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Abstract

The Scott continuous nuclei form a subframe of the frame of all nuclei. We refer
to this subframe as the patch frame. We show that the patch construction exhibits
(i) the category of regular locally compact locales and perfect maps as a coreflective
subcategory of the category of stably locally compact locales and perfect maps,
(ii) the category of compact regular locales and continuous maps as a coreflective
subcategory of the category of stably compact locales and perfect maps, and (iii) the
category of Stone locales and continuous maps as a coreflective subcategory of the
category of spectral locales and perfect maps. (Here a stably locally compact locale
is not necessarily compact, and a stably compact locale is a compact and stably
locally compact locale.) We relate our patch construction to Banaschewski and
Brümmer’s construction of the dual equivalence of the category of stably compact
locales and perfect maps with the category of compact regular biframes and biframe
homomorphisms.

Keywords: Frame of nuclei, Scott continuous nucleus, patch topology, stably locally
compact locale, perfect map, compact regular locale, regular locally compact locale.
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1 Introduction

A nucleus on a frame is a finite-meet-preserving closure operator [22,17]. The
nuclei on a frame form themselves a frame [8], with the Scott continuous nuclei
as a subframe [14,3] (this is elaborated in Section 2). Karazeris [14] showed
that the frame of Scott continuous nuclei on the frame of opens of a spectral
space is isomorphic to the patch topology of the space. It is a corollary of our
results that, more generally, this construction produces a frame isomorphic to
the patch topology of a stably compact space.
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We show that, via the frame of Scott continuous nuclei, (i) the category of
regular locally compact locales and perfect maps appears as a coreflective
subcategory of the category of stably locally compact locales and perfect maps,
(ii) the category of compact regular locales and continuous maps appears as a
coreflective subcategory of the category of stably compact locales and perfect
maps and (iii) the category of Stone locales and continuous maps appears as a
coreflective subcategory of the category of spectral locales and perfect maps.

The proofs of these localic facts are intuitionistic in the sense of topos logic.
Notice, however, that their connections with topology discussed below un-
avoidably rely on excluded-middle and choice principles. In particular, there
are toposes for which locally compact locales such as the real line fail to be
spatial, and for which the spatialization of compact sublocales fail to enjoy
the Heine-Borel property. Moreover, there are toposes for which not all points
of a stably compact locale are perfect and hence the locales and their patches
fail to have the same points (see Vickers [27] for a discussion of constructive
points).

Here a locale is stably locally compact if it is locally compact and its way-
below relation is multiplicative [9], and it is stably compact if it is compact
and stably locally compact. A continuous map of locales is perfect if the right
adjoint of its defining frame homomorphism preserves directed joins. This is
elaborated in Section 4.

We refer to a sober space whose topology defines a stably compact locale as
a stably compact space, and we recall the following facts [4,5]. A sober space
is stably compact iff it is locally compact and its compact saturated sets are
closed under finite intersections, where a set is saturated if it is an upper set
in the specialization order iff it is the intersection of its neighbourhoods. The
cocompact topology of a stably compact space consists of the complements
of the compact saturated sets. The patch topology is the join of the given
topology and the cocompact topology. The patch topology of a stably compact
space is compact Hausdorff. A continuous map of stably compact spaces is
perfect (in the localic sense defined above) iff it reflects compact saturated sets.
Hence a perfect map is continuous with respect to the cocompact topologies
of its domain and codomain. Since in a T1 space all sets are saturated, and
since in a compact Hausdorff space the compact sets are the closed sets, the
patch of a compact Hausdorff space is itself, and a perfect map of a compact
Hausdorff space into a stably compact space remains continuous if the topology
of its codomain is refined to the patch topology. Moreover, every continuous
map of compact Hausdorff spaces is perfect. Therefore the patch construction
exhibits the category of compact Hausdorff spaces and continuous maps as a
coreflective subcategory of the category of stably compact spaces and perfect
maps—although the author has never seen an explicit formulation of this fact.
Since universal constructions are unique up to isomorphism, we immediately
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conclude from the localic coreflection stated above that the frame of Scott
continuous nuclei on the frame of open sets of a stably compact space is
isomorphic to the patch topology of the space.

The main application of the patch topology (in this generality) is to show that
the category of stably compact spaces and perfect maps is equivalent to Nach-
bin’s category of compact Hausdorff ordered spaces and monotone continuous
maps [18]. The earliest explicit reference to this fact seems to be [4, Section
VII-1]—see also [5,15]. This extends the earlier result by Priestley [19,20] that
the category of spectral spaces and perfect maps (a full subcategory of the cat-
egory of stably compact spaces and perfect maps) is equivalent to the category
of ordered Stone spaces and monotone continuous maps (see Townsend [24]
for an intuitionistic localic version).

Salbany [21] keeps the given topology and the cocompact topology sepa-
rated, obtaining an alternative formulation of the equivalence via bitopological
spaces. A localic version of this approach is obtained by combining the work of
Banaschewski and Brümmer [2] with the work of Townsend [24]. Banaschewski
and Brümmer showed that the category of stably compact locales and per-
fect maps is dually equivalent to the category of compact regular biframes
and biframe homomorphisms. Townsend defined ordered locales and proved
that the category of compact regular ordered locales and monotone contin-
uous maps is dually equivalent to the category of compact regular biframes
and biframe homomorphisms, concluding that the category of compact regular
ordered locales and monotone continuous maps is equivalent to the category
of stably compact locales and perfect maps.

Given the coreflections stated above, it is natural to ask whether there is an
equivalence between the category of regular locally compact ordered locales
and monotone perfect maps with the category of stably locally compact locales
and perfect maps, via (suitably defined) regular locally compact biframes. The
anonymous referee pointed out that there are some difficulties in trying to
achieve such an equivalence, considering the real line R as an example. The
corresponding stably locally compact locale would need a point at infinity, the
directed join of the finite points. But classically all points are perfect and so
the point at infinity would also need to be in R, which it isn’t.

A biframe is a frame L equipped with two subframes L1 and L2 that together
generate L. As part of their construction, Banaschewski and Brümmer assign
a biframe L to every stably compact locale A by explicitly constructing L1

and L2 as subframes of the frame of all nuclei on A and then declaring that L
is the subframe generated by L1 and L2. (To be precise, they work with the
frame of congruences, which, as they emphasize, is isomorphic to the frame
of nuclei.) The frame L1 consists of the closed nuclei, and the frame L2 is
isomorphic to the frame of Scott open filters on A. We show that L turns out
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to be the frame of Scott continuous nuclei, and that L2 turns out to be the
frame of Scott continuous fitted nuclei. Here a nucleus is fitted if it induces a
sublocale which is the intersection of its neighbourhoods.

The above remark is related to the Hofmann-Mislove Theorem, which says that
in a sober space, the set of Scott open filters of open sets, ordered by inclu-
sion, is dual to the set of compact saturated sets, also ordered by inclusion [7].
(See also the earlier [4, Lemma V-5.3], which is attributed to Hofmann and
Lawson [6].) The Hofmann-Mislove Theorem unavoidably relies on excluded-
middle and choice principles. An intuitionistic localic version, which says that
in any locale there is an order-reversing bijection between compact fitted sublo-
cales and Scott open filters of open sublocales, was proved by Johnstone [11,
Lemma 3.4] (see Vickers [27] for another proof).

Banaschewski and Brümmer state that their arguments are specifically chosen
to be independent of any choice principle. However, they give a contrapositive
proof of their Lemma 3 and hence their argument is valid only in Boolean
toposes. But, as remarked by Karazeris (personal communication), their con-
clusion is actually valid in any topos. In fact, by the above observations, their
lemma turns out to be a particular case of the fact that the frame of Scott
continuous nuclei on a compact locale defines a compact locale (Lemma 2.5
below).

Smyth [23] and Jung and Sünderhauf [13] consider finitary presentations of
stably compact locales via certain proximity lattices. We leave as an open
problem to present our localic patch construction in their finitary framework.

Notice that, following Isbell [8] and Johnstone [10], we adopt the geometri-
cal point of view and regard locales as generalized (sober) spaces rather than
special kinds of lattices. The category Loc of locales and continuous maps is
thus defined as the opposite of the category of frames and frame homomor-
phisms. We adopt the following notation and terminology, which emphasizes
this point of view. We denote locales by X,Y, Z (and also by A,B,C in order
to emphasize different categories of locales when we consider adjunctions),
and the corresponding frame of a locale X by OX. The elements of OX are
referred to as opens and are ranged over by the letters U, V, W . A continuous
map f : X → Y is given by a frame homomorphism f ∗ : O Y → OX, with
right adjoint denoted by f∗ : OX → O Y .

I benefited from remarks by Panagis Karazeris and Steve Vickers on a previous
version of this paper. In particular, Panagis let me know about his work [14],
and Steve drew my attention to the paper [2] by Banaschewski and Brümmer.
Detailed comments by the anonymous referee helped to improve the expo-
sition. Also, the referee proposed a strengthening of the original version of
Corollary 5.2, with an elegant simplification of its proof.
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2 The patch frame

We begin by recalling the definitions and facts concerning nuclei needed in the
development that follows (see [10,17,11]) and establishing some terminology
and notation. We then consider Scott continuous nuclei.

In the category of topological spaces and continuous maps, the natural notion
of subobject, namely that of (homeomorphically embedded) subspace, is not
captured by the notion of monomorphism, but rather by the more restrictive
notion of regular monomorphism. The same is true for the category of locales
and continuous maps, where nuclei are used as canonical representatives of
equivalence classes of regular monomorphisms.

A nucleus on a frame is a finite-meet-preserving inflationary idempotent. A
sublocale of a locale X is a locale of the form Xj, where j is a nucleus on OX,
with frame of opens defined by OXj = {U ∈ OX|j(U) = U}. For every
sublocale Xj of X, there is a regular monomorphism e : Xj → X given by
e∗(U) = j(U). Conversely, any regular monomorphism e : X ′ → X induces
the nucleus j = e∗ ◦e∗ on OX, which makes X ′ isomorphic to Xj. A sublocale
of a sublocale is a sublocale of the original locale, and the subobject order on
sublocales coincides with set-theoretic inclusion of frames.

The nuclei on a frame form themselves a frame when endowed with the point-
wise order. Thus, for any locale X, there is a locale N X defined by stipulating
that ON X is the frame of nuclei on OX. An arbitrary meet of nuclei is com-
puted pointwise. A join is strictly above the pointwise join in general, and a
non-empty join coincides with the pointwise join iff the latter is idempotent.
The frame of nuclei is dual to the lattice of sublocales, in the sense that j ≤ k
iff Xj ≥ Xk.

For each open U ∈ OX there is a nucleus ‘U ’ ∈ ON X defined by

‘U ’(V ) = U ∨ V.

This is often referred to as a closed nucleus, because it induces a closed sublo-
cale of X thought as the complement of U . But, since the frame of nuclei is
dual to the lattice of sublocales, a nucleus should be thought as the formal
complement of its induced sublocale. We thus think of ‘U ’ as a copy of the
open U ∈ OX in the frame ON X. In fact, the assignment U 7→ ‘U ’ is a
frame homomorphism. We denote by ρX : N X → X the continuous map de-
fined by ρ∗X(U) = ‘U ’. The right adjoint of ρ∗X is given by (ρX)∗(j) = j(0).
The continuous map ρX : N X → X is both epi and mono (but not regular
mono).
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Every nucleus of the form ‘U ’ has a boolean complement, given by

(¬‘U ’)(V ) = (U ⇒ V ).

The nuclei of the form ‘V ’ ∧ ¬‘U ’ constitute a base of ON X. In fact, every
j ∈ ON X is the join of the nuclei jU

def
= ‘j(U)’ ∧ ¬‘U ’ for U ∈ OX. This can

be proved by first showing that jU ≤ j for any U and then observing that for
any nucleus l with jU ≤ l, one has that j(U) = jU(U) ≤ l(U).

For every continuous map f : X → Y there is a continuous map N f : N X →
N Y uniquely specified by the condition (N f)∗(‘V ’) = ‘f ∗(V )’. This makes N
into a functor Loc → Loc and ρ into a natural transformation N → 1.

For every nucleus j, the set j−1(1) is a filter. In fact, j−1(1) is an upper set
because j is monotone, and it is closed under finite meets because j preserves
them. Moreover, this filter is the set of open neighbourhoods of the sublocale
induced by j, because j(U) = 1 iff ¬‘U ’ ≤ j iff (by duality) the open sublocale
induced by ¬‘U ’ contains the sublocale induced by j.

A sublocale is fitted if it is an intersection of open sublocales. Dually, a nucleus
is fitted if it is of the form

κU
def
=

∨{¬‘U ’ | U ∈ U}

for some set U of opens. For every nucleus j, the nucleus κj−1(1) induces the
same filter as j and hence is the largest fitted nucleus below j.

2.1 Lemma (Johnstone [11, Lemma 3.4])

(1) A nucleus j induces a compact sublocale iff the filter j−1(1) is Scott open
(that is, inaccessible by directed joins).

(2) For any Scott open filter φ of opens of any locale, there is a (largest)
nucleus j with j−1(1) = φ (which has to be κφ).

2.2 Corollary For any locale, there is an order-reversing bijection between
compact fitted sublocales and Scott open filters of opens.

2.3 Definition A continuous map of locales is perfect if the right adjoint of
its defining frame homomorphism preserves directed joins. A nucleus is perfect
if it preserves directed joins.

Some authors refer to perfect maps as proper maps. But the latter terminology
is often used for a condition stronger than perfectness [25]. Banaschewski [1]
refers to perfect nuclei as finitary nuclei. Our terminology is due to the fact
that a nucleus is perfect iff it is induced by a perfect map.
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The perfect nuclei form a subframe of the frame of all nuclei [14, Theorem 4.1]
[3, Lemma 3.1.8]. The proof given in [3] observes that the join of a set J
of perfect nuclei is given by the pointwise join of the finite compositions of
members of J (which are not necessarily nuclei). The proof given in [14], which
is based on transfinite iteration, works more generally for “compact” topologies
on locally finitely presentable categories. But in the calculations given below,
we are only going to use the fact that directed joins of perfect nuclei are
computed pointwise—see [14, Proposition 4.3] or the remark preceding [3,
Lemma 3.1.8].

2.4 Definition The patch of a locale X is the locale Patch X defined by
stipulating that OPatch X is the frame of perfect nuclei on OX.

Since OPatch X is a subframe of ON X, there is an epimorphism qX : N X →
Patch X given by q∗X(j) = j. Since a nucleus of the form ‘U ’ is perfect, the

map ρX : N X → X factors as N
qX−→ Patch X

εX−→ X for a unique continuous
map εX : Patch X → X, given by ε∗X(U) = ‘U ’. Notice that (εX)∗(j) = j(0).

2.5 Lemma εX : Patch X → X is a perfect map.

Proof Let J ⊆ OPatch X be directed. Since directed joins in OPatch X
are computed pointwise, we have that (εX)∗(

∨
J) = (

∨
J) (0) =

∨{j(0) | j ∈
J} =

∨{(εX)∗(j) | j ∈ J}. ¤

2.6 Lemma If f : X → Y is perfect and Y is compact, so is X.

In particular, if X is a compact locale so is Patch X, and a perfect nucleus on
a compact locale induces a compact sublocale.

Proof The defining frame homomorphism of a perfect map always pre-
serves the way-below relation, and in particular compact opens [4]. ¤

3 The patch frame of a spectral locale

A clopen is an open with a boolean complement. A locale is zero-dimensional
if the clopens form a base (that is, every open is a join of clopens). A Stone
locale is a zero-dimensional compact locale. The category of Stone locales and
continuous maps is denoted by Stone.

A spectral locale is a locale for which the compact opens form a base closed
under finite meets. Since this includes the empty meet, a spectral locale is
compact. A continuous map is spectral if its defining frame homomorphism
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preserves compact opens. The category of spectral locales and spectral maps
is denoted by Spec.

Every clopen of a compact locale is compact. Since the clopens are closed under
finite meets, Stone locales are spectral. Since frame homomorphisms preserve
finite meets and joins, they also preserve clopens and hence continuous maps
of Stone locales are spectral. Therefore Stone is a full subcategory of Spec.
A continuous map of spectral locales is spectral iff it is perfect [4].

3.1 Lemma Let A be a spectral locale.

(1) If U ∈ OA is compact then ‘U ’ has a boolean complement in OPatch A.
(2) The nuclei of the form ‘V ’ ∧ ¬‘U ’, with U, V ∈ OA compact, constitute

a base of OPatch A.
(3) Patch A is a Stone locale.
(4) εA : Patch A → A is a monomorphism in Spec.
(5) If A is a Stone locale then εA : Patch A → A is an isomorphism.

Proof (1): We have to show that if U ∈ OA is compact then the boolean
complement of ‘U ’ in ON A is perfect. It suffices to conclude that for all opens
V, W ∈ OA with W compact and W ≤ (¬‘U ’)(V ), there is a compact open
V ′ ≤ V such that already W ≤ (¬‘U ’)(V ′). Since ¬‘U ’(V ) = (U ⇒ V ), we
have that W ∧U ≤ V . By the spectral property, W ∧U is compact. Therefore
we can take V ′ = W ∧ U .

(2): Since a perfect nucleus j on a spectral locale is completely determined by
its effect on compact opens, one has that j is the join of the nuclei ‘V ’∧¬‘U ’
with U, V ∈ OA compact and V ≤ j(U).

(3): By Lemmas 2.5 and 2.6, Patch A is compact, and by (2), it is zero-
dimensional.

(4): We know that a map of spectral locales is spectral iff it is perfect. Hence
the map is spectral by Lemma 2.5. We have to show that, for every f : B →
Patch A in Spec, the frame homomorphism f ∗ : OPatch A → OB is uniquely
determined by its effect on nuclei of the form ‘U ’ with U ∈ OA compact. If we
know f ∗(‘U ’) then we know f ∗(¬‘U ’) because frame homomorphisms preserve
boolean complements. Hence we also know f ∗(‘U ’ ∧ ¬‘V ’) for all U, V ∈ OA
compact. Therefore, by (2), we know f ∗(j) for any j ∈ OPatch A.

(5): We know that ε∗A is always one-to-one. In a Stone locale the clopens coin-
cide with the compact opens. Since frame homomorphisms preserve boolean
complements, one has that for a clopen U the identity ¬‘U ’ = ‘¬U ’ holds.
Hence every perfect nucleus is a join of nuclei of the form ‘U ’ and hence
is itself of this form. Therefore ε∗A is an isomorphism with inverse given by
(ε−1

A )∗(j) = j(0). ¤
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3.2 Lemma The functor N : Loc → Loc restricts to a functor Patch :
Spec → Stone via the (necessarily natural) transformation q : N → Patch.
Moreover, the restriction presents ε as a natural transformation Patch → 1.

Proof We have to show that (N f)∗ : ON B → ON A preserves per-
fect nuclei if f : A → B is a spectral map of spectral locales. Let j ∈
OPatch B ⊆ ON B. By Lemma 3.1, we know that j is a join of opens of
the form ‘U ’ ∧ ¬‘V ’ with U, V compact. Hence (N f)∗(j) is a join of opens
of the form ‘f ∗(U)’∧¬‘f ∗(V )’, because homomorphisms preserve finite meets
and boolean complements. By the spectral property of f , the open f ∗(V ) is
compact. Therefore (N f)∗(j) is perfect. ¤

3.3 Theorem The patch construction exhibits the category of Stone locales
and continuous maps as a coreflective subcategory of the the category of spectral
locales and spectral maps.

Proof For every spectral locale A, the map εA : Patch A → A is universal
among spectral maps f : X → A on Stone locales X, because the composite
Patch f ◦ε−1

X is a map f̄ : X → Patch A with εA ◦ f̄ = f by naturality of ε and
because a map f̄ with this property is necessarily unique as εA is mono. ¤

Joyal and Tierney [12, pages 25–26 and 31–32] showed that the frame of nuclei
on a given frame is the universal solution to the problem of adding boolean
complements to the opens of the given frame. The above adjunction can be
interpreted as saying that, for a spectral locale, the patch frame is the universal
solution to the problem of adding boolean complements to the compact opens.
(See also Vickers [26, pages 129–130].)

4 Boundedly regular locales

In this section we develop a characterization of the category of regular locally
compact locales and perfect maps, which we use in the next section to prove
our main theorem.

By definition, an open U is closed iff there is a (necessarily unique) open W (its
boolean complement) with U∧W = 0 and U∨W = 1. The well-inside relation
defined below gives a relative notion of closedness, and regularity generalizes
zero-dimensionality.

One says that an open U is well inside an open V (or that U is closed in V ),
written U 0 V , if there is an open W with U ∧ W = 0 and V ∨ W = 1.
Equivalently, U 0 V iff V ∨ ¬U = 1, where ¬U is the Heyting complement
of U . A locale is regular if every open V is a join of opens U 0 V . The category
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of compact regular locales and continuous maps is denoted by KReg. Since
frame homomorphisms preserve finite meets and joins, they preserve the well-
inside relation.

At this point we assume familiarity with the theory of continuous lattices [4] [10,
Chapter VII]. The way-below relation gives a relative notion of compactness.
One says that U is way below V (or that U is compact in V ), written U ¿ V ,
if every open cover of V has a finite subcover of U , or, equivalently, if every
directed cover of V has a member that covers U . A locale is locally compact
if every open V is a join of opens U ¿ V . In other words, a locale is locally
compact iff its frame is a continuous lattice. We have already mentioned that
the defining frame homomorphism of a perfect map always preserves the way-
below relation. For a continuous map of locally compact locales, the converse
holds [4].

A locally compact locale is stably locally compact if for every open U¿ 1, the
set ↑↑U def

= {V |U ¿ V } is a filter. That is, a locally compact locale is stably
locally compact iff its way-below relation is multiplicative, in the sense that
U ¿ V and U ¿ W together imply U ¿ V ∧W . A locale is stably compact if it
is compact and stably locally compact. The category of stably locally compact
locales and perfect maps is denoted by SLK, and the full subcategory on the
stably compact locales is denoted by SK.

The well-inside relation is always multiplicative [10, Lemma III-1.1]. In a com-
pact locale, the well-inside relation entails the way-below relation, and in a
regular locale the converse holds [10, Lemma VII-3.5]. Therefore KReg is a
full subcategory of SK.

4.1 Definition An open U is bounded if U ¿ 1. A locale is boundedly reg-
ular if every open V is a join of bounded opens U 0 V . A continuous map
is cobounded if its defining frame homomorphism preserves bounded opens.
The category of boundedly regular locales and cobounded maps is denoted
by BReg.

Clearly, every boundedly regular locale is regular, and every compact regular
locale is boundedly regular. The following is a slight generalization of the
fact that in a compact locale the well-inside relation entails the way-below
relation [10, Lemma VII-3.5(i)].

4.2 Lemma In any locale, U ′ 0 U ¿ 1 implies U ′ ¿ U .

Proof In order to show that U ′ ¿ U , let V be a directed set with U ≤ ∨V .
Since U ′ 0 U , we have that U ∨¬U ′ = 1. Then 1 = U ∨¬U ′ ≤ (

∨V)∨¬U ′ =∨{V ∨ ¬U ′ | V ∈ V}. Since U ¿ 1, there is some V ∈ V with U ≤ V ∨ ¬U ′.
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From this we deduce that V ∨ ¬U ′ = 1 and hence that U ′ ≤ V , which shows
that U ′ ¿ U . ¤

4.3 Lemma The following conditions are equivalent for any locale X.

(1) X is boundedly regular.
(2) X is regular and locally compact.
(3) X is regular and stably locally compact.

Proof (1 =⇒ 2): By bounded regularity, any open V is a join of opens
U 0 V with U ¿ 1. But also any such U is a join of opens U ′ 0 U (necessarily
with U ′ ¿ 1). Hence V is a join of opens U ′ for which there exists an open
U 0 V with U ′ 0 U ¿ 1. By Lemma 4.2, the latter relation entails U ′ ¿ U ,
which in turn entails U ′ ¿ V . Therefore V is a join of opens U ′ ¿ V , which
shows that X is locally compact.

(2 =⇒ 1): By local compactness, every open V is a join of opens U ¿ V . By
regularity, U ¿ V implies U 0 V . Therefore V is a join of opens U 0 V with
U ¿ 1, which shows that X is boundedly regular.

(2 =⇒ 3): Assume that U ¿ V and U ¿ W . By local compactness and
the interpolation property, there are V ′ and W ′ with U ¿ V ′ ¿ V and
U ¿ W ′ ¿ W . By regularity, U 0 V ′ and U 0 W ′, and hence U 0 V ′ ∧W ′.
Since V ′ ¿ 1 and W ′ ¿ 1, we have that V ′ ∧ W ′ ¿ 1. It follows from
Lemma 4.2 that U ¿ V ′ ∧W ′ . Since V ′ ∧W ′ ≤ V ∧W , we finally conclude
that U ¿ V ∧W , which shows that X is stably locally compact. ¤

4.4 Lemma A continuous map of boundedly regular locales is cobounded iff it
is perfect.

Proof (=⇒): Let f : X → Y be a cobounded map of boundedly regu-
lar locales, and assume that U ¿ V in O Y . By Lemma 4.3, the locale Y
is locally compact. Hence there is an open V ′ with U ¿ V ′ ¿ V by the
interpolation property. Then V ′ ¿ 1 and, by regularity, U 0 V ′. Since
frame homomorphisms preserve the well-inside relation and f is cobounded,
f ∗(U) 0 f ∗(V ′) ¿ 1. It follows by Lemma 4.2 that f ∗(U) ¿ f ∗(V ′). Since
f ∗(V ′) ≤ f ∗(V ), we conclude that f ∗(U) ¿ f ∗(V ). This shows that f ∗ pre-
serves the way-below relation and hence that f is perfect.

(⇐=): The defining frame homomorphism of a perfect map preserves the way-
below relation, and any frame homomorphism preserves the open 1. ¤

Lemmas 4.3 and 4.4 show that BReg is a full subcategory of SLK. The ter-
minal locale is trivially boundedly regular. And, clearly, a locale is compact iff
the unique continuous map to the terminal locale is cobounded. Since there

11



are boundedly regular, non-compact locales, e.g. the localic real line, we con-
clude that there are continuous maps of boundedly regular locales that are
not cobounded.

5 The patch frame of a stably locally compact locale

The following lemma is our main tool.

5.1 Lemma If φ is a Scott open filter of opens of a stably locally compact
locale, then the nucleus κφ is perfect and its defining join can be computed
pointwise.

Proof It is enough to show that the function k(V ) =
∨{U ⇒ V | U ∈ φ}

is Scott continuous and has k ◦ k ≤ k. By definition of Heyting implication,

(i) If U ∈ φ and W ∧ U ≤ V then W ≤ k(V ).

Conversely, the set {U ⇒ V | U ∈ φ} is directed because φ is a filter and
because the map U 7→ (U ⇒ V ) transforms joins into meets. Hence if W ¿
k(V ) there is U ′ ∈ φ with W ¿ (U ′ ⇒ V ). Since φ is Scott open, there is
U ∈ φ with U ¿ U ′. By stability, W ∧ U ¿ (U ′ ⇒ V ) ∧ U ′ ≤ V . This shows
that

(ii) If W ¿ k(V ) then W ∧ U ¿ V for some U ∈ φ.

In order to show that k is Scott continuous, it suffices to show that whenever
W ¿ k(V ), there exists V ′ ¿ V with W ≤ k(V ′). But now this is immediate
because we can find U ∈ φ with W ∧U ¿ V by (ii) and then take V ′ = W ∧U
by (i). In order to show that k ◦ k ≤ k, assume that W ¿ k(k(V )). By two
successive applications of (ii), we first have that W ∧ U ¿ k(V ) for some
U ∈ φ and then that W ∧U ∧U ′ ¿ V for some U ′ ∈ φ. Since U ∧U ′ ∈ φ as φ
is a filter, we conclude by (i) that W ≤ k(V ). Therefore k(k(V )) ≤ k(V ). ¤

The following is a special case of Lemma 2.1(2).

5.2 Corollary If φ is a Scott open filter of opens of a stably locally compact
locale, then κ−1

φ (1) = φ.

It follows from Lemma 2.1(1) that κφ induces a compact sublocale.

Proof For suppose κφ(V ) = 1. By Lemma 5.1 it is computed pointwise as
a directed join

∨{U ⇒ V | U ∈ φ} and 1 is in φ, so by Scott openness we
have (U ⇒ V ) ∈ φ for some U ∈ φ. Then V ≥ U ∧ (U ⇒ V ) is in φ. ¤
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The notation κU is a shorthand for κ↑↑U
. Notice that κU ≤ ¬‘U ’.

5.3 Lemma If U ¿ V ¿ 1 holds for opens of a stably locally compact locale,
then ‘U ’ 0 ‘V ’ and κV 0 κU .

Proof Since U ¿ 1, the set ↑↑U is a filter by stable local compactness.
Then κU(V ) =

∨{U ′ ⇒ V | U ¿ U ′} by Lemma 5.1. Since (V ⇒ V ) = 1 we
conclude that κU(V ) = 1 by considering U ′ = V . As it is well-known and easy
to check [17], for any nucleus j, one has that the join ‘V ’∨ j is the composite
j ◦ ‘V ’. This and the fact that κU(V ) = 1 show that ‘V ’ ∨ κU = ‘1’ because
(‘V ’∨κU)(U) = (κU)(V ∨U) = 1. Since κU ≤ ¬‘U ’, we conclude ‘U ’∧κU = ‘0’
and hence that U 0 V . And since ‘V ’∧κV = ‘0’ we conclude that κV 0 κU . ¤

5.4 Lemma Let A be a stably locally compact locale.

(1) The nuclei ‘V ’ ∧ κφ, with V ∈ OA and φ ⊆ OA a Scott open filter,
constitute a base of OPatch A.

(2) Patch A is boundedly regular.
(3) If A is boundedly regular then εA : Patch A → A is an isomorphism with

inverse given by (ε−1
A )∗(j) = j(0).

Proof (1): We show that any perfect nucleus j is the join of the nuclei
jU,V

def
= ‘V ’ ∧ κU with V ¿ j(U) and U ¿ 1. Since κU ≤ ¬‘U ’, we have that j

is an upper bound of such nuclei. Let l be another, and let U and V be opens
with V ¿ j(U). By Scott continuity of j, there is U ′ ¿ U with V ¿ j(U ′).
Hence V ≤ (V ∨ U) ∧ 1 = ‘V ’(U) ∧ κU ′(U) = jU ′,V (U) ≤ l(U) by Lemma 5.1.
Therefore j is the least upper bound.

(2): Given V ¿ j(U) with U ¿ 1, we first find opens U ′ and V ′ with U ′ ¿ U
and V ¿ V ′ ¿ j(U ′) by Scott continuity of j, local compactness of A, and
the interpolation property. We then conclude that the relations ‘V ’ 0 ‘V ′’
and κU 0 κU ′ hold by Lemma 5.3. Since the well-inside relation is mul-
tiplicative, we have that jU,V 0 jU ′,V ′ , and since jU ′,V ′ ≤ j, we conclude
that jU,V 0 j, which establishes regularity. Since V ¿ 1, since the defining
frame homomorphism of a perfect map preserves the way-below relation, and
since εA : Patch A → A is perfect by Lemma 2.5, we conclude that ‘V ’ ¿ ‘1’
by definition of εA. Therefore jU,V ¿ ‘1’ because jU,V ≤ ‘V ’, which establishes
bounded regularity.

(3): Since compact sublocales of regular locales are closed, the basic nuclei of
item (1) induce closed sublocales by Lemma 2.1. ¤

Banaschewski and Brümmer [2] assign a (compact regular) biframe L to each
stably compact locale A as follows (where we use nuclei instead of their frame
congruences):
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(1) L1 = {‘U ’ | U ∈ OA},
(2) L2 = {κφ | φ ⊆ OA is a Scott open filter},
(3) L is the subframe of ON A generated by L1 and L2.

Corollary 5.2 shows that L2 turns out to be the subframe of perfect fitted
nuclei, and Lemma 5.4(1) shows that L turns out to be OPatch A.

5.5 Lemma If f : A → B is a perfect map of stably locally compact locales,
then (N f)∗ : ON B → ON A preserves perfect nuclei. Moreover, the induced
continuous map Patch f : Patch A → Patch B is uniquely determined by the
condition that

(Patch f)∗(‘V ’) = ‘f ∗(V )’, (Patch f)∗(κφ) = κf∗[φ]

for every open V ∈ OB and every Scott open filter φ ⊆ OB.

Proof Let j ∈ OPatch B ⊆ ON B. By Lemma 5.4(1), we know that j is
a join of opens of the form ‘V ’ ∧ κφ. Hence (N f)∗(j) is a join of opens of the
form (N f)∗(‘V ’) ∧ (N f)∗(κφ). The nucleus (N f)∗(‘V ’) is perfect because it
is ‘f ∗(V )’. Also,

(N f)∗(κφ) = (N f)∗(
∨{¬‘V ’ | V ∈ φ}) by definition of κφ,

=
∨{(N f)∗(¬‘V ’) | V ∈ φ} as homomorphisms preserve joins,

=
∨{¬(N f)∗(‘V ’) | V ∈ φ} as they preserve complements,

=
∨{¬‘f ∗(V )’ | V ∈ φ} by specification of N f ,

= κf∗[φ], by definition of κf∗[φ].

The set f ∗[φ] is not necessarily a filter, but it is filtered as frame homomor-
phisms preserve finite meets. Since f ∗ preserves the way-below relation, the
filter γ generated by f ∗[φ] is Scott open. Also, it is clear that κf∗[φ] = κγ.
Hence κf∗[φ] is perfect. Therefore so is (N f)∗(j). ¤

5.6 Lemma If f : A → B is a perfect map of stably locally compact locales,
then the induced continuous map Patch f : Patch A → Patch B is cobounded.

Proof Assume that j ¿ ‘1’ holds in OPatch B. By local compactness
and the fact that directed joins of perfect nuclei are computed pointwise, the
maximum nucleus ‘1’ is the directed join of the perfect nuclei ‘V ’ for V ¿ 1.
Hence j ≤ ‘V ’ for some V ¿ 1. Since f is a perfect map by assumption,
f ∗(V ) ¿ f ∗(1) = 1, and since εA : Patch A → A is perfect by Lemma 2.5, we
have that ‘f ∗(V )’ ¿ ‘1’. An application of Lemma 5.5 gives (Patch f)∗(j) ≤
(Patch f)∗(‘V ’) = ‘f ∗(V )’. Therefore (Patch f)∗(j) ¿ ‘1’. ¤
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5.7 Corollary The functor N : Loc → Loc restricts to a functor Patch :
SLK → BReg via the (necessarily natural) transformation q : N → Patch.
Moreover, the restriction presents ε as a natural transformation Patch → 1.

5.8 Theorem The patch construction exhibits the category of boundedly reg-
ular locales and cobounded maps as coreflective subcategory of the category of
stably locally compact locales and perfect maps.

Proof This is equivalent to saying that the functor Patch : SLK → BReg
is right adjoint to the inclusion functor. For every boundedly regular locale X,
we can define ηX : X → Patch X as ε−1

X because Lemma 5.4(3) shows that εX

is an isomorphism. Then η is a natural transformation and, by definition, the
composite X

ηX−→ Patch X
εX−→ X is the identity. Thus, in order to establish

the claim, it is enough to show that the composite

Patch A
ηPatch A−→ Patch Patch A

Patch εA−→ Patch A

is also the identity [16, Theorem IV-1.2(v)]. Denote the composite by g. If
V ∈ OA then

g∗(‘V ’) = η∗Patch A ◦ (Patch εA)∗(‘V ’) by definition of g,

= η∗Patch A (‘ε∗A(V )’) by Lemma 5.5,

= η∗Patch A (‘‘V ’’) by definition of εA,

= ‘‘V ’’(‘0’) by Lemma 5.4(3),

= ‘V ’ ∨ ‘0’ by definition of ‘‘V ’’,

= ‘V ’.

If φ ⊆ OA is a Scott open filter then

g∗(κφ) = κε∗A[φ](‘0’) by Lemmas 5.5 and 5.4(3),

=
∨{¬‘ε∗A(V )’ | V ∈ φ}(‘0’) by definition of κε∗A[φ],

=
∨{(¬‘ε∗A(V )’)(‘0’) | V ∈ φ} by Lemma 5.1,

=
∨{(¬‘‘V ’’)(‘0’) | V ∈ φ} by definition of εA,

=
∨{‘V ’ ⇒ ‘0’ | V ∈ φ}

=
∨{¬‘V ’ | V ∈ φ}

= κφ by definition of κφ.

Since g∗ is the identity on the opens of a subbase by Lemma 5.4(1), it is the
identity on all opens. ¤
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Since if A is compact so is Patch A, the functor Patch : SLK → BReg further
restricts to a functor Patch : SK → KReg.

5.9 Corollary The patch construction exhibits the category of compact reg-
ular locales and continuous maps as coreflective subcategory of the category of
stably compact locales and perfect maps.

This adjunction can be interpreted as saying that the patch frame of the
frame of opens of a stably compact locale is the universal solution to the
problem of transforming the way-below relation into the well-inside relation.
Of course, this generalizes the fact that the patch frame of the frame of opens of
a spectral locale is the universal solution to the problem of adding complements
to the compact opens, because an open U is compact iff U ¿ U , and it is
complemented iff U 0 U .
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