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Abstract

A nucleus on a frame is a finite-meet preserving closure operator. The nuclei on a
frame form themselves a frame, with the Scott continuous nuclei as a subframe. We
refer to this subframe as the patch frame. We show that the patch construction ex-
hibits the category of compact regular locales and continuous maps as a coreflective
subcategory of the category of stably compact locales and perfect maps, and the
category of Stone locales and continuous maps as a coreflective subcategory of the
category of spectral locales and spectral maps. We relate our patch construction to
Banaschewski and Brümmer’s construction of the dual equivalence of the category
of stably compact locales and perfect maps with the category of compact regular
biframes and biframe homomorphisms.
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1 Introduction

It is well-known that the open sets of a topological space can be regarded as
the (abstract) “semi-decidable properties” of its points [23]—the terminologies
“observable property” [1] and “affirmable property” [28] are also suggestive.
Smyth regards the patch topology as a topology of “positive and negative
information” [25]. We consider the patch construction in the (localic manifes-
tation of the) category of stably compact spaces.

This category is convenient for considerations of computability in classical
spaces because it contains compact Hausdorff spaces and semantic domains
at the same time [2]. In this category, the patch construction is a compact-
Hausdorff coreflection. This allows us to regard domains as compact Hausdorff
spaces and hence to apply classical topology to domain theory. It must be
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mentioned that the patch topology of a domain coincides with its Lawson
topology [7].

In the following discussion we regard domains as topological spaces, via
the Scott topology, and we refer to the space that results from refining the
topology of a given space to the patch topology as the patch space.

The patch construction transforms typical examples of domains into typ-
ical examples of compact Hausdorff spaces: (i) the patch of a finite domain
is a finite discrete space, (ii) the flat natural numbers, the first limit ordinal
and the lazy natural numbers are three domains whose patches are homeo-
morphic to the one-point compactification of the discrete natural numbers,
(iii) the patch of the unit interval endowed with the Scott topology (which co-
incides with the topology of lower semi-continuity [7, Example I.1.21]) is the
Euclidean unit interval, (iv) the patch of the domain of closed and bounded
real intervals ordered by reverse inclusion, together with a bottom element,
is homeomorphic to the one-point compactification of the subspace of the
Euclidean plane consisting of the points below the diagonal y = x.

Since the patch topology is defined in terms of compact sets of points,
it is not surprising that it is not amenable to constructive reasoning—one is
inevitably led to appeal to the principle of excluded third and (some form
of) the axiom of choice. It is the purpose of this paper to develop a simple
intuitionistic account to the patch topology in a localic setting. An account
based on biframes is developed in [4]—see the discussion below.

A nucleus on a frame is a finite-meet preserving closure operator [22,17].
The nuclei on a frame form themselves a frame [11], with the Scott continuous
nuclei as a subframe [14,6] (this is elaborated in Section 2 below). Karaz-
eris [14] showed that the frame of Scott continuous nuclei on the frame of
opens of a spectral space is isomorphic to the patch topology of the space. It
is a corollary of our results that, more generally, this construction produces a
frame isomorphic to the patch topology of a stably compact space.

We show that, via the frame of Scott continuous nuclei, the category of
compact regular locales and continuous maps appears as a coreflective sub-
category of the category of stably compact locales and perfect maps, and the
category of Stone locales and continuous maps appears as a coreflective sub-
category of the category of spectral locales and spectral maps. The arguments
are valid in any topos. Here a compact, locally compact locale is stably com-
pact if its way-below relation is multiplicative, and a continuous map of locales
is perfect if the right adjoint of its defining frame homomorphism preserves
directed joins.

Explicitly, the coreflection amounts to the fact that for each stably com-
pact locale A, there is a compact regular locale Patch A and a perfect map
εA : Patch A → A such that for every compact regular locale X and every
perfect map f : X → A, there is a unique continuous map f̄ : X → Patch A
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We refer to a sober space whose topology defines a stably compact locale
as a stably compact space, and we recall the following facts [7,8,24]. A sober
space is stably compact iff it is locally compact and its compact saturated
sets are closed under finite intersections, where a set is saturated if it is an
upper set in the specialization order. The cocompact topology of a topological
space is generated by the complements of the compact saturated sets. The
patch topology is the join of the given topology and the cocompact topology. A
continuous map of stably compact spaces is perfect (in the localic sense defined
above) iff it reflects compact saturated sets. Hence a perfect map is continuous
with respect to the cocompact topologies of its domain and codomain, and a
perfect map remains continuous if the topology of its codomain is refined to
the patch topology. The patch topology of a stably compact space is compact
Hausdorff. Since in a T1 space all sets are saturated, and since in a compact
Hausdorff space the compact sets are the closed sets, every continuous map
of compact Hausdorff spaces is perfect. Therefore the patch construction
exhibits the category of compact Hausdorff spaces and continuous maps as a
coreflective subcategory of the category of stably compact spaces and perfect
maps—although the author has never seen an explicit formulation of this fact.
Since universal constructions are unique up to isomorphism, we immediately
conclude from the localic coreflection stated above that the frame of Scott
continuous nuclei on the frame of opens of a stably compact space is isomorphic
to the patch topology of the space.

The main application of the patch topology (in this generality) is to show
that the category of stably compact spaces and perfect maps is equivalent to
Nachbin’s category of compact Hausdorff ordered spaces and monotone contin-
uous maps [18]. The earliest explicit reference to this fact seems to be [7, Sec-
tion VII-1]—see also [8,15]. This extends the earlier result by Priestley [19,20]
that the category of spectral spaces and spectral maps (a full subcategory
of the category of stably compact spaces and perfect maps) is equivalent to
the category of ordered Stone spaces and monotone continuous maps (see
Townsend [26] for a localic version).

Salbany [21] keeps the given topology and the cocompact topology sepa-
rated, obtaining an alternative formulation of the equivalence via bitopological
spaces. A localic version of this approach is obtained by combining the work of
Banaschewski and Brümmer [4] with the work of Townsend [26]. Banaschewski
and Brümmer showed that the category of stably compact locales and per-
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fect maps is dually equivalent to the category of compact regular biframes
and biframe homomorphisms. Townsend defined ordered locales and proved
that the category of compact regular ordered locales and monotone continu-
ous maps is dually equivalent to the category of compact regular biframes and
biframe homomorphisms, concluding that the category of compact regular or-
dered locales and monotone continuous maps is equivalent to the category of
stably compact locales and perfect maps.

A biframe is a frame L equipped with two subframes L1 and L2 that to-
gether generate L. As part of their construction, Banaschewski and Brümmer
assign a biframe L to every stably compact locale A by explicitly construct-
ing L1 and L2 as subframes of the frame of all nuclei on A and then declaring
that L is the subframe generated by L1 and L2. (To be precise, they work
with the frame of congruences, which, as they emphasize, is isomorphic to the
frame of nuclei.) The frame L1 consists of the closed nuclei, and the frame L2

is isomorphic to the frame of Scott open filters on A. We show that L turns
out to be the frame of Scott continuous nuclei, and that L2 turns out to be
the frame of Scott continuous fitted nuclei.

The above remark is related to the Hofmann-Mislove Theorem, which says
that in a sober space, the set of Scott open filters of open sets, ordered by
inclusion, is dual to the set of compact saturated sets, also ordered by in-
clusion [10]. (See also the earlier [7, Lemma V-5.3], which is attributed to
Hofmann and Lawson [9].) It is a corollary of our main lemma that, in a
stably compact locale, the frame of Scott open filters of opens is isomorphic
to the frame of Scott continuous fitted nuclei. This can be seen as a refor-
mulation of a special case of a general localic version of the Hofmann-Mislove
Theorem established by Johnstone [13, Lemma 3.4]—see [29] and Section 5
below.

Banaschewski and Brümmer state that their arguments are specifically
chosen to be independent of any choice principle. However, they give a con-
trapositive proof of their Lemma 3 and hence their argument is valid only
in Boolean toposes. But, as remarked by Karazeris (personal communica-
tion), their conclusion is actually valid in any topos. In fact, by the above
observations, their lemma turns out to be a particular case of the fact that
the frame of Scott continuous nucleus on a compact locale defines a compact
locale (Lemma 2.3 below).

In an extended version of this paper [5], we show that the category of reg-
ular locally compact locales and perfect maps appears as a coreflective sub-
category of the category of stably locally compact locales and perfect maps.

Notice that, following Isbell [11] and Johnstone [12], we adopt the geo-
metrical point of view and regard locales as generalized (sober) spaces rather
than special kinds of lattices. The category Loc of locales and continuous
maps is thus defined as the opposite of the category of frames and frame
homomorphisms. We adopt the following notation and terminology, which
emphasizes this point of view. We denote locales by X,Y, Z (and sometimes
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also by A,B,C in order to suggest different categories of locales), and the
corresponding frame of a locale X by OX. The elements of OX are referred
to as opens and are ranged over by the letters U, V, W . A continuous map
f : X → Y is given by a frame homomorphism f ∗ : O Y → OX, with right
adjoint denoted by f∗ : OX → O Y .

This paper is organized in the following sections: (2) The frame of perfect
nuclei, (3) The patch frame of a spectral locale, (4) The patch frame of a
stably compact locale, (5) On the Hofmann-Mislove Theorem.

I benefited from remarks by Panagis Karazeris and Steve Vickers on a
previous version of this paper. In particular, Panagis let me know about his
work [14], and Steve drew my attention to the paper [4] by Banaschewski and
Brümmer.

2 The frame of perfect nuclei

We begin by recalling the definitions and facts concerning nuclei needed in
the development that follows (see e.g. [12, Section II-2]) and establishing some
terminology and notation. We then consider Scott continuous nuclei.

In the category of topological spaces and continuous maps, the natural
notion of subobject, namely that of (homeomorphically embedded) subspace,
is not captured by the notion of monomorphism, but rather by the more re-
strictive notion of regular monomorphism. The same is true for the category
of locales and continuous maps, where nuclei are used as canonical represen-
tatives of equivalence classes of regular monomorphisms.

A nucleus on a frame is a finite-meet-preserving inflationary idempotent.
A sublocale of a locale X is a locale of the form Xj, where j is a nucleus
on OX, with frame of opens defined by OXj = {U ∈ OX|j(U) = U}. For
every sublocale Xj of X, there is a regular monomorphism e : Xj → X given
by e∗(U) = j(U). Conversely, any regular monomorphism e : X ′ → X induces
the nucleus j = e∗◦e∗ on OX, which makes X ′ isomorphic to Xj. A sublocale
of a sublocale is a sublocale of the original locale, and the subobject order on
sublocales coincides with set-theoretic inclusion of frames.

The nuclei on a frame form themselves a frame when endowed with the
pointwise order. Thus, for any locale X, there is a locale N X defined by
stipulating that ON X is the frame of nuclei on OX. An arbitrary meet
of nuclei is given pointwise. A join is strictly above the pointwise join in
general, and a non-empty join coincides with the pointwise join iff the latter
is idempotent. The frame of nuclei is dual to the lattice of sublocales, in the
sense that j ≤ k iff Xj ≥ Xk.

For each open U ∈ OX there is a nucleus ‘U ’ ∈ ON X defined by

‘U ’(V ) = U ∨ V.

This is often referred to as a closed nucleus, because it induces a closed sublo-
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cale of X thought as the complement of U . But, since the frame of nuclei is
dual to the lattice of sublocales, a nucleus should be thought as the formal
complement of its induced sublocale. We thus think of ‘U ’ as a copy of the
open U ∈ OX in the frame ON X. In fact, the assignment U 7→ ‘U ’ is a
frame homomorphism. We denote by ρX : N X → X the continuous map
defined by ρ∗X(U) = ‘U ’. The right adjoint of ρ∗X is given by (ρX)∗(j) = j(0).
The continuous map ρX : N X → X is both epi and mono (but not regular
mono).

Every nucleus of the form ‘U ’ has a boolean complement, given by

(¬‘U ’)(V ) = (U ⇒ V ).

The nuclei of the form ‘V ’ ∧ ¬‘U ’ constitute a base of ON X. In fact, every
j ∈ ON X is the join of the nuclei jU

def
= ‘j(U)’ ∧ ¬‘U ’ for U ∈ OX. This can

be proved by first showing that jU ≤ j for any U and then observing that for
any nucleus l with jU ≤ l, one has that j(U) = jU(U) ≤ l(U).

For every continuous map f : X → Y there is a continuous map N f :
N X → N Y uniquely specified by the condition (N f)∗(‘V ’) = ‘f ∗(V )’. This
makes N into a functor Loc → Loc and ρ into a natural transformation
N → 1.

Definition 2.1 A continuous map of locales is perfect if the right adjoint of
its defining frame homomorphism preserves directed joins. A nucleus is perfect
if it preserves directed joins.

The defining frame homomorphism of a perfect map always preserves the way-
below relation [7]. Some authors refer to perfect maps as proper maps. But the
latter terminology is often used for a condition stronger than perfectness [27].
Banaschewski [3] refers to perfect nuclei as finitary nuclei. Our terminology
is due to the fact that a nucleus is perfect iff it is induced by a perfect map.

The perfect nuclei form a subframe of the frame of all nuclei [14, Theo-
rem 4.1] [6, Lemma 3.1.8]. The proof given in [6] observes that the join of a
set J of perfect nuclei is given by the pointwise join of the finite compositions
of members of J (which are not necessarily nuclei). The proof given in [14],
which is based on transfinite iteration, works more generally for “compact”
topologies on locally finitely presentable categories. But in the calculations
given below, we are only going to use the fact that directed joins of perfect
nuclei are computed pointwise—see [14, Proposition 4.3] or the remark pre-
ceding [6, Lemma 3.1.8].

Definition 2.2 The patch of a locale X is the locale Patch X defined by
stipulating that OPatch X is the frame of perfect nuclei on OX.

Since OPatch X is a subframe of ON X, there is an epimorphism qX : N X →
Patch X given by q∗X(j) = j. Since a nucleus of the form ‘U ’ is perfect, the

map ρX : N X → X factors as N
qX−→ Patch X

εX−→ X for a unique continuous
map εX : Patch X → X, given by ε∗X(U) = ‘U ’. Notice that (εX)∗(j) = j(0).
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Lemma 2.3 εX : Patch X → X is a perfect map.

Proof. Let J ⊆ OPatch X be directed. Since directed joins in OPatch X are
given pointwise, we have that (εX)∗(

∨
J) = (

∨
J) (0) =

∨{j(0) | j ∈ J} =∨{(εX)∗(j) | j ∈ J}. 2

Lemma 2.4 If f : X → Y is perfect and Y is compact, so is X.

In particular, if X is a compact locale so is Patch X, and a perfect nucleus on
a compact locale induces a compact sublocale.

Proof. This follows from the fact that the defining frame homomorphism of
a perfect map preserves the way-below relation. 2

3 The patch frame of a spectral locale

Definition 3.1 A clopen is an open with a boolean complement. A locale is
zero-dimensional if the clopens form a base (that is, every open is a join of
clopens). A Stone locale is a zero-dimensional compact locale. The category
of Stone locales and continuous maps is denoted by Stone.

Definition 3.2 A spectral locale is a locale for which the compact opens form
a base closed under finite meets. Since this includes the empty meet, a spectral
locale is compact. A continuous map is spectral if its defining frame homomor-
phism preserves compact opens. The category of spectral locales and spectral
maps is denoted by Spec.

Every clopen of a compact locale is compact. Since the clopens are closed
under finite meets, Stone locales are spectral. Since frame homomorphisms
preserve finite meets and joins, they also preserve clopens and hence continu-
ous maps of Stone locales are spectral. Therefore Stone is a full subcategory
of Spec. A continuous map of spectral locales is spectral iff it is perfect [7].

Lemma 3.3 Let A be a spectral locale.

(i) If U ∈ OA is compact then ‘U ’ has a boolean complement in OPatch A.

(ii) The nuclei of the form ‘V ’ ∧ ¬‘U ’, with U, V ∈ OA compact, constitute
a base of OPatch A.

(iii) Patch A is a Stone locale.

(iv) εA : Patch A → A is a monomorphism in Spec.

(v) If A is a Stone locale then εA : Patch A → A is an isomorphism.

Proof. (i): We have to show that if U ∈ OA is compact then the boolean
complement of ‘U ’ in ON A is perfect. It suffices to conclude that for all opens
V, W ∈ OA with W compact and W ≤ (¬‘U ’)(V ), there is a compact open
V ′ ≤ V such that already W ≤ (¬‘U ’)(V ′). Since ¬‘U ’(V ) = (U ⇒ V ), we
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have that W ∧ U ≤ V . By coherence, W ∧ U is compact. Therefore we can
take V ′ = W ∧ U .

(ii): Since a perfect nucleus j on a spectral locale is completely determined
by its effect on compact opens, one has that j is the join of the nuclei ‘V ’∧¬‘U ’
with U, V ∈ OA compact and V ≤ j(U).

(iii): By Lemmas 2.3 and 2.4, Patch A is compact, and by (ii), it is zero-
dimensional.

(iv): We know that a map of spectral locales is spectral iff it is perfect.
Hence the map is spectral by Lemma 2.3. We have to show that, for every
f : B → Patch A in Spec, the frame homomorphism f ∗ : OPatch A →
OB is uniquely determined by its effect on nuclei of the form ‘U ’ with U ∈
OA compact. If we know f ∗(‘U ’) then we know f ∗(¬‘U ’) because frame
homomorphisms preserve boolean complements. Hence we also know f ∗(‘U ’∧
¬‘V ’) for all U, V ∈ OA compact. Therefore, by (ii), we know f ∗(j) for any
j ∈ OPatch A.

(v): We know that ε∗A is always one-to-one. In a Stone locale the clopens co-
incide with the compact opens. Since frame homomorphisms preserve boolean
complements, one has that for a clopen U the identity ¬‘U ’ = ‘¬U ’ holds.
Hence every perfect nucleus is a join of nuclei of the form ‘U ’ and hence is
itself of this form. Therefore ε∗A is onto. 2

Lemma 3.4 The functor N : Loc → Loc restricts to a functor Patch :
Spec → Stone via the (necessarily natural) transformation q : N → Patch.
Moreover, the restriction presents ε as a natural transformation Patch → 1.

Proof. We have to show that (N f)∗ : ON B → ON A preserves perfect nuclei
if f : A → B is a spectral map of spectral locales. Let j ∈ OPatch B ⊆ ON B.
By Lemma 3.3, we know that j is a join of opens of the form ‘U ’ ∧ ¬‘V ’ with
U, V compact. Hence (N f)∗(j) is a join of opens of the form ‘f ∗(U)’∧¬‘f ∗(V )’,
because homomorphisms preserve finite meets and boolean complements. By
coherence of f , the open f ∗(V ) is compact. Therefore (N f)∗(j) is perfect. 2

Theorem 3.5 The patch construction exhibits the category of Stone locales
and continuous maps as a coreflective subcategory of the the category of spectral
locales and spectral maps.

Proof. For every spectral locale A, the map εA : Patch A → A is universal
among spectral maps f : X → A on Stone locales X, because the composite
Patch f ◦ ε−1

X is a map f̄ : X → Patch A with εA ◦ f̄ = f by naturality of ε
and because a map f̄ with this property is necessarily unique as εA is mono.2

4 The patch frame of a stably compact locale

It is plausible that the results of this section could be derived from the results
of the previous, using the fact that the stably compact locales are the retracts
of the spectral locales [12], but we give direct arguments.
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By definition, an open U is closed iff there is a (necessarily unique) open W
(its boolean complement) with U ∧W = 0 and U ∨W = 1. The well-inside
relation gives a relative notion of closedness, and regularity generalizes zero-
dimensionality.

Definition 4.1 One says that an open U is well inside an open V (or that
U is closed in V ), written U 0 V , if there is an open W with U ∧ W = 0
and V ∨ W = 1. Equivalently, U 0 V iff V ∨ ¬U = 1, where ¬U is the
Heyting complement of U . A locale is regular if every open V is a join of
opens U 0 V . The category of compact regular locales and continuous maps
is denoted by CReg.

Since frame homomorphisms preserve finite meets and joins, they preserve the
well-inside relation.

At this point we assume familiarity with the theory of continuous lat-
tices [7] [12, Chapter VII]. The way-below relation gives a relative notion of
compactness. One says that U is way below V (or that U is compact in V ),
written U ¿ V , if every open cover of V has a finite subcover of U , or, equiv-
alently, if every directed cover of V has a member that covers U . A locale is
locally compact if every open V is a join of opens U ¿ V . In other words,

Definition 4.2 A locale is locally compact iff its frame is a continuous lattice.

We have already mentioned that the the defining frame homomorphism of a
perfect map always preserves the way-below relation. For a continuous map
of locally compact locales, the converse holds.

Definition 4.3 A locally compact locale is stably compact if for every open U ,
the set ↑↑U def

= {V |U ¿ V } is a filter. The category of stably compact locales
and perfect maps is denoted by SC.

That is, a locally compact locale is stably compact iff 1 ¿ 1 and its way-
below relation is multiplicative, in the sense that U ¿ V and U ¿ W together
imply U ¿ V ∧W . In a compact locale, the well-inside relation entails the
way-below relation, and in a regular locale the converse holds; also, the well-
inside relation is always multiplicative (see [12, Sections VII-3.5 and III.1]).
Therefore CReg is a full subcategory of SC.

The (full) inclusions of categories considered in this paper are illustrated
in the following diagram:

Stone ⊂- CReg

Spec
?

∩

⊂ - SC .
?

∩

Definition 4.4 We write ¬j to denote the Heyting complement of a nucleus j
in the frame of all nuclei, and ¬ j to denote the Heyting complement of a
perfect nucleus j in the subframe of perfect nuclei.
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Lemma 4.5 If U ¿ V holds for opens of a stably compact locale, then

(i) (¬ ‘U ’)(V ) = 1,

(ii) ‘V ’ ∨ ¬ ‘U ’ = ‘1’,

(iii) ‘U ’ 0 ‘V ’ and ¬ ‘V ’ 0 ¬ ‘U ’.

Proof. For every nucleus j there is a largest perfect nucleus j below j, given
by the join of the perfect nuclei below j. It is clear that ¬ j = ¬j. By
[6, Theorem 3.1.15], in a stably compact locale, j is explicitly given by the
formula j(V ) =

∨{j(V ′) | V ′ ¿ V }. In particular, one has that (¬ ‘U ’)(V ) =∨{U ⇒ V ′ | V ′ ¿ V }. This and the fact that (U ⇒ U) = 1 establish (i).
As it is easy to check [17], for any nucleus j, one has that the join ‘V ’ ∨ j is
the composite j ◦ ‘V ’. This and (i) establish (ii) because (‘V ’ ∨ ¬ ‘U ’)(0) =
(¬ ‘U ’)(V ) = 1. Finally, the first relation of (iii) holds because ‘U ’∧¬ ‘U ’ = ‘0’
and ‘V ’ ∨ ¬ ‘U ’ = ‘1’ by (ii), and the second holds because ‘V ’ ∧ ¬ ‘V ’ = ‘0’
and ¬ ‘U ’ ∨ ‘V ’ = ‘1’. 2

Lemma 4.6 Let A be a stably compact locale.

(i) The nuclei ‘V ’ ∧ ¬ ‘U ’, with V, U ∈ OA, constitute a base of OPatch A.

(ii) Patch A is compact regular.

(iii) If A is compact regular then εA : Patch A → A is an isomorphism with
inverse given by (ε−1

A )∗(j) = j(0).

Proof. (i): We show that any perfect nucleus j is the join of the nuclei

jU,V
def
= ‘V ’ ∧ ¬ ‘U ’ with V ¿ j(U). Since ¬ ‘U ’ ≤ ¬‘U ’, we have that j is an

upper bound of such nuclei. Let l be another, and, in order to show that j ≤ l,
let U and V be opens with V ¿ j(U). By Scott continuity of j and local
compactness of A, there is an open U ′ ¿ U with V ¿ j(U ′). It follows from
Lemma 4.5(i) that V ≤ (V ∨U)∧1 = ‘V ’(U)∧ (¬ ‘U ′’)(U) = jU ′,V (U) ≤ l(U).
Therefore j is the least upper bound.

(ii): Compactness follows from Lemma 2.4. Given V ¿ j(U), we first find
opens U ′ and V ′ with U ′ ¿ U and V ¿ V ′ ¿ j(U ′) by Scott continuity of j,
local compactness of A, and the interpolation property. We then conclude
that the relations ‘V ’ 0 ‘V ′’ and ¬ ‘U ’ 0 ¬ ‘U ′’ hold by Lemma 4.5(iii). Since
the well-inside relation is multiplicative, we have that jU,V 0 jU ′,V ′ , and since
jU ′,V ′ ≤ j, we conclude that jU,V 0 j.

(iii): If j is perfect then it induces a compact sublocale by Lemma 2.4,
and a compact sublocale of a regular locale is closed [12, Proposition III-1.2].
Therefore j = ‘U ’ for some U , which has to be j(0). 2

MacNab [17] considered nuclei of the form κφ
def
=

∨{¬‘U ’ | U ∈ φ} with φ a
filter of opens. Johnstone [13, Lemma 3.4] and Banaschewski and Brümmer [4]
considered the particular case in which the filter φ is Scott open (that is,
inaccessible by directed joins). The following result on κφ seems to be new.
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Lemma 4.7 If A is a stably compact locale and φ ⊆ OA is a Scott open
filter, then the nucleus κφ is perfect and its defining join can be computed
pointwise.

Proof. It is enough to show that the function k(V ) =
∨{U ⇒ V | U ∈ φ} is

Scott continuous and has k ◦ k ≤ k. By definition of Heyting implication,

(i) If U ∈ φ and W ∧ U ≤ V then W ≤ k(V ).

Conversely, the set {U ⇒ V | U ∈ φ} is directed because φ is a filter and
because the map U 7→ (U ⇒ V ) transforms joins into meets. Hence if W ¿
k(V ) then there is U ′ ∈ φ with W ¿ (U ′ ⇒ V ). Since φ is Scott open, there
is U ∈ φ with U ¿ U ′. By stability, W ∧ U ¿ (U ′ ⇒ V ) ∧ U ′ ≤ V . This
shows that

(ii) If W ¿ k(V ) then W ∧ U ¿ V for some U ∈ φ.

In order to show that k is Scott continuous, it suffices to show that whenever
W ¿ k(V ), there exists V ′ ¿ V with W ≤ k(V ′). But now this is immediate
because we can find U ∈ φ with W ∧U ¿ V by (ii) and then take V ′ = W ∧U
by (i). Finally, in order to show that k◦k ≤ k, assume that W ¿ k(k(V )). By
two successive applications of (ii), we first have that W ∧U ¿ k(V ) for some
U ∈ φ and then that W ∧ U ∧ U ′ ¿ V for some U ′ ∈ φ. Since U ∧ U ′ ∈ φ as
φ is a filter, we conclude by (i) that W ≤ k(V ). Therefore k(k(V )) ≤ k(V ).2

It will be convenient to work with an alternative base of the patch frame
of a stably compact locale.

Lemma 4.8 For any stably compact locale A, the nuclei ‘V ’ ∧ κφ, with V ∈
OA and φ ⊆ OA a Scott open filter, constitute a base of OPatch A.

Proof. We show that any perfect nucleus j is the join of the nuclei jU,V
def
= ‘V ’∧

κU with V ¿ j(U), where κU stands for κφ with φ = ↑↑U . Since κU ≤ ¬‘U ’,
we have that j is an upper bound of such nuclei. Let l be another, and let U
and V be opens with V ¿ j(U). By Scott continuity of j, there is U ′ ¿ U
with V ¿ j(U ′). Hence V ≤ (V ∨U)∧1 = ‘V ’(U)∧κU ′(U) = jU ′,V (U) ≤ l(U)
by Lemma 4.7. Therefore j is the least upper bound. 2

(Notice that, in view of the topological Hofmann-Mislove Theorem, this prop-
erty of the patch frame is essentially the same as the definition of the patch
topology—see Section 5.)

Banaschewski and Brümmer [4] assign a (compact regular) biframe L to
each stably compact locale A as follows (where we use nuclei instead of their
frame congruences):

(i) L1 = {‘U ’ | U ∈ OA},
(ii) L2 = {κφ | φ ⊆ OA is a Scott open filter},
(iii) L is the subframe of ON A generated by L1 and L2.

It follows from Lemma 4.8 that L turns out to be OPatch A. Corollary 5.2
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below shows that L2 turns out to the subframe of perfect fitted nuclei.

Lemma 4.9 If f : A → B is a perfect map of stably compact locales, then
(N f)∗ : ON B → ON A preserves perfect nuclei. Moreover, the induced
continuous map Patch f : Patch A → Patch B is uniquely determined by the
condition that

(Patch f)∗(‘V ’) = ‘f ∗(V )’, (Patch f)∗(κφ) = κf∗[φ]

for every open V ∈ OB and every Scott open filter φ ⊆ OB.

Proof. Let j ∈ OPatch B ⊆ ON B. By Lemma 4.8, we know that j is a
join of opens of the form ‘V ’ ∧ κφ. Hence (N f)∗(j) is a join of opens of the
form (N f)∗(‘V ’) ∧ (N f)∗(κφ). The nucleus (N f)∗(‘V ’) is perfect because it
is ‘f ∗(V )’. Also,

(N f)∗(κφ) = (N f)∗(
∨{¬‘V ’ | V ∈ φ}) by definition of κφ,

=
∨{(N f)∗(¬‘V ’) | V ∈ φ} as homomorphisms preserve joins,

=
∨{¬(N f)∗(‘V ’) | V ∈ φ} as they preserve complements,

=
∨{¬‘f ∗(V )’ | V ∈ φ} by specification of N f ,

= κf∗[φ], by definition of κf∗[φ].

The set f ∗[φ] is not necessarily a filter, but it is filtered as frame homomor-
phisms preserve finite meets. Since f ∗ preserves the way-below relation, the
filter γ generated by f ∗[φ] is Scott open. Also, it is clear that κf∗[φ] = κγ.
Hence κf∗[φ] is perfect. Therefore so is (N f)∗(j). 2

Corollary 4.10 The functor N : Loc → Loc restricts to a functor Patch :
SC → CReg via the (necessarily natural) transformation q : N → Patch.
Moreover, the restriction presents ε as a natural transformation Patch → 1.

Theorem 4.11 The patch construction exhibits the category of compact reg-
ular locales and continuous maps as coreflective subcategory of the category of
stably compact locales and perfect maps.

Proof. This is equivalent to saying that the functor Patch : SC → CReg is
right adjoint to the inclusion functor. For every compact regular locale X, we
can define ηX : X → Patch X as ε−1

X because Lemma 4.6(iii) shows that εX is
an isomorphism. Then η is a natural transformation and, by definition, the
composite X

ηX−→ Patch X
εX−→ X is the identity. Thus, in order to establish

the claim, it is enough to show that the composite

Patch A
ηPatch A−→ Patch Patch A

Patch εA−→ Patch A

is also the identity [16, Theorem IV-1.2(v)]. Denote the composite by g.

12



M.H. Escardó

If V ∈ OA then

g∗(‘V ’) = η∗Patch A ◦ (Patch εA)∗(‘V ’) by definition of g,

= η∗Patch A (‘ε∗A(V )’) by Lemma 4.9,

= η∗Patch A (‘‘V ’’) by definition of εA,

= ‘‘V ’’(‘0’) by Lemma 4.6( iii),

= ‘V ’ ∨ ‘0’ by definition,

= ‘V ’.

If φ ⊆ OA is a Scott open filter then

g∗(κφ) = κε∗A[φ](‘0’) by Lemmas 4.9 and 4.6(iii),

=
∨{¬‘ε∗A(V )’ | V ∈ φ}(‘0’) by definition of κε∗A[φ],

=
∨{(¬‘ε∗A(V )’)(‘0’) | V ∈ φ} by Lemma 4.7,

=
∨{(¬‘‘V ’’)(‘0’) | V ∈ φ} by definition of εA,

=
∨{‘V ’ ⇒ ‘0’ | V ∈ φ}

=
∨{¬‘V ’ | V ∈ φ}

= κφ by definition of κφ.

Since g∗ is the identity on the opens a base by Lemma 4.8, it is the identity
on all opens. 2

5 On the Hofmann-Mislove Theorem

For every nucleus j, the set j−1(1) is a filter [17]. In fact, j−1(1) is an upper set
because j is monotone, and it is closed under finite meets because j preserves
them. (Notice that j−1(1) is the set of open neighborhoods of the sublocale
induced by j. In fact, j(U) = 1 iff ¬‘U ’ ≤ j iff (by duality) the open sublocale
induced by ¬‘U ’ contains the sublocale induced by j.)

Proposition 5.1 If j is a perfect nucleus on a compact locale, then the fil-
ter j−1(1) is Scott open.

Proof. If
∨U ∈ j−1(1) for a directed set of opens U , then

∨{j(U) | U ∈ U} =
j(

∨U) = 1 because j is perfect, and j(U) = 1 for some U ∈ U because 1 is
compact. Therefore U ∈ j−1(1), which shows that j−1(1) is Scott open. 2

MacNab [17] observed that for every nucleus j there is a smallest nucleus k
that induces the same filter as j, namely κj−1(1). Recall that a sublocale is
fitted iff it is a meet of open sublocales, and that a nucleus is fitted iff it

13
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induces a fitted sublocale iff it is a join of nuclei of the form ¬‘U ’. Since κφ is
a fitted nucleus, we have the following form of the Hofmann-Mislove Theorem
for stably compact locales.

Corollary 5.2 For a stably compact locale, the assignments j 7→ j−1(1) and
φ 7→ κφ constitute an order-isomorphism between perfect fitted nuclei and Scott
open filters of opens ordered by inclusion.

Proof. In view of Lemmas 2.4 and 4.7 and Proposition 5.1, it remains to show
that κ−1

φ (1) = φ. But this is immediate, because, by Lemma 4.7, κφ(V ) = 1
iff

∨{U ⇒ V | U ∈ φ} = 1 iff (U ⇒ V ) = 1 for some U ∈ φ, because 1 is
compact, iff U ≤ V for some U ∈ φ iff V ∈ φ. 2

The following result by Johnstone [13, Lemma 3.4] implies that, for any
locale, there is an order-reversing bijection between compact fitted sublocales
and Scott open filters of opens, and hence is a general localic version the
Hofmann-Mislove Theorem.

(i) A sublocale Xj of a locale X is compact iff the filter j−1(1) is Scott open.

(ii) For any locale X and any Scott open filter φ ⊆ OX, there is a (smallest)
nucleus j on OX with j−1(1) = φ (which has to be κφ).

Johnstone used transfinite iteration of the pointwise join V 7→ ∨{(¬‘U ’)(V ) |
U ∈ φ} in order to compute the join

∨{¬‘U ’ | U ∈ φ} and obtain the
conclusion. It follows by (i), which is easily proved, that a fitted nucleus on a
stably compact locale induces a compact sublocale iff it is perfect. Our version
of the Hofmann-Mislove Theorem is thus a reformulation of a particular case
of Johnstone’s. But notice that this reformulation depends on the fact that
κφ is perfect in the stably compact case (Lemma 4.7) and that transfinite
iteration is avoided in this special case.

Finally, we observe that in a stably compact locale, the perfect nucleus
κφ can be expressed as a join of perfect nuclei as follows.

Proposition 5.3 If A is a stably compact locale and φ ⊆ OA is a Scott open
filter, then κφ =

∨{¬ ‘U ’ | U ∈ φ}.
Proof. Denote the right-hand side of the identity by j. It is clear that j ≤ κφ.
Let W ¿ κφ(V ). By item (ii) of the proof of Lemma 4.7, there is some U ∈ φ
with W ∧ U ¿ V . By taking V ′ = W ∧ U , we have that W ≤ (U ⇒ V ′).
Since j is a directed join of perfect nuclei, its defining join is given pointwise.
It follows that W ≤ j(V ). Therefore κφ ≤ j. 2

14
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