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Abstract. We compare the definability of total functionals over the
reals in two functional-programming approaches to exact real-number
computation: the extensional approach, in which one has an abstract
datatype of real numbers; and the intensional approach, in which one
encodes real numbers using ordinary datatypes. We show that the type
hierarchies coincide up to second-order types, and we relate this fact to
an analogous comparison of type hierarchies over the external and inter-
nal real numbers in Dana Scott’s category of equilogical spaces. We do
not know whether similar coincidences hold at third-order types. How-
ever, we relate this question to a purely topological conjecture about
the Kleene-Kreisel continuous functionals over the natural numbers. Fi-
nally, although it is known that, in the extensional approach, parallel
primitives are necessary for programming total first-order functions, we
demonstrate that, in the intensional approach, such primitives are not
needed for second-order types and below.

1 Introduction

In functional programming, there are two main approaches to exact real-number
computation. One is to use a specialist functional programming language that
contains the real numbers as an abstract datatype. This approach is extensional
in the sense that the data structures representating real numbers are hidden
from view and one may only manipulate reals via representation-independent
operations upon them. A second approach is to use an ordinary functional lan-
guage, and to encode real numbers using standard infinite data structures, for
example, streams. This approach is intensional in the sense that one has di-
rect access to the encodings of reals, allowing the possibility of distinguishing
between different representations of the same real number. In recent years, the
extensional approach has been the subject of much theoretical investigation via
the study of specialist languages, such as Di Gianantonio’s RL [DiG93] and Es-
cardó’s RealPCF [Esc96]. On the other hand, the intensional approach is the
? Research supported by the Slovene Ministry of Science grant Z1-3138-0101-01
?? Research supported by an EPSRC Advanced Research Fellowship.



one that is actually used when exact real-number computation is implemented
in practice—see, for example, [GL01].

This paper presents preliminary results in a general investigation relating the
two approaches. Specifically, we address the question of how the programmability
of higher-type total functionals over the real numbers compares between the two
approaches. To this end, we consider two type hierarchies built using function
space and product over a single base type, real. The first hierarchy is constructed
by interpreting each type σ as the set [σ]E of extensionally programmable total
functionals of that type, and the second by interpreting σ as the set [σ]I of in-
tensionally programmable total functionals. As our first main result, Theorem 1,
we prove that for all second-order (and below) types σ, the sets [σ]E and [σ]I
coincide, thus a second-order functional is extensionally programmable if and
only if it is intensionally programmable. This result thus applies at the type
level at which definite integration,

(f, a, b) 7→
∫ b

a

f(x) dx : (real→ real)× real× real → real ,

resides; although, in the case of integration, our result gives no new information
as it is already known to be programmable under both the extensional and
intensional approaches, see [EE00] and [Sim98] respectively.

We prove Theorem 1 by relating it to an analogous question of the coinci-
dence of type hierarchies in the setting of Dana Scott’s category of equilogical
spaces [Sco96,BBS02]. In that setting there is an external type hierarchy (σ)E ,
built over Euclidean space, and there is an internal hierarchy (σ)I , built over
the object of real numbers as defined in the internal logic of the category. Again,
we show that (σ)E and (σ)I coincide up to second-order types, Theorem 2.

It is of course natural to ask whether the above type hierarchies also coin-
cide for third-order σ and above. We do not know the answer to this question,
but a further contribution of this paper is to relate the agreement of the hierar-
chies at higher types to a purely topological conjecture about the Kleene-Kreisel
continuous functionals [Kle59,Kre59] of second-order type, see Sect. 6.

Our methodology for studying the two approaches to exact real-number com-
putation is to consider a paradigmatic programming language for each. For the
extensional approach, we use Escardó’s RealPCF+, which is RealPCF [Esc96]
extended by a parallel existential operator—a language that enjoys the merit of
being universal with respect to its domain-theoretic semantics [ES99]. For the in-
tensional approach, we encode real numbers within Plotkin’s PCF++, which is
PCF extended by parallel-conditional and existential operators [Plo77]. Again,
PCF++ enjoys a universality property with respect to its denotational seman-
tics [Plo77].

Admittedly, both RealPCF+ and PCF++ are idealized languages, distant
from real-world functional languages such as Haskell [Has]. As such, they provide
ideal vehicles for a theoretical investigation into programmability questions such
as ours. Nevertheless, it is our desire that our results should relate to the actual
practice of exact real-number computation. There is one main obstacle to such
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a transference of the results: the parallel features of PCF++ do not appear in
Haskell and related languages. We address this issue in Sect. 9, where we show
that, again for second-order σ and below, the parallel features of PCF++ are
nowhere required to program functionals in [σ]I , Theorem 3. Thus a second-
order total functional over the reals is programmable in an ordinary sequential
functional language if and only if it is programmable in the idealized, specialist
and highly parallel language RealPCF+. Again, we do not know whether this
result extends to third-order types and above.

Although our investigation is one into questions of programmability (i.e. of
definability) within RealPCF+ and PCF++, we carry out the investigation
purely at the denotational level, relying on known universality results to infer
definability consequences from the semantic correspondences we establish. In do-
ing so, there is one major way in which the results presented in this paper depart
from the outline presented above. A full investigation would show that the com-
putable (and hence definable) total functionals coincide between the denotational
interpretations of the extensional and intensional approaches. Instead, we estab-
lish the coincidence of arbitrary total functionals, whether computable or not.
Our reason for ignoring computability questions is that the results we establish
already require significant technical machinery. Although it should be possible
to give computability-sensitive versions of our results, this would unavoidably
cause still further technical complications in the proofs. We leave this for fu-
ture work. We remark that the results we prove, although computability free,
do nonetheless have definability consequences relative to functional languages
extended with oracles for all set-theoretic functions from N to N, or equivalently
relative to functional languages with programs given by infinite syntax trees.

The main question left open by this paper is whether our results extend to
third-order types and beyond. Regarding this, we remark that we lack examples
of genuinely interesting total functionals of type three to which such generali-
sations of our results would apply. However, another interesting development of
our work would be to compare hierarchies of partial functionals over the reals.

This paper assumes some familiarity with domain theory, topology and cat-
egory theory, for which our references are [AJ94,Dug89,Mac71] respectively. An
important contribution of the paper is to show how mathematical tools from
these subjects may be combined to attack seemingly innocuous questions that
originate in functional programming.

2 Domains for Real-number Computation

We first fix terminology—see [AJ94] for definitions. We assume that a directed-
complete partial order (dcpo), (D,v), has least element. We call a dcpo ω-
continuous if it has a countable basis, and we write x<<y for the way-below
relation on it. For us, a domain is an ω-continuous bounded-complete dcpo. We
write ωBC for the category of domains and (directed-)continuous functions, and
we write ωL for its full subcategory of ω-continuous lattices. Both categories are
cartesian closed with exponentials given by the dcpo of all continuous functions.
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Our main interest will be in two particular domains, one for each of the two
approaches to exact real-number computation mentioned in the introduction.
The interval domain I has underlying set {R} ∪ {[a, b] | a ≤ b ∈ R}, with its
order defined by δ v δ′ if and only if δ ⊇ δ′. This is indeed a domain.

The interval domain is intimately connected with the extensional approach
to exact real-number computation. Indeed, the abstract datatype of real num-
bers in RealPCF [Esc96] is specifically designed to have I as its denotational
interpretation. Furthermore, Escardó and Streicher [ES99] have established a
universality result with respect to the domain-theoretic semantics: every com-
putable element in the domain interpreting a RealPCF type is definable, by a
term of that type, in the language RealPCF+, which is RealPCF extended
with a parallel existential operator. In this paper, although we are motivated
by definability questions, we do not wish to entangle ourselves in computability
issues. Thus we remark on the following modified version of Escardó and Stre-
icher’s result. Every element (computable or not) in the domain interpreting a
RealPCF type is definable in the languageΩRealPCF+, which is RealPCF+
extended with an oracle for every set-theoretic function from N to N.

Under the intensional approach to exact real-number computation, one needs
to select a computationally admissible representation of real numbers [WK87].
There are many equivalent choices. For simplicity, we use a mantissa-exponent
representation, where the mantissa, a real number in the interval [−1, 1], is repre-
sented using signed-binary expansions. Specifically, a real number is represented
by a pair (n, α) where the mantissa α ∈ {−1, 0, 1}ω represents the number
0.α0α1α2 . . . , i.e.

∑∞
i=0 2−(i+1)αi, and the exponent n ∈ N gives a multiplier of

2n, thus the pair (n, α) represents the real number
∑∞
i=0 2n−(i+1)αi.

To implement the above representation in a functional programming lan-
guage, one would most conveniently encode a real number as a pair consist-
ing of a natural number followed by a stream. However, in order to fix on
as simple a language as possible, we use instead a direct implementation in
Plotkin’s PCF [Plo77] extended with product types. In PCF, the base type, nat,
is interpreted as the flat domain N⊥ = {⊥} ∪ N with least element ⊥. Function
space and product are interpreted using the cartesian-closed structure of ωBC.
As we are interested in definability, we mention Plotkin’s universality result:
every computable element in the domain interpreting a PCF type is definable
in the language PCF++, which is PCF extended with parallel-conditional and
existential operators. Again, there is a computability-free version of this result.
Every element (computable or not) in the domain interpreting a PCF type is
definable in the language ΩPCF++, which is PCF++ extended with an oracle
for every set-theoretic function from N to N.

We represent real numbers, in PCF, using the type nat→ nat whose denota-
tional interpretation is the function domain J = N⊥

N⊥ . We say that a function
f ∈ J is real representing if f(0) 6= ⊥ and if f(x) ∈ {0, 1, 2} when x > 0. Any
such real-representing f encodes the real number

∑∞
i=1 2f(0)−i(f(i)− 1).
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3 Two Type Hierarchies of Assemblies

Our goal is to investigate the type hierarchies of total functionals on reals pro-
grammable in the two approaches to exact real-number computation. We con-
sider simple types over a base type of real numbers, with types given by:

σ ::= real | σ × σ′ | σ → σ′ .

The order of a type is: order(real) = 0; order(σ×σ′) = max(order(σ), order(σ′));
and order(σ → σ′) = max(1 + order(σ), order(σ′)).

For the extensional approach, we study the total functionals on reals pro-
grammable in the language ΩRealPCF+. Because of the universality result
mentioned above, such functionals are exactly those total functionals that arise
in the type hierarchy over I in ωBC. However, the type hierarchy over I con-
tains both superfluous elements and redundancies. For example, I itself contains
“partial” real numbers (proper intervals) in addition to “total” reals (singleton
intervals). At first-order types, such as II , there are elements that do not rep-
resent total functions on reals because they fail to preserve total reals. Further-
more, at the same type, it is possible to have two different functions f, g : I → I
that represent the same total function on reals, because, although they behave
identically on total reals, they differ in their behaviour on partial reals.

For the intensional approach, we study the functionals programmable in
ΩPCF++, using the representation described in Sect. 2. Because of the uni-
versality result, such functionals are exactly those total functionals that arise
in the type hierarchy over J in ωBC. Again, there is superfluity and redun-
dancy. Within J , we singled out the real-representing elements in Sect. 2, and
in fact each real number has infinitely many different representations. Because
of this, there are two ways that a function from J to J may fail to represent a
function on real numbers: either it may map some real-representing element to
a non-real-representing element; or it may map two different representations of
the same real number to representations of different real numbers.

Assemblies offer a convenient way of identifying the elements of the hierar-
chies over I and J in ωBC that represent total functionals on reals. An assembly
is a triple A = (|A|, ‖A‖,A) where |A| is a set, ‖A‖ is a domain, and A is a bi-
nary relation between ‖A‖ and |A| such that, for all a ∈ |A|, there exists x ∈ ‖A‖
such that x A a. A morphism from one assembly A to another B is simply a
function f : |A| → |B| for which there exists a continuous g : ‖A‖ → ‖B‖ such
that x A a implies g(x) B f(a), in which case we say that g tracks f . We write
Asm(ωBC) for the category of assemblies over domains, and Asm(ωL) for the
full subcategory of assemblies over ω-continuous lattices. Again, both categories
are cartesian closed, with the exponential BA given by

|BA| = {f : |A| → |B|
∣∣ f is a morphism from A to B}

‖BA‖ = ‖B‖‖A‖ in ωBC

g BA f ⇐⇒ g tracks f .
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We remark that Asm(ωBC) is equivalent to the category Asm(U) of assemblies
over the combinatory algebra given by U, a chosen universal domain [GS90]; and
Asm(ωL) is equivalent to Asm(P), for Scott’s combinatory algebra P = Pω
which is an ω-continuous lattice under ⊆. Thus, up to equivalence, Asm(ωBC)
and Asm(ωL) arise as the categories of double-negation separated objects in
the realizability toposes RT(U) and RT(P) respectively.

We use Asm(ωBC) to define the two type hierarchies of total functionals
we are interested in. For the extensional approach, we define an assembly [[σ]]E
for each type σ. For the base type, real, this is given by:

|[[real]]E | = R ‖[[real]]E‖ = I δ [[real]]E x ⇐⇒ δ = {x}

from which [[σ]]E is defined for arbitrary σ using the cartesian-closed structure
of Asm(ωBC).

For each type σ, the set |[[σ]]E |, for which we henceforth use the less cluttered
[σ]E , is a set of total functionals of appropriate type over the reals. By the
universality of ΩRealPCF+, the functionals f ∈ [σ]E are exactly those for
which there exists an ΩRealPCF+ program P of type σ such that P computes
f , as witnessed by the relation [[P ]] [[σ]]E f , where [[P ]] is the denotational
interpretation of P .

Similarly, for the intensional approach, the assembly [[real]]I is defined by:

|[[real]]I |=R ‖[[real]]I‖=J f [[real]]I x ⇐⇒ f is real representing and
x =

∑∞
i=1 2f(0)−i · (f(i)− 1)

and again [[σ]]I is induced for arbitrary σ using the cartesian-closed structure of
Asm(ωBC). This time the set |[[σ]]I |, for which we henceforth write [σ]I , is the
set of those total functionals f for which there exists an ΩPCF++ program P
of type σ∗ (where real∗ = nat→ nat and (·)∗ commutes with function space and
product) such that P computes f , as witnessed by the relation [[P ]] [[σ]]I f .

We can now state our first result, the agreement of the two hierarchies for
second-order types and below.

Theorem 1. For any type σ with order(σ) ≤ 2, it holds that [σ]E = [σ]I .

Although this theorem can be proved directly, we find it illuminating to approach
it by looking at another situation in which there are competing hierarchies of
total functionals over the reals. This will occupy Sects. 4–6, after which the proof
of Theorem 1 will be given in Sect. 7.

4 Two Type Hierarchies of Equilogical Spaces

Our second example of a pair of hierarchies of real functionals arises in Dana
Scott’s category of equilogical spaces [Sco96,BBS02], a cartesian-closed extension
of the category of topological spaces. In addition to its application to Theorem 1,
our study of the two type hierarchies in this setting is of independent interest.
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In the present paper we only consider countably-based equilogical spaces, and
we do not impose Scott’s T0 requirement. For our purposes then, an equilogical
space is a triple X = (|X|, ‖X‖, qX) where |X| is a set, ‖X‖ is a countably-based
(i.e. second-countable) topological space and qX : ‖X‖ → |X| is a surjective
function. A morphism from one equilogical space X to another Y is simply a
function f : |X| → |Y | for which there exists a continuous g : ‖X‖ → ‖Y ‖ such
that qY ◦ g = f ◦ qX . Again we say that g tracks f . We write ωEqu for the
category of equilogical spaces.

We write ωTop for the category of countably-based topological spaces. There
is a full and faithful functor from ωTop to ωEqu, mapping a countably-based
space S to (S, S, idS).

There are two non-isomorphic equilogical spaces, each with good claims to
be the equilogical space of real numbers. The external reals, RE, is the inclusion
of the topological Euclidean reals as the object (R,R, idR). The internal reals,
RI, is the object (N× 3ω,R, r), where 3 = {−1, 0, 1} with the discrete topology,
both 3ω and N× 3ω are given the product topologies, and r is the function:

r(n, α) =
∑∞
i=0 2n−(i+1)αi . (1)

Thus, the internal reals are again based on the intensional signed-digit notation.
A remarkable fact is that is ωEqu is equivalent to the category Asm(ωL) [BBS02].

ωEqu
� � P // Asm(ωL)_?F
oo

Here P (X) is obtained from a topological pre-embedding e : ‖X‖ → P, where
P = Pω is endowed with the Scott topology, by defining ‖P (X)‖ = P, |P (X)| =
|X|, and x P (X) a if and only if there exists z ∈ ‖X‖ with e(z) = x and
qX(z) = a. (Recall that a a continuous e : S → T between topological spaces is
a pre-embedding if the open sets of S are exactly {e−1(U) | U ⊆ T is open}.)
Conversely, for an assembly A in Asm(ωL), F (A) is defined by ‖F (A)‖ =∑
a∈|A|{x ∈ ‖A‖ | x  a} with the final topology as induced, from the Scott

topology on ‖A‖, by the second projection ‖F (A)‖ → ‖A‖. (Recall that the
final topology is the unique topology with respect to which the function is a
topological pre-embedding.) Then |F (A)| = |A| and qF (A) is the first projection
‖F (A)‖ → |A|.

The next proposition, which says that RI is the object of reals as described
in the internal logic of the topos RT(P), explains our nomenclature for RI.

Proposition 1. The object RI, when transported along

ωEqu ' // Asm(ωL) ' // Asm(P) // RT(P) ,

gives the object of Dedekind (equivalently Cauchy) reals in RT(P).

An important consequence of the equivalence between ωEqu and Asm(ωL)
is that ωEqu is cartesian closed. We use the cartesian-closed structure to deter-
mine two type hierarchies, the external ([σ])E , and the internal ([σ])I in ωEqu,
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defined at base type by:

([real])E = RE ([real])I = RI .

We write (σ)E as an abbreviation for |([σ])E |, and (σ)I for |([σ])I |.

Theorem 2. For any type σ with order(σ) ≤ 2, it holds that (σ)E = (σ)I .

5 Topological Considerations

We shall need to consider various types of topological spaces. Recall that a
topological space is said to be regular if every neighbourhood W of a point x
has a closed subneighbourhood, i.e., there exist U ⊆ V ⊆W such V is closed, U is
open and x ∈ U . A space is said to be zero-dimensional if every neighbourhood
of a point has a clopen subneighbourhood, where a clopen set is one that is
both open and closed. Clearly every zero-dimensional space is regular. Some
useful countably-based zero-dimensional spaces are: Cantor space, 2ω with the
product topology; Baire space, Nω with the product topology; and the one-point
compactification of N, the set N+ = N∪ {∞} with topology given by the clopen
basis {{n} | n ∈ N} ∪ {{m | m ≥ n} ∪ {∞} | n ∈ N}. We shall need the
following result about zero-dimensional spaces.

Proposition 2. If S is a nonempty closed subspace of a countably-based zero-
dimensional space T then S is a retract of T .

Proof. Because T is countably-based and zero-dimensional it is pre-embedded
into Cantor space by an embedding e : T → 2ω. Such an embedding induces
a countable clopen basis on T , defined by Ua = e−1([a]) where a ∈ 2∗ is a
finite binary sequence and [a] is the set of all infinite binary sequences starting
with a. For each a ∈ 2∗ such that Ua ∩ S 6= ∅, pick a point ca ∈ Ua ∩ S. A
continuous retraction r : T → S is defined as follows. For x ∈ T , consider the
set Ax = {a ∈ 2∗

∣∣ x ∈ Ua ∧ Ua ∩ S 6= ∅}. The set Ax is nonempty because S
is nonempty, it is prefix-closed, and if a, b ∈ Ax then a is a prefix of b or b is a
prefix of a. If Ax is infinite, then every basic open neighbourhood of x intersects
the closed set S, which means that x ∈ S and so we define r(x) = x. Otherwise,
there is a longest a ∈ Ax and every other element of Ax is a prefix of a. In this
case we define r(x) = ca. Clearly, r is a retraction, and it remains to verify that
it is continuous. For that purpose, we show that the inverse image r−1(Ua) of
a basic open is open. Suppose x ∈ r−1(Ua). If x 6∈ S then there exists Ub 3 x
such that Ub ∩ S = ∅ and we have x ∈ Ub ⊆ r−1(Ua) because r(y) = r(x) for all
y ∈ Ub. The other possibility is that x ∈ S, but then r(y) ∈ Ua for all y ∈ Ua,
therefore x ∈ Ua ⊆ r−1(Ua).

ut

In a topological space T , an infinite sequence (xi)i≥0 converges to a point
x, notation (xi) → x, if, for all neighbourhoods U 3 x, the sequence (xi) is
eventually in U (i.e., there exists l ≥ 0 such that xj ∈ U for all j ≥ l). A
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subset X ⊆ T is sequentially open if, whenever (xi) → x ∈ X, it holds that
(xi) is eventually in X. Every open set is sequentially open. A space T is said
to be sequential if every sequentially open subset is open. We write Seq for the
category of sequential spaces. This category is known to be cartesian closed.
If S and T are sequential then the exponential TS is given by the set of all
continuous functions endowed with the unique sequential topology that induces
the convergence relation (fi) → f if and only if, whenever (xi) → x in S, it
holds that (fi(xi))→ f(x) in T . We shall need the following useful facts, where
2 = {0, 1} with the discrete topology, XN is the exponential of X and N in Seq,
whereas Xω is a countable product of copies of X with the product topology, as
above.

Proposition 3. In the category Seq,

2N ∼= 2ω ∼= 3ω ∼= 3N , N
N ∼= N

ω , and 22N ∼= N ∼= N
2N .

Proof. Because all spaces are of the form XY where X is discrete and Y is both
compact and locally compact. ut

We write ωqTop for the category of all quotient spaces of countably-based
spaces, i.e. a topological space T is an object of ωqTop if and only if there exists
a countably-based space S with a topological quotient q : S � T . There are sub-
category inclusions ωTop ↪→ ωqTop ↪→ Seq. Importantly, the category ωqTop
is cartesian closed with its cartesian-closed structure inherited from Seq [MS02].

A topological space is said to be hereditarily Lindelöf if, for every family
{Ui}i∈I of open sets, there is a countable subfamily {Uj}j∈J (i.e. where J ⊆ I
is countable) such that

⋃
j∈J Uj =

⋃
i∈I Ui. It is easily shown that every space

in ωqTop is hereditarily Lindelöf.
The next proposition relates the above notions to an important property of

the function r : N × 3ω → R, defined in (1), which is a topological quotient.
We first introduce terminology that makes sense in an arbitrary category. Given
an object Z and a morphism g : X −→ Y we say that Z is g-projective, or
equivalently that g projects Z, if, for every f : Z −→ Y , there exists f : Z → X
such that the left-hand diagram below commutes. Dually, we say that Z is g-
injective, or equivalently that g injects Z, if, for every f : X −→ Z, there exists
f : Y → Z such that the right-hand diagram commutes.

Z
f //

f   @@@@@@@ X

g
��
Y

Y
f // Z

X

g

OO

f

>>~~~~~~~

A useful fact is that if Y is a sequential topological space and g projects N+

then g is a topological quotient map.

Proposition 4. If T is a hereditarily Lindelöf space then T is zero-dimensional
if and only if it is both regular and r-projective.
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Proof. In the proof we rely on the fact that a Hereditarily Lindelöf space is
regular if and only if it is completely normal, cf. [Dug89, Exercise VIII.6.7,
p. 180], and thus also completely regular.

Suppose T is hereditarily Lindelöf, regular, and r-projective. Let x ∈ U be a
point with an open neighbourhood. Because T is also completely regular, there
exists f : T → R such that f(x) = 0 and V = f−1((−1, 1)) is contained in U .
Because T is r-projective, there exists f : T → N× 3ω such that f = r ◦ f . Then
W = f

−1
({0} × {a ∈ 3ω

∣∣ a(0) = 1}) is a clopen neighbourhood of x such that
W ⊆ V ⊆ U . Therefore, T is zero-dimensional.

Conversely, suppose T is hereditarily Lindelöf and zero-dimensional. Then it
is regular, and we need to show that it is r-projective. First we note that every
countable open cover {Ui

∣∣ i ∈ N} of T has a precise disjoint refinment, i.e.,
a clopen cover {Vi

∣∣ i ∈ N} such that Vi ⊆ Ui for all i ∈ N, and Vi ∩ Vj = ∅
when i 6= j. Now suppose f : T → R is a continuous map. We construct a lifting
f : T → N× 3ω by defining each of its components f1 : T → N and f2 : T → 3ω

separately. Consider the open cover of T

Ui = f−1(int(r({i} × 3ω))) where i ∈ N .

There exists a precise disjoint refinment {Wi

∣∣ i ∈ N}. Define f1(x) to be the
unique i ∈ N for which x ∈ Wi. The second component f2 is defined separately
on each Wi, as follows. For j ∈ N, consider the open cover {Vj,0, Vj,1, Vj,2} of Wi,
defined by

Vj,d = f−1(int(r({i} × {a ∈ 3ω
∣∣ a(j) = d}))) .

There is a precise disjoint refinment {W ′j,0,W ′j,1,W ′j,2}. For x ∈ Wi, define
f2(x)(j) to be the unique d ∈ {0, 1, 2} for which x ∈ W ′j,d. The map f(x) =
(f1(x), f2(x)) is continuous because f1 and f2 are. It remains to be shown that
f = r ◦ f . Let x ∈ T , i = f1(x), and b = f2(x). By construction, for every
j ∈ N, f(x) ∈ r({i} × {a ∈ 3ω

∣∣ a(j) = b(j)}), hence f(x) = r(i, b) = r(f(x)), as
required. ut

We end this section by relating ωqTop to ωEqu. Interestingly, ωqTop is
equivalent to a full reflective subcategory of ωEqu. The faithful reflection functor
Q : ωEqu → ωqTop is easily described. It maps an equilogical space X to the
topological space |X| obtained by endowing it with the quotient topology under
the surjection qX : ‖X‖ → |X|. Its right adjoint, the full and faithful functor
from ωqTop to ωEqu requires further definitions. We say that a continuous
funtion q : S → T between topological spaces is ω-projecting if projects every
countably-based space. The following proposition is due to M. Schröder [MS02].

Proposition 5. For every T in ωqTop there exists a countably-based space ST
and an ω-projecting “cover” qT : ST � T .

The functor C : ωqTop → ωEqu maps T to the equilogical space (ST , T, qT ).
This functor is full and faithful and, moreover, preserves the cartesian-closed
structure [MS02].
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It will be helpful to have an improved understanding of how arbitrary ex-
ponentials in ωEqu relate to those in ωqTop. Suppose then that X and Y are
equilogical spaces. Let q : W → ‖Y ‖‖X‖ be an ω-projecting cover of the ωqTop
exponential ‖Y ‖‖X‖ by a countably-based space W . Let F ⊆ ‖Y ‖‖X‖ be the
subset of functions that track morphisms from X to Y . Then F is a sequential
space, with its topology determined by inheriting sequence convergence from
‖Y ‖‖X‖ (the subsequential toplogy—in general this is finer than the subspace
topology). Obtain q′ : R→ F by the pullback in ωqTop below.

R
_�
⊆ //

q′

��

W

q
��

F ⊆
// ‖Y ‖‖X‖

(2)

Then R is a subspace of W , because the subsequential and subspace topologies
agree on subsets of a countably-based space. Also, q′ is ω-projecting, as such
maps are stable under pullback. Define q′′ : F → |Y X | to be the function that
maps f ∈ F to the unique morphism tracked by it.

Proposition 6. Given equilogical spaces X and Y , the exponential Y X in ωEqu
is isomorphic to (|Y X |, R, q′′ ◦ q′) as defined above.

Proof. First of all, the set |Y X | of all morphisms Y → X really is the right
underlying set for the exponential Y X because ωEqu is well-pointed and the
forgetful functor ωEqu→ Set maps X to |X|. Given a function f : |Z| × |X| →
|Y | that is tracked by some g : ‖Z‖×‖X‖ → ‖Y ‖, we need to show that there is a
unique tracked function f̃ : |Z| → |Y X | such that f̃(z)(x) = f(z, x) for all z ∈ |Z|
and x ∈ |X|. The existence and uniqueness of such a function are straightforward
so we show that f̃ is tracked. Consider the transpose g̃ : ‖Z‖ → ‖Y ‖‖X‖ in
ωqTop. Because W → ‖Y ‖‖X‖ is an ω-projecting cover, g̃ lifts through it as
h : ‖Z‖ → W . A simple diagram chase establishes that h maps into R and that
it tracks f̃ . ut

Now consider the equivalence relation ∼Y on ‖Y ‖ defined by

x ∼Y y ⇐⇒ qY (x) = qY (y) .

Proposition 7. Given equilogical spaces X and Y such that ∼Y ⊆ ‖Y ‖ × ‖Y ‖
is closed w.r.t. the product topology, the subset F ⊆ ‖Y ‖‖X‖ is closed, hence the
subspace topology on F coincides with the subsequential topology.

Proof. The subset F is equal to an intersection of closed sets:

F =
⋂
a∼Xb

{f ∈ ‖Y ‖‖X‖
∣∣ f(a) ∼Y f(b)} .

ut
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6 Proof of Theorem 2

We write ω0Equ for the full subcategory of ωEqu consisting of those equilogical
spaces that are isomorphic to one X for which ‖X‖ is zero-dimensional. Easily,
ω0Equ is closed under finite products, and contains every countably-based zero-
dimensional space under the inclusion of ωTop in ωEqu, including N+. We say
that a morphism e : X → Y in ωEqu is tight if it is mono and it projects every
space in ω0Equ.

Lemma 1.

1. Every tight morphism is epi (as well as mono).
2. Every isomorphism is tight.
3. If e : X → Y and f : Y → Z are tight then f ◦ e is tight.
4. If e : Y → Z is tight then the pullback f∗(e) : X ×Z Y → X is tight for any

f : X → Z.
5. If e : X → Y is tight and Z is in ω0Equ then eZ : XZ → Y Z is tight.
6. If e : X → Y is tight then e : |X| → |Y | is a bijection and Qe : QX → QY

(using the functor Q : ωEqu→ ωqTop) is a homeomorphism.
7. The “identity” RI → RE (tracked by r) is tight.

Proof. We briefly remark on the reasons for the less obvious claims.

5. Because for any W in ω0Equ, W × Z is in ω0Equ.
6. The homeomorphism is because N+ is in ω0Equ.
7. By Proposition 4.

ut

We say that an equilogical space is tight-injective if it is injective with respect
to every tight map. (N.b. as every tight morphism is epi, the extension demanded
in the definition of injectivity is necessarily unique.) We write ωEquti for the
full subcategory of tight-injective objects in ωEqu.

Lemma 2.

1. ωEquti is cartesian closed with its structure inherited from ωEqu.
2. Every space in ωTop is contained in ωEquti under the inclusion functor

ωTop ↪→ ωEqu.

Proof. 1. Because if e : X → Y is tight then so is (idZ × e) : Z × C → Z × Y
by Lemma 1.4.

2. Given a tight e : X → Y and a morphism f : X → T where T is in ωTop,
define f : |Y | → T to be the unique function such that f ◦ e = f . We show
that the function f ◦ qY : ‖Y ‖ → T preserves convergent sequences, and is
thus continuous, and hence tracks f . Indeed, if (xi)→ x∞ in ‖Y ‖ then there
is a function x(−) : N+ → ‖Y ‖, hence a morphism h : N+ → Y tracked by
x(−). Because e is tight, there exists h : N+ → X such that e ◦ h = h. But
then f ◦ h : N+ → T , which maps l ∈ N ∪ {∞} to f(qY (xl)), shows that
indeed f(qY (xi))→ f(qY (x∞)).

ut
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By the above lemma, every object ([σ])E is tight-injective, because RE is in
ωTop ↪→ ωEqu.

Lemma 3. If Z is tight-injective and f : X → Y is tight then Zf : ZY → ZX

is tight.

Proof. By Lemma 2.1. ut

Lemma 4. Given tight maps e : X → Z and f : Y →W , where Y is in ω0Equ
and Z,W are in ωEquti, then the function fe

−1
: |Y ||X| → |W ||Z| (using the

bijectivity of e) restricts to a function g : |Y X | → |WZ |, and this gives a tight
morphism g : Y X →WZ .

Proof. Given e and f as in the statement, consider the pullback in ωEqu below.

P
_� //

��

WZ

W e

��
Y X

fX
//

g
<<

WX

Then W e is tight by Lemma 3, fX is tight by Lemma 1.5, and so the other two
maps are tight by Lemma 1.4. By Lemma 2.1, WZ is tight-injective, so there
exists a unique morphism g : Y X → WZ making the top-left triangle commute,
whose function is easily checked to be the restriction of fe

−1
: |Y ||X| → |W ||Z|.

It remains to show that g is tight. For this, note that the bottom-right triangle
commutes because the left edge is tight, hence epi. Thus g is mono because it
right-factors the mono fX . Finally, g projects every space in ω0Equ because
the tight map P −→WZ does, and g left-factors this. ut

Lemma 5. If order(σ) ≤ 1 then ([σ])I is isomorphic to an equilogical space X
with ‖X‖ = N

ω, hence ([σ])I is in ω0Equ.

Proof. We illustrate when σ is real→ real, which is typical. The underlying space
of ([real])I = RI is N × 3ω. By Proposition 6, the exponential RI

RI is isomorphic
to an object with underlying space a subspace R ⊆W , where W is a countably-
based ω-projecting cover of the the space (N× 3ω)(N×3ω) in ωqTop. But, using
Proposition 3, we can calculate this exponential in ωqTop by:

(N× 3ω)(N×3ω) ∼= (N× 2N)(N×2N) ∼= N
(N×2N) × (2N)(N×2N)

∼= (N2N)N × 2N×N×2N ∼= N
N × 2N×2N

∼= N
N × (22N)N ∼= N

N × NN ∼= N
N ∼= N

ω .

This is Baire space, which is already countably-based, thus one can take W = N
ω

itelf, meaning that q in diagram (2) is an isomorphism. Consequently, so is
its pullback q′. Also, RI satisfies the conditions for Y in Proposition 7, thus
F ⊆ (N × 3ω)(N×3ω) is closed, hence R ⊆ Nω is closed. As R is nonempty and
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N
ω is countably based, R is a retract of Nω by Proposition 2. So ([real → real])

is isomorphic to an object with underlying space a retract of Nω, hence it is
isomorphic to an object with underlying space Nω itself. ut

Theorem 2 is an immediate consequence of:

Lemma 6. If order(σ) ≤ 2 then (σ)I = (σ)E and the identity function gives a
tight morphism ([σ])I → ([σ])E.

Proof. By induction on σ. The interesting case is σ1 → σ2. By the induction
hypothesis, (σ1)I = (σ1)E , (σ2)I = (σ2)E and identity functions gives tight
morphisms ([σ1])I → ([σ1])E and ([σ2])I → ([σ2])E . Moreover, ([σ1])E and ([σ2])E
are both tight-injective, as remarked below Lemma 2. Because order(σ) ≤ 2, it
holds that order(σ1) ≤ 1, hence ([σ1])I is in ω0Equ, by Lemma 5. The conditions
are thus fulfilled for applying Lemma 4, which gives the identity function as a
tight morphism ([σ])I → ([σ])E , hence (σ)E = (σ)I . ut

We end this section by considering how Theorem 2 might be extended to
higher types. Certainly, the proof above does not extend directly, because one
can show that ([(real→ real)→ real])I is not in ω0Equ. However, this leaves open
the possibility of replacing the use of ω0Equ with that of another category.

Proposition 8. Suppose there exists a full subcategory of ωEqu satisfying four
conditions: (i) it is closed under finite products; (ii) it contains N+; (iii) it
contains every object ([σ])I ; (iv) every object is projective with respect to the
“identity” RI → RE. Then (σ)E = (σ)I for all types σ.

We do not know whether such a subcategory exists. The difficult conditions
to reconcile are (iii) and (iv). Let us pinpoint our ignorance more exactly by
considering the “pure” second- and third-order types:

real2 ≡ (real→ real)→ real real3 ≡ real2 → real

Proposition 9.

1. (real3)E ⊇ (real3)I .
2. (real3)E = (real3)I if and only if the object ([real2])I is projective with respect

to the identity RI → RE (tracked by r).

Proof. 1. We refer to the diagram below

([real2])I
g //

��

h

##GGGGGGGGG
RI

��
([real2])E

f
// RE

where the left-hand map is the tight morphism given by Lemma 6. Because
RE is tight-injective, for every g there exists a unique f making the outer
square commute. Thus (real3)E ⊇ (real3)I .
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2. For, the ‘if’ direction, assume that ([real2])I is projective with respect to
RI → RE. Then, for every f , there exists a unique g making the outer square
commute. Thus indeed (real3)E = (real3)I .
Conversely, suppose that (real3)E = (real3)I , and consider any morphism h
as in the diagram. Because the left-hand edge is tight-injective, there ex-
ists a unique f making the bottom-left triangle commute. By the assumed
equality, it follows that there exists a unique g making the outside square
commute, and hence the top-right triangle commutes. The existence of g
thus establishes projectivity. ut

We have not succeeded in establishing whether ([real2])I is projective with respect
to the identity RI → RE. However, we have managed to reduce this condition
to a conjecture concerning the topology of the Kleene-Kreisel continuous func-
tionals over N [Kle59,Kre59]. Many presentations of the continuous functionals
are known, but, for our conjecture, the simplest description is as the hierarchy
of simple types over N in the cartesian-closed category ωqTop, or equivalently
in Seq, or equivalently in the cartesian-closed category of compactly-generated
Hausdorff spaces, see [Nor80]. Our conjecture concerns the continuous function-
als of pure second-order type.

Conjecture 1. The sequential space NB, where B = N
N, is zero dimensional.

Actually, we do not even know whether NN
N

is regular. The only positive facts
we know about this space, in addition to what we have already stated, is that it
is a totally-disconnected Hausdorff space in which every closed set is Gδ (i.e. is a
countable intersection of open sets). On the negative side, NN

N

is not countably
based, indeed it is not even first-countable.

Proposition 10. If Conjecture 1 holds then ([real2])I is projective with respect
to the identity RI → RE and hence (real3)E = (real3)I .

Proof. By Lemma 5, ([real])I and ([real → real])I are isomorphic to an object of
the form (R,Nω, r0) and ((real → real)I ,Nω, r1) respectively. By Proposition 6,
([real2])I is thus isomorphic to an object ((real2)I , R, q′′ ◦ q′) where q′ is obtained
by pullback:

R
_�
⊆ //

q′

��

W

q
��

F ⊆
// (Nω)N

ω

where q an ω-projecting cover of (Nω)N
ω

by a countably based W , so q′ is ω-
projecting and hence a topological quotient.

By Proposition 3, we have that (Nω)N
ω ∼= (NN)N

N ∼= N
(N×NN) ∼= N

N
N

. Thus,
by Conjecture 1, (Nω)N

ω

is zero-dimensional. Moreover, by Proposition 6, F is
a closed subspace of (Nω)N

ω

. Thus F is also zero-dimensional.
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To prove that ([real2])I is projective with respect to the RI → RE, consider
any morphism f : ([real2])I → RE. We must find a morphism f : ([real2])I → RI

making the digram below commute.

([real2])I
f //

f ##GGGGGGGGGG RI

��
RE

Using the isomorphic representation of ([real2])I above, the function f is tracked
by a continuous g : R→ R. As RE is in the inclusion of ωTop in ωEqu, we have
that g = f ◦ q′′ ◦ q.

R

q′

��

N× 3ω

r
��

F
q′′
//

h
55

(real2)I
f

//
R

Now f ◦ q′′ ◦ q is continuous, and q′ is a quotient map, so f ◦ q′′ is continuous. By
Proposition 4, there exists a continuous h making the triangle above commute.
But then h ◦ q′ tracks the required morphism f . ut

There are also connections between the possible zero-dimensionality of the
spaces of continuous functionals at all types and the agreement of ([σ])E and
([σ])I for arbitrary σ. However, these are less straightforward to state.

7 Proof of Theorem 1

We prove Theorem 1 by reducing it to Theorem 2. This requires some work. Al-
though we have stated that ωEqu is equivalent to the full subcategory Asm(ωL)
of Asm(ωBC), this is of no immediate help because neither [[real]]E nor [[real]]I
resides in this subcategory. However, following [Bau00], there is a second way
of viewing Asm(ωL), and hence ωEqu, as (equivalent to) a full subcategory of
Asm(ωBC), under which [[real]]E and [[real]]I are included.

There are three interesting functors between Asm(ωL) and Asm(ωBC), as
depicted below.

Asm(ωBC)

T a
��

Asm(ωL)

I a
OO

K

OO

Here I is the full and faithful subcategory inclusion. Its faithful left adjoint T
is defined by simply adding a top element to ‖A‖ to obtain the lattice ‖T (A)‖
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and leaving the other components unchanged. Finally, the full and faithful K,
which is left-adjoint to T , maps an assembly A in Asm(ωL) to the assembly
K(A) obtained by defining ‖K(A)‖ = cl(supp(A)), where

supp(A) = {x ∈ ‖A‖
∣∣ there exists a ∈ |A| such that x  a} ,

cl(E) = {z ∈ ‖A‖
∣∣ for all y <<z there exists x ∈ E with y v z} ,

again with the other components left unchanged. Note that cl(E) is the closure
of E in the Scott topology on ‖A‖. We say that an assembly A in Asm(ωBC)
is dense if supp(A) is dense in ‖A‖, and essentially dense if it is isomorphic to
a dense assembly. The image of K is always a dense assembly, moreover K and
T cut down to give an equivalence between Asm(ωL) and the full subcategory,
Asmed(ωBC), of Asm(ωBC) on essentially dense assemblies [BBS02,Bau00].

Proposition 11. For any type σ,

1. [[σ]]E is a dense assembly, and
2. if order(σ) ≤ 1 then [[σ]]I is an essentially dense assembly.

Proof. 1. This follows from Normann’s density theorem for an ω-algebraic vari-
ant of the interval domain [Nor00b], along with the fact that I is a retract
of this algebraic domain.

2. This is delayed to Sect. 8. ut

Lemma 7. For any type σ,

1. [σ]E = (σ)E, and
2. if order(σ) ≤ 2 then [σ]I = (σ)I .

Proof. As mentioned above, the functor T : Asmed(ωBC) → Asm(ωL) is an
equivalence of categories, and hence preserves cartesian-closed structure. In gen-
eral, the cartesian-closed structure of Asmed(ωBC) is not inherited from the
larger category Asm(ωBC). However, given two essentially dense assemblies
A,B, if BA in Asm(ωBC) is essentially dense, then BA is necessarily also the ex-
ponential in Asmed(ωBC). Thus, statement 1 follows from Proposition 11.1, as
long as the composite of equivalences Asmed(ωBC) T−→ Asm(ωL) F−→ ωEqu
maps [[real]]E to an object isomorphic to RE. It is easily verified that this is indeed
the case.

For statement 2, by Proposition 11.2, a similar remark applies to σ with
order(σ) ≤ 1, as long as the composite FT maps [[real]]I to an equilogical space
isomorphic to RI. We verify that this is the case. Using the definition of F from
Sect. 4, one calculates that ‖FT [[real]]I‖ is homeomorphic to the subspace of
real-representing elements in J under the Scott topology. It is routine to verify
that this is, in turn, homeomorphic to N × 3ω, and that the induced surjection
q(FT [[real]]I) : ‖FT [[real]]I‖ → R is isomorphic over R to r : N× 3ω → R.

It remains to establish statement 2 for σ with order(σ) = 2. This can be
reduced to the only interesting case, in which σ is of the form σ1 → σ2, with both
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σ1 and σ2 of order 1. Then, by the proof above for such types, FT [[σ1]]I ∼= ([σ1])I
and FT [[σ2]]I ∼= ([σ2])I . But then [σ1 → σ2]I is the hom-set from [[σ1]]I to [[σ2]]I
in Asm(ωBC), hence in Asmed(ωBC). Similarly, (σ1 → σ2)I is the hom-set
from ([σ1])I to ([σ2])I in ωEqu, which, by the above isomorphisms, is identical to
the hom-set from FT [[σ1]]I to FT [[σ2]]I . But, as FT : Asmed(ωBC)→ ωEqu is
an equivalence of categories, it is full and faithful, so the two hom-sets coincide.
Thus indeed (σ1 → σ2)I = [σ1 → σ2]I . ut

Theorem 1 follows immediately from Lemma 7 and Theorem 2.
The above proof of Lemma 7.2 generalizes to show that if Proposition 11.2

holds for types σ with order(σ) ≤ n then Lemma 7.2 holds for types σ with
order(σ) ≤ n+1. However, for second-order types, we do not even know whether
the property of Lemma 7.2 holds for the pure type real2 of Sect. 6.

8 Extensionalization

In this section, we prove Proposition 11.2. Our proof establishes a property of
the domains underlying [[σ]]I , for first-order σ, that we call extensionalization.
This property is of interest independent of its application to Proposition 11.2.

Following [Ber93], we define the set of total elements Tτ ⊆ ‖τ‖, where ‖τ‖ is
the domain interpreting a PCF type τ . This is by:

Tnat = N ⊆ N⊥
Tτ1×τ2 = Tτ1 × Tτ2
Tτ1→τ2 = {f ∈ ‖τ1 → τ2‖ | for all x ∈ Tτ1 , f(x) ∈ Tτ2}

Recall also that, for a type σ over real, ‖[[σ]]I‖ = ‖σ∗‖, where (·)∗ is the transla-
tion to PCF types from Sect. 3. The proof of the next proposition uses Berger’s
generalization of the “KLS Theorem” [Ber93].

Proposition 12 (Extensionalization). For any σ with order(σ) ≤ 1, the
identity function on [[σ]]I is tracked by a function i : ‖[[σ]]I‖ → ‖[[σ]]I‖ with
the property that, for all x ∈ Tσ∗ , i(x) ∈ Tσ∗ ∩ supp([[σ]]I).

Proof. Easily, cl(supp([[real]]I)) = {f ∈ J | for all n ≥ 1, f(n) ∈ {⊥, 0, 1, 2}},
and we write J ′ for this subdomain of J . It is convenient to reinterpret the
intensional hierarchy, using J ′ in place of J . To this end, define [[real]]′I to be
the assembly with underlying domain J ′, and with the other components as for
[[real]]I , and then define [[σ]]′I using the cartesian-closed structure of Asm(ωBC).
Also, define Write ‖σ‖′ for the underlying domains ‖[[σ]]′‖. We again define sets
of total elements T ′σ ⊆ ‖σ‖′ by: T ′real = {f | for all n, f(n) 6= ⊥}, with T ′σ1×σ2

and T ′σ1→σ2
determined as above. We show that the following facts hold.

1. For all σ, there is an embedding-retraction pair given by e : ‖σ‖′ → ‖σ∗‖
and r : ‖σ∗‖ → ‖σ‖′ such that, for all x ∈ T ′σ, e(x) ∈ Tσ∗ , and, for all x ∈
Tσ∗ , r(x) ∈ T ′σ. Moreover, these retractions track “identity” isomorphisms
between [[σ]]′I and [[σ]]I .
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2. For any σ with order(σ) ≤ 1, the identity function on [[σ]]′I is tracked by a
function i : ‖σ‖′ → ‖σ‖′ with the properties that, for all x ∈ T ′σ, i(x) ∈
Tσ ∩ supp([[σ]]′I).

The proposition follows easily by using the retractions to transport property 2
above to the original [[σ]]I case.

Property 1 is easily established by induction on σ, so we just prove 2. For
σ with order(σ) = 0 this is trivial because supp([[σ]]I) = Tσ so i can be the
identity function. For first-order types, we illustrate with the typical case for σ
of real1 ≡ real→ real. Easily supp([[real1]]′I) ⊆ T ′real1

, because supp([[σ]]I) = Tσ.
Consider the diagram below.

‖real1‖′
h // ‖real1‖′

T ′real1

⊆
OO

g //

q
��

T ′real1

⊆
OO

q
��

Q
f // Q

Here, q is the topological quotient of T ′real1
, under the relative Scott topology from

‖real1‖, by the consistency relation: x ↑ y iff there exists z with x v z w y. It is
known, [Ber93], that the following generalization of the “KLS Theorem” holds:
for any continuous f as in the diagram, there exist g and h making the squares
commute. (This is a non-effective version of the “KLS Theorem” in [Ber93].
The proof uses the density of the inclusion T ′real1

⊆ ‖real1‖′.) However, Treal is
homeomorphic to N×3ω. This implies thatQ is homeomorphic to the exponential
N× 3ω(N×3ω) in ωqTop, which, as in the proof of Lemma 5, is homeomorphic
to Nω.

One now calculates that the subspace F ⊆ Q ∼= N
ω consisting of those

functions p in the image of q : supp([[real1]]′I) ⊆ T ′real1
→ Q is closed, and hence,

by Proposition 2, a retract of Nω by a continuous function r : Nω → F . Then let
f be the composite Q ∼= N

ω r→ F ⊆ Q. As in the diagram, this gives g and h,
with h being the i required by statement 2.

ut

We call this result extensionalization for the following reason. As in Sect. 3, in
order for an element f ∈ ‖[[real → real]]I‖ to track a morphism from [[real]]I to
[[real]]I it must both preserve real-representing elements (i.e. it must preserve
supp([[real]]I)) and it must also preserve the equivalence between such represen-
tations; thus one might say that it must behave “extensionally”. The proposition
relates such “extensional” elements of ‖[[real→ real]]I‖ to total ones. Firstly, be-
cause i tracks the identity, it maps every extensional element f to an equivalent
total extensional one. Secondly, every non-extensional but total f is mapped
to an arbitrary extensional and still total element. Thus the total elements of
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‖[[real → real]]I‖ are all “extensionalized” by i. Again we do not know whether
such a process of extensionalization is also available for second-order σ and above.

Corollary 1. If order(σ) ≤ 1 then the identity function on [[σ]]I is tracked by a
function i such that, for all x ∈ ‖[[σ]]I‖, i(x) ∈ cl(supp([[σ]]I)).

Proof. By [Ber93], the inclusion Tσ∗ ⊆ ‖[[σ]]I‖ is dense. Thus, taking i as in
Proposition 12, i(Tσ∗) is dense in the image of i. But, by Proposition 12, i(Tσ∗) ⊆
supp([[σ]]I). Thus indeed the image of i is contained in cl(supp([[σ]]I)).

ut

Proposition 11.2 follows, as the property stated in the corollary is easily seen to
be sufficient to establish that [[σ]]I is essentially dense.

9 Eliminating Parallelism

To conclude the paper, we return to our original motivation for studying the
[[σ]]E and [[σ]]I hierarchies, namely that they correspond to the total function-
als on reals definable in the two approaches to exact real-number computation.
As discussed in Sect. 3, the [[σ]]E functionals are exactly those programmable in
ΩRealPCF+, and the functionals in [[σ]]I are those programmable inΩPCF++.
Both these languages contain parallel primitives.

In the context of PCF, Normann has proved that the type hierarchies of
total functionals over N programmable in PCF and PCF++ are identical for
arbitrary types [Nor00a]. By the same proof, the hierarchies of N-functionals
programmable in ΩPCF and ΩPCF++ are identical. In other words, parallel
primitives are unnecessary as far as programming total functionals over N is
concerned. It is natural to ask whether a similar phenomenon of elimination of
parallelism occurs also for total functionals over R.

For the extensional approach, the situation is unsatisfactory. In [EHS99], it
is proved that there is no sequential way of implementing even the first-order
function of binary addition. For this reason, core RealPCF contains a primi-
tive parallel-conditional operation. However, one may still question whether the
parallel existential of RealPCF+ is required for programming total function-
als. Normann has investigated this question, and proved that all second-order
functionals are definable in RealPCF relative to any extension, to partial reals,
of the supremum-finding functional [Nor02]. He also proves that such extensions
are, in general, strictly weaker than the parallel existential operator, although it
remains an open question whether some such extension is already programmable
in RealPCF.

Our final result is that, in the intensional approach, parallelism is eliminable
up to type two. Recall, from Sect. 3, our notation for PCF and its semantics.

Theorem 3. If order(σ) ≤ 2 then, for any f ∈ [σ]I , there exists an ΩPCF
program P of type σ∗ such that [[P ]] [[σ]]I f .

Proof. Suppose order(σ) ≤ 2. We first prove:
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if x [[σ]]I f then there exists y ∈ Tσ∗ such that y [[σ]]I f .

For zero- and first-order σ, this is immediate from Proposition 12. For second-
order σ, we consdier the typical case of σ being real2 (as defined above Propo-
sition 9). Let i : ‖[[real1]]I‖ → ‖[[real1]]I‖ be as given by Proposition 12. Then, if
x [[σ]]I f , it is immediate seen that x ◦ i ∈ Treal∗2

, and x ◦ i [[real2]]I f .
To prove the theorem, suppose x [[σ]]I f . Then, by the above, there exists

y ∈ Tσ∗ such that y [[σ]]I f . As y ∈ Tσ∗ , by the non-computable version of
Normann’s theorem (“Berger’s conjecture”) [Nor00a], there exsists an ΩPCF-
term P of type σ∗ such that [[P ]] is totally equivalent to y. But then one verifies
that indeed [[P ]] [[σ]]I f .

ut

Note thet the proof makes use of Normann’s theorem for third-order PCF-
types—the first type level at which the theorem is interesting. Because of the
type limitation on Proposition 12, we have no idea whether Theorem 3 holds for
third-order types upwards.

To ease comparison with the results for the extensional case discussed above,
we remark that we have also proved a version of Theorem 3 for the standard
(oracle free) versions of PCF and PCF++. Specifically, a total functional on R
is definable in PCF if and only if it is definable in PCF++. The proof involves
writing PCF programs for the extensionalization functions i of Proposition 12,
and thus uses methods quite different from those of this paper.
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