] M. H. Escardó and P. Oliva. The Peirce translation and the double negation
shift. In F. Ferreira, B. Löwe, E. Mayordomo, and L. M. Gomes, editors, Pro-
grams, Proofs, Processes - CiE 2010, LNCS 6158, pages 151–161. Springer,
2010.

20

[9] M. H. Escardó and P. Oliva. Selection functions, bar recursion, and backward
induction. Mathematical Structures in Computer Science, 20(2):127–168,
2010.

[10] M. H. Escardó and P. Oliva. Sequential games and optimal strategies. Royal
Society Proceedings A, 467:1519–1545, 2011.

[11] H. Friedman. Classically and intuitionistically provably recursive functions.
In D. Scott and G. Müller, editors, Higher Set Theory, volume 669 of Lecture
Notes in Mathematics, pages 21–28. Springer, Berlin, 1978.

[12] T. G. Griffin. A formulae-as-types notion of control. In 17th Annual ACM
Symp. on Principles of Programming Languages, POPL’90, San Francisco,
CA, USA, pages 17–19, 1990.

[13] J. Lambek and P. J. Scott. Introduction to higher order categorical logic,
volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, Cambridge, 1986.

[14] M. Seisenberger. Programs from proofs using classical dependent choice.
Annals of Pure and Applied Logic, 153(1–3):97–110, 2008.

[15] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in
Mathematical Logic. Springer, Berlin, 1999.

[16] C. Spector. Provably recursive functionals of analysis: a consistency proof of
analysis by an extension of principles in current intuitionistic mathematics.
In F. D. E. Dekker, editor, Recursive Function Theory: Proc. Symposia in
Pure Mathematics, volume 5, pages 1–27. American Mathematical Society,
Providence, Rhode Island, 1962.

[17] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin,
1973.

[18] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, Cambridge (2nd edition), 2000.

21

