INFINITE SETS THAT SATISFY THE PRINCIPLE OF OMNISCIENCE
IN ANY VARIETY OF CONSTRUCTIVE MATHEMATICS

MARTIN H. ESCARDO

Abstract. We show that there are plenty of infinite sets that satisfy the omniscience
principle, in a minimalistic setting for constructive mathematics that is compatible with
classical mathematics. A first example of an omniscient set is the one-point compact-
ification of the matural numbers, also known as the generic convergent sequence. We
relate this to Grilliot’s and Ishihara’s Tricks. We generalize this example to many infinite
subsets of the Cantor space. These subsets turn out to be ordinals in a constructive sense,
with respect to the lexicographic order, satisfying both a well-foundedness condition with
respect to decidable subsets, and transfinite induction restricted to decidable predicates.
The use of simple types allows us to reach any ordinal below €p, and richer type systems
allow us to get higher.

§1. Introduction. We show that there are plenty of infinite sets X that
satisfy the following omniscience principle:

for every function p: X — 2, 3z € X (p(z) =0) VVz € X(p(z) = 1).

For X finite this is trivial, and for X = N, this is LPO, the limited principle
of omniscience, which of course is and will remain a taboo in any variety of
constructive mathematics [5, 2, 21].

A first example of an infinite omniscient set is the one-point compactification
of the discrete set N of natural numbers,

Noo = {17 € 2N | Vi € N(l’z > Ii+1)},

also known as the generic convergent sequence. We generalize this to many
other subsets of the Cantor space 2. These subsets turn out to be ordinals
in a constructive sense, with respect to the lexicographic order, satisfying both
a well-foundedness condition with respect to decidable subsets, and transfinite
induction restricted to decidable predicates.

The use of simple types allows us to dominate any ordinal below ¢y, and richer
type systems allow us to get higher, applying [8] — this meta-mathematical
statement is discussed towards the end of the paper, in Section 11. We emphasize,
however, that the main contributions of this paper are of a mathematical, rather
than logical or meta-mathematical, nature.

The point is that, increasingly complex, surprising instances of the principle
of excluded middle hold in constructive mathematics, and a natural question is
how much of excluded middle holds constructively.
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1.1. Related work. Similarly outrageous facts, with related constructions,
are developed by e.g. Brouwer [22, page 459], Kreisel-Lacombe—Shoenfield [19],
Bishop [3, page 177], Grilliot [15], Kreisel [1, page 581, Exercise 1], Bergstra [1,
page 581, Exercise 2], Ishihara [17]. For details see the discussion in the con-
cluding Section 12.

1.2. Generality of the results and foundations. We work in a spartan
constructive setting that is compatible with classical mathematics and does not
postulate or reject contentious axioms such as choice, powerset, Markov’s prin-
ciple, double-negation shift, continuity, bar induction, fan theorem, or Church’s
thesis, so that our claims and proofs apply to all “standard” varieties of con-
structive mathematics considered in [5], and also to topos theory, which is not
necessarily constructive but relies on intuitionistic logic. Of course, we do not
postulate excluded middle, but, more importantly, we do not postulate any ax-
iom that implies its negation.

We need some amount of higher types (iterated function types), at least level 3,
to develop the construction that allows us to build increasingly more complex
omniscient sets of type 1 (countable squashed sums). With the help of a fur-
ther construction [8], the higher we climb the type hierarchy, the more complex
omniscient sets of type 1 we get.

A minimal formal system for our development is higher-type Heyting arith-
metic, HA®, and all constructions developed here can be directly seen as pro-
grams in Godel’s system T'. Although this paper is not about formalization of
constructive mathematics in any particular system or foundation, we wish to
say a few words concerning the formalizability of our results in HA®, which can
be regarded as a sub-system of Martin-Lof type theory. A subset of a type X
can be represented as a propositional function A(x) of a variable x of type X.
Similarly, an I-indexed family of subsets of a type X can be articulated as a
proposition B(i,z) where i ranges over the index set I (a type) and z ranges
over X. With this view, of course the union of the family is represented by
the propositional function A(x) defined by A(z) <= 3i: I(A(i,x)), and its
intersection is similarly represented using universal quantification. Our uses of
families of sets and of set-theoretical operations are not more sophisticated than
this, and do not require any form of set theory for constructive mathematics.

We treat function extensionality in the same way as Bishop [3]. Every set
comes equipped with a given notion of equality, and we reserve the terminologies
function and map to refer to extensional operations, that is, operations that
preserve the given notions of equality . (A formal illustration of this treatment
of extensionality is given by a development of Section 3 in intensional Martin-Lof
type theory, written in Agda notation [4], available at [11].)

1.3. Organization. (2) selection of roots of 2-valued functions, (3) search-
ability of the generic convergent sequence, (4) fundamental properties of omni-
scient sets, (5) general facts about N, (6) Ishihara’s Tricks from the omniscience
of N, (7) Grilliot’s Trick from a constructive perspective, (8) the nature of the
maps Ny, — 2 in the absence of continuity axioms, (9) ordinals in the Cantor
space, (10) squashed sums of searchable sets and of ordinals in the Cantor space,
(11) meta-mathematical discussion, (12) related work and acknowledgements.
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82. Selection of roots of 2-valued functions. The omniscience principle
for a set X says that it is decidable whether a given map p: X — 2 has a root.
For some sets X, given any function p: X — 2, it is possible to construct a
putative root x € X such that p has a root if and only if z is indeed a root. The
simplest, non-trivial, and perhaps surprising example of such a set is X = N,
as shown in Section 3. In this section we briefly investigate general aspects of
this phenomenon and its relation to omniscience, to be exploited in the following
sections.

DEFINITION 2.1 (Selection function, searchable set). A selection function for
a set X is a functional : (X — 2) — X such that for all maps p: X — 2,
p(e(p)) = 1=Vz € X(p(x) = 1).
We call a set searchable if it has a selection function.
LEMMA 2.2. Any searchable set satisfies the omniscience principle.
PrOOF. This follows from the definition of selection function, using the facts
that p(e(p)) = 0 implies Iz € X (p(x) = 0) by considering = &(p), and that

either p(e(p)) = 0 or else p(e(p)) = 1 by the decidability of equality of the set
2 ={0,1} of binary numbers. o

Moreover, assuming a selection function:
LEMMA 2.3. A map p has a root if and only if e(p) is a root.

PROOF. If p has a root z, that is, p(xz) = 0, then —-Vz € X(p(z) = 1), and
hence the contra-positive of the definition of selection function gives p(e(p)) # 1,
and therefore p(e(p)) = 0, which shows that e(p) is a root. a
This shows that if X is searchable, then there is a functional F: (X — 2) — 2
whose roots p are the functions that have roots,

E(p) =0 < 3z € X(p(z) = 0),
constructed as
E(p) = p(e(p))-
PROPOSITION 2.4. IfY is searchable, the choice principle
(Ve e Xy € Y(A(z,y)))=3f: X = YVz € X(A(z, f(x))
holds for any set X and any decidable propositional function A(x,y).

PROOF. Let f(x) = ey (y — a(z,y)) where a: X xY — 2 is the function whose
roots are the pairs related by A, which exists by the decidability of A(x,y). -

The notion of selection function is investigated in [10, 14, 13] from various
points of view, sometimes switching the roles of 0 and 1, but this is of course
unimportant as it is simply a matter of naming conventions. Sets that satisfy
the omniscience principle are called ezhaustible in [10], where they are studied in
the context of classical higher-type computability theory with partial continuous
functionals. As discussed in the introduction, here our reasoning is purely con-
structive, under a minimalistic foundation for constructive mathematics, where
all functions are tacitly total and not assumed to be continuous.
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83. Searchability of the generic convergent sequence. We work with
extensionally defined equality on the Cantor space 2" and hence on its subset N,
a=p < Vie N =p5),

and with the standard apartness defined by
aff < JieN(q; #Bi).

We will use the symbol # for negation of equality, rather than apartness as
often done in Bishop mathematics. The following shows that any map Ny, — X
extends to a map 2V — X with the same image:

PROPOSITION 3.1. The set Ny is a retract of 2V in the sense that there is an
idempotent map r: 2N — 2V with image Noo.

PROOF. For example, we can let r(«)(n) = min{ay | k < n}. 4

The set N, has elements

n=1"0%, oo = 1%,
defined in more conventional form by n, =1 <= ¢ <n and co; = 1. But it is
a taboo to assert that No, = N U {oo}, where of course N = {n | n € N}. Recall
the following definitions (limited principle of omniscience, weak limited principle
of omniscience, and Markov’s principle) where a ranges over 2:
LPO < 3n € N(a, =0) VVn € N(a,, = 1),
WLPO <= Vn € N(a, = 1)V =Vn € N(a, = 1),
MP <= -Vn € N(ay, =1)=3n € N(a, = 0).

Clearly LPO <= WLPO A MP. The first two are regarded as taboos in all
varieties of constructive mathematics, and the third is considered dubious in
some but not all varieties [5]. Notice that a sequence a € 2N satisfies one of
the above conditions if and only if the sequence r(«) € N, satisfies the same
condition, where r: 2N — 2N is the retraction defined in Proposition 3.1. Hence

these taboos and dubious fact can be formulated in terms of the sets Ny, and N
as follows:

LPO <= Ny =NU{oo} < VreNg(zfooVa=oc0),
WLPO <= Ny =Ng\{c}h)U{x} <<= VzeNy(z#ooVr=o0),
MP <= Ng\{oo}=N, < VreNg(z#oo=zfoc0).

Some of the equivalences displayed above implicitly rely on the following:
LEMMA 3.2. For any x € N, if x,, =0 then x = k for some k < n.

PROOF. The unique such k can be constructed as ), _, @;. B

We say that a subset F' of a set X is full if its complement is empty. The
following shows that NU {oo} is a full subset of N:

LEMMA 3.3. Vo € N (Vk € N(z # k) = = = 0.

PRrROOF. Let & € N, assume that Vk € N(z # k), and let n € N. If z,, = 0,
then z = k for some k by Lemma 3.2, which contradicts the hypothesis, and
hence we must have x,, = 1. Because n is arbitrary, z = oo. —
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A set is separated if —(z # y) = x = y. Metrizable sets and hence discrete sets
(sets with decidable equality) are examples. The subset of positive, zero and
negative real numbers is full, and hence the following observation shows that
two real valued functions g, h on the reals can be shown to be equal by simply
checking each of the above three possibilities, by considering f(z) = g(x) — h(x),
despite the fact that the Trichotomy Law x <0V 2 =0V z > 0 is a taboo.

LEMMA 3.4 (Full subsets are dense). If a function f: X — Y with values on
a separated set 'Y is constant on a full subset F' of X, then it is constant on X.

PROOF. Assume that f has value y at F. If we had f(z) # y for € X, the
extensionality of f would give x # z’ for every 2’ € F, which contradicts the
fullness of F. Hence f(x) = y by the separatedness of Y. —
Notice that this logical notion of density does not refer to any kind of topological
structure.

THEOREM 3.5. The set Ny, C 2N has a selection function given by
e(p)(n) = min{p(k) | k < n}.

PROOF. This is clearly well defined, because £(p) = r(n — p(n)), where r is
the retraction defined in Proposition 3.1. As e(p)(n) = 0 iff 3k < n(p(k) = 0),
we have that

(1) e(p) =n < p(n) = 0AVE <n(p(k) = 1),
(2) g(p) = 0 < Vn e N(p(n) =1).

To prove that € is a selection function for Ny, let p: No, — 2 be a map and
assume that p(e(p)) = 1. Then e(p) # n for any n € N, for if we had e(p) = n
we would have p(n) = 1 by the assumption and the extensionality of p, which
contradicts (1). Hence £(p) = oo by Lemma 3.3. This implies both p(cc) = 1,
by the assumption and the extensionality of p, and p(n) = 1 for every n € N,
by (2). Therefore p(z) = 1 for any « € Ny, by Lemmas 3.3 and 3.4. =

COROLLARY 3.6. The set Ny, satisfies the principle of omniscience.
The set NU {oo} is clearly in bijection with N, but:
COROLLARY 3.7. If Ny, is in bijection with N, then LPO holds.

By Kreisel’s Tricks we mean the ideas attributed to Kreisel in Exercise 1 of [1,
page 581]). They sketch how to (1) perform search over N, in Gédel’s system T'
assuming classical logic to prove correctness, and (2) use this to effectively decide
whether a function has a particular kind of discontinuity, namely p(n) = 0 for all
n € N, but p(co) = 1. This section is a constructive reworking of trick (1), where
the crucial new ideas are the notion of fullness and the logical density lemma.
Trick (2) is developed in more generality in Lemma 6.3 below, as a consequence
of the constructive version of (1), in the form of Ishihara’s Tricks [17, 6, 7].

84. Fundamental properties of omniscient sets. Call a set discrete if it
has decidable equality. The Cantor space 2V and the Baire space NV cannot be
discrete unless LPO holds, but the function spaces 2V~ and N> are discrete by
Theorem 4.1(2):
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THEOREM 4.1 (General properties).

1. If X is omniscient, then ~—3z € X (p(zr) = 0)=3z € X(p(z) = 0) for
any map p: X — 2.

2. If X is ommniscient and Y 1is discrete, then the functions X — Y wunder
extensional equality form a discrete set.

3. If X andY are omniscient, then for any map q: X XY — 2,

dr € XVy € Y(q(z,y) =1) VVz € X3y € Y(q(x,y) = 0).

4. If X is an omniscient ordered set with binary mazimum max: X Xx X — X,
then for any map p: X — 2,

Jr e XVy > z(p(y) =1) vVVz € X3y > z(p(y) = 0).

PRrROOF. (1): One always has -—=3z € X(p(z) = 0)= -V € X(p(z) = 1),
and the implication -V € X (p(z) = 1) =3z € X(p(z) = 0) follows directly
from the definition of omniscience of X.

(2): f =g iff Vo € X(f(z) = g(z)), and hence the claim follows by the
omniscience of X applied to the map p: X — 2 defined by p(z) = 0 <=
f(z) = g(z) using the discreteness of Y.

(3): By the omniscience of Y, there is a function p: X — 2 such that p(z) =1
if 3y € Y(q(z,y) =0), and p(z) = 0 if Yy € Y(¢(x,y) = 1), and hence the result
follows by the omniscience of X applied to p.

(4): This is an instance of (3) with ¢(z,y) = p(max(z,y)). o

THEOREM 4.2 (Basic closure properties).

1. If X and Y are omniscient, then so is X x Y.

2. If X is omniscient then so is its image f(X) for any map f: X =Y.

3. If X is omniscient then so is the union | Y, of any X -indezed family
of omniscient sets Y, C Z.

4. If X is omniscient then so is any decidable subset A C X.

rzeX

PROOF. (1): The argument is the same as that of Theorem 4.1(3), using the
fact that 3z € X x Y (q(z) = 0) is equivalent to 3z € X3y € Y (q(x,y) = 0), but
considering the function p(z) = 0 iff 3y € Y (¢(z,y) = 0) instead.

(2): Jy € f(X)(q(y) = 0) is equivalent to Iz € X (p(z) = 0) where p(x) =
a(f ().

(3): 3z € U,ex Ya(q(z,y) = 0) is equivalent to 3z € X3y € Yi(q(z,y) = 0).

(4): Given p: A — 2, extend it to X by mapping all x € A to 1, and apply
the omniscience of X. -

Some closure properties of searchable sets from [10, 14] are recalled later.

85. General facts about N,,. We now pause to collect together various
facts for use in the following sections, which can be consulted on demand. They
are about arithmetic, order, apartness, strong extensionality, continuity, discon-
tinuity, and extensions to N, of functions defined on N. We have placed this
section at this point rather than immediately after the introduction in order to
emphasize that the omniscience of N, can be proved rather directly.
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5.1. Linear order and apartness. A linear order [21] on a set X is a binary
relation < satisfying
(transitivity), c <y Ay < z=z < z,
(asymmetry) ~(z <yVy<z) < x =y,
(comparability) z < y=z < 2zVz<y.

These conditions imply that < z (irreflexivity) and that the relation defined
by

chy <= x<yvVy<czx
is a tight apartness relation:

—(x g @),

(irreflexivity)
(symmetry) z fy=—y § z,
)

(cotransitivity) zfy=ax 42V 2z {y,
(tightness) —(z fy) =z =y.

This is called the intrinsic apartness of the linear order. The axioms for a linear
order also imply that the relation defined by

r<y < yLa

is a partial order, called the intrinsic partial order, meaning that it is reflexive,
transitive, and antisymmetric. Moreover, it satisfies

r<y<lz=zr<z zly<z=z<z.
Notice that the negatively defined partial order < is positively characterized as
<y <= (ly=2z<y) <= yY<r=2zx<y).

5.2. The lexicographic order. We often work with the family of equiva-
lence relations =, on 2N defined by

=, B = Vi<n(a; = B;).
The lezicographic order of 2V, defined by
a<fB < dIneNa=,BANa, <Bn),
is clearly linear. Notice that there is at most one such n, and that
a<f << Fs€2"(s0C aAslCp),

where 2* is the set of finite sequences and C denotes the prefix relation.

5.3. Basic arithmetic and order on N, . For z € N, define z +1 € N,
by cases as

(x+1)o =1, (x4 Dpt1 = xn.
Then n+1=n+1 and co + 1 = oo, and also
r+l=zr=—zx=o00,and x+1=00=>2 = 00.
Notice that the lexicographic order on N, agrees with the pointwise order,

r <y <= z; <y, for all 3.
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Hence the minimum and maximum functions min, max: N, x Ny, — N, are
given pointwise,
min(z,y)(¢) = min(z;, y;), max(z,y)(¢) = max(z;, y;),
and z <y <= min(z,y) =2 <= max(z,y) = y. Notice that
min(m,n) = min(m, n), min(m, co) = min(co, m) = m,
max(m,n) = max(m,n), max(m, c0) = max(co, m) = oo.
We frequently work with the function
min: Noo x N—= N
defined by
min(z,n) = le =sup{i € [0,n] | z; = 1},
i<n
where of course the sup of the empty set is 0. We have the expected properties
min(m,n) = min(m,n), min(oco,n) = n, min(z,n) = min(z, n).
For z,y € N, one hasthat n <z <= z,=1land z <n <= =z, =0, and so
r<y <= In(z,=0Ay,=1) < In(z<n<y).
Also m < n in Ny iff m <n in N, and n < oo for every n € N.

5.4. Apartness and strong extensionality on N,,. The intrinsic apart-
ness of the lexicographic order coincides with the standard apartness of 2N
and N, defined in Section 3. We work with the negation-of-equality apartness
on discrete sets. Notice that, for z € N,

zfx+1=3In € Nz =n).

In fact, by definition of the standard apartness relation, x and = + 1 differ at
some index, and so one of them (and hence the other) is apart from co. So it
remains to see that

z§oo=3n € N(z =n).

The hypothesis simply means that z; = 0 for some ¢, and hence the conclusion
follows from Lemma 3.3. Of course, which is very important for the results devel-
oped below, one cannot derive the same conclusion from the weaker hypothesis
that x # oco. Notice also that m f n <= m # n, so that the embedding
(n+— n): N — N is strongly extensional. Recall that a function f: X — Y of
sets equipped with apartness relations is called strongly extensional if it reflects
apartness, in the sense that f(x) § f(z')=x £ 2/. Tt is easy to see that the
function max: Ny, X Ny, — N is strongly extensional in each argument:

max(z,y) § co=x § co.

The following is related to the fact that the condition x = n is decidable for any
r € Ny, and n € N, as it amounts to 10 C z:

LEMMA 5.1. A function p: Noo — 2 is strongly extensional iff p(z) # p(o0)
implies x § oo for every x € Ny
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PROOF. (<) Assume that p(x) # p(y). Then p(x) # p(co) or p(y) # p(oo)
by co-transitivity. Assume the first case without loss of generality. Then z £ oo

by the hypothesis, and x # y or y § co again by co-transitivity. In the first
case we are done, and hence assume the second. Then there are m,n € N
with * = m and y = n. If we had m = n, the extensionality of p would give
p(x) = p(m) = p(n) = p(y), and hence we must have m # n, which shows that
x f vy, as required. —

5.5. Continuity and discontinuity. We say that a map p: N, — 2 is
continuous if

In € NVm > n(p(m) = p(0)),

where of course we write m to mean m, by an abuse of notation. At first sight
this seems to be merely continuity at oo, but it really is continuity, as shown in
Proposition 5.3 below. Of course there are continuous maps:

PROPOSITION 5.2. If a sequence a: N — 2 is eventually constant, then it
extends to a strongly extensional, continuous map p: Noo — 2.

ProOOF. The hypothesis is that 3n € N¥m > n(o, = a,). Let p(z) =
Omin(z,n)- Then p(m) = a,, if m < n, and p(m) = a, if m > n, so that
p(m) = auy, for every m € N. Also p(co) = a,, which shows that p is continuous.
If p(z) # p(00), that is, amin(z,n) # Qn, then min(z,n) # n and so there is
1 < n with x; = 0, and hence x # co. Therefore p is strongly extensional by
Lemma 5.1. —

We say that p: Ny, — 2 is discontinuous if
Vn € N3m > n(p(m) # p(c0)).

This is a strengthening and positive formulation of the negation of continuity.
However, Corollary 6.4 below shows that, in the strongly extensional case, the
two notions agree, with an application of the omniscience of N.

When 2V is equipped with its usual metric and 2 with the discrete metric, a
map p: 2N = 2 is

1. pointwise continuous iff Yo € 2Y3n € NV3 € 2¥(a =,, 8= p(a) = p(B)),

2. uniformly continuous iff In € NVa, 8 € 2Y(a =, 8= p(a) = p(B)).
Of course, uniform continuity implies pointwise continuity, but, as is well known,
the converse cannot be proved without Brouwerian axioms. However:

PROPOSITION 5.3. The notions of continuity, pointwise continuity, and uni-
form continuity agree for maps p: Ny — 2.

PrOOF. First observe that for z,y € N, the condition x =,, y is equivalent
to min(z,n) = min(y, n).

Pointwise continuity =—> continuity. Because p is continuous at oo, there is
n € N such that p(co) = p(x) whenever min(co, n) = min(x, n), that is, whenever
x > n, which amounts to the continuity of p.

Continuity = uniform continuity. We show that any continuity witness n is
a modulus of uniform continuity. Assume min(z,n) = min(y,n) for z,y € N.
If min(z,n) < n then z = min(x,n) = min(y,n) = y and so p(z) = p(y)
by extensionality. Otherwise min(z,n) = n = min(y,n), and so z,y > n and
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hence p(xz) = p(co) and p(y) = p(oo) by continuity, and again p(x) = p(y), as
required. B

5.6. Extension of functions N — N to N, — N,. The following is formu-
lated, for the sake of simplicity, with a hypothesis stronger than needed to get the
same conclusion. The conditions on ¢ in the lemma are m < n=-g(m) < g(n)
and n < g(n) respectively.

LEMMA 5.4. Any monotone increasing, inflationary map g: N — N extends
to a strongly extensional map G: Now — Ny with G(00) = co.

PrROOF. Let G(z)(n) = 1 <= n < g(min(z,n + 1)), where the func-
tion min: Noo x N — N is defined in Section 5.3. Then G(z) € N, because
this amounts to n + 1 < g(min(z,n + 2)) =n < g(min(z,n + 1)). We have
that G(co) = oo because G(oo)(n) = 1 for any n. The map G extends g,
ie. G(k) = g(k), if and only if G(k)(n) = 1 <= g(k)(n) = 1, that is,
n < g(min(k,n 4+ 1)) <= n < g(k), which is seen as follows. (=-): By mono-
tonicity, g(min(k,n + 1)) < g(k), and hence transitivity gives n < g(k) from the
hypothesis. («<): By inflationarity, n < g(n + 1) and hence the hypothesis gives
n < min(g(k),g(n + 1)) = g(min(k,n + 1), because ¢g is monotone. Finally, to
prove strong extensionality, assume G(z) § G(y), that is, G(z)(n) # G(y)(n) for
some n. Without loss of generality, assume that G(z)(n) = 0 and G(y)(n) = 1,
that is, g(min(z,n + 1)) < n < g(min(y,n + 1). Then z < n < y, and hence
z, = 0 and y,, = 1, which shows that x { y, as required. B

5.7. The set N, is the generic convergent sequence. The extension
constructed in the following lemma is continuous, and any strongly extensional
continuous function z: Ny, — X defines a convergent sequence, but we do not
need these two additional facts.

LEMMA 5.5. Any Cauchy sequence x: N — X in a complete metric space X
extends to a strongly extensional map x: Noo — X with o = lim, x,,.

PROOF. For any o € N, define a sequence y = y® € XN by induction as
Yo = T0, Ynt1 = Tpy1 if ap = 1 and Y41 = yn if @, = 0. This is a Cauchy
sequence, and by the completeness of X we can define x, = lim,, yo, and the
stated requirements are easily verified. B

5.8. Choice and decidability. The following is folklore — see e.g. [13]:

LEMMA 5.6 (Using choice from X to 2). For any given P,Q C X with P U
Q = X, there are disjoint sets P’ C P and Q' C Q with PP U Q' = X.

PROOF. By the hypothesis, Vo € X3y € 2(y =0=xz € PAy=1=2 € Q),
and by choice, Ip: X — 2(Vz € X(p(z) = 0= € PAp(x) = 1=z € Q).
To conclude, let P’ = p~1(0) and Q" = p~1(1). !

86. Ishihara’s Tricks from the omniscience of N,,. We claim that the
following lemma is the essence of Ishihara’s First Trick [6].

LEMMA 6.1. If a map p: Noo — 2 is strongly extensional, then
3n € N(p(n) # p(o0)) Vv ¥n € N(p(n) = p(c0)).
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PROOF. Because the condition p(x) = p(co) is decidable for any = € X, the
omniscience of No, gives 3 € Noo (p(z) # p(00)) or Vo € Noo (p(2) = p(2s0)). If
the first case holds, then x § oo by the strong extensionality of p, and hence x = n
for some n € N, and so p(n) # p(co) by the extensionality of p. If the second
case holds, then in particular Vn € N(p(n) = p(c0)) by considering z = n. !
The following corollary is Ishihara’s First Trick [6, Proposition 1], with the
following modifications:

1. We assume a disjointness condition.

2. We do not assume that X is a complete metric space.

The disjointness assumption is more restrictive, but allows us to avoid the axiom
of choice, which is tacitly applied in [6]. We confine the application of choice to
Lemma 5.6. On the other hand, without the metric assumption, and replacing
convergent sequences by strongly extensional maps z: Ny, — X, we are more
general, in view of Lemma 5.5. A set is called tight if it has a tight apartness.

COROLLARY 6.2. If P,Q are disjoint subsets of a tight set X with PUQ = X
and z: Ny — X is a strongly extensional map with

Vye X(ytza Vy €Q),
then

Vn € N(x,, € P) V3In € N(z, € Q).

PROOF. Define ¢: X — 2 by ¢(z) =0 <= z € Q. Then ¢(zs) = 1 and
so the hypothesis amounts to y # zoo V ¢(y) = ¢(x), which is equivalent to
the implication ¢(y) # ¢(xe0) =y £ . Hence the map p = ¢ o x is strongly
extensional by Lemma 5.1, and the result follows from Lemma 6.1. n
Assuming choice as in [6], we recover [6, Proposition 1], using projective covers
if necessary, as in [20], and Lemmas 5.5 and 5.6. The following is derived from
two nested applications of Lemma 6.1, using the idea of proof of Theorem 4.1.

LEMMA 6.3. If p: Ny, — 2 is strongly extensional, then
In € NYm > n(p(m) = p(c0)) V ¥n € NIm > n(p(m) # p(c0)).
That is, p is either continuous or discontinuous.

COROLLARY 6.4. If a strongly extensional map p: Ny — 2 fails to be contin-
wous, then it is discontinuous in the positive sense defined in Section 5.5.

PrOOF OF LEMMA 6.3. Define ¢: Ny, X Noo — 2 by ¢(z,y) = p(max(z,y)).
Because p and max: Ny, X N, — N, are strongly extensional so is q. By
Lemma 6.1 applied to the function (y — ¢(z,y)): Noo — 2, there is r: Ny — 2
such that

r(z) =1 <= 3m € N(q(z,m) # q(z,)),

r(z) =0 < VYm € N(¢q(z,m) = q(x,0)).
Then r(oc0) = 0 because otherwise Im € N(g(oo,m) # ¢(c0,0)), which would
amount to p(co) # p(oo). Now assume that r(x) # r(co), that is, r(z) = 1. Then

q(z,m) # q(x,00) for some m € N, which amounts to p(max(z,m)) # p(c0),
and the strong extensionality of p gives max(z, m) f oo and so z § co. Hence r is
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strongly extensional by Lemma 5.1. By Lemma 6.1 applied to r, and expanding
the definitions of ¢ and r, using the fact that r(co0) = 0, we conclude that

In € NVm € N(p(max(n,m)) = p(max(n, 00)))
V Vn € NIm € N(p(max(n,m)) # p(max(n,0))),

which is equivalent to the desired conclusion. —

Lemma 6.3 amounts to a form of Ishihara’s Second Trick [6, Proposition 2],
with the same modifications discussed in the paragraph preceding Theorem 6.2,
and, moreover, with a weaker hypothesis than that of [6, Proposition 2]:

COROLLARY 6.5. If P,Q are disjoint subsets of a tight set X with PUQ = X
and x: Noo = X is a strongly extensional map with

Vye X(y e Vy €Q),
then
Vn € NIm > n(zy, € P) V3In € NVm > n(z, € Q).

PrROOF. Literally the same as that of Theorem 6.2, but using Lemma 6.3
rather than 6.1 in the final step. B

We again use Lemmas 5.5 and 5.6 to get [6, Proposition 2] as a corollary.

87. Grilliot’s Trick from a constructive perspective. In the context of
higher-type recursion theory developed within classical mathematics, Grilliot [15,
Lemma 1] showed that one can effectively define a functional F : (N - N) —» N
such that

E(h)=0 < dn e N(h(n)=0)

from any effectively discontinuous F': (N — N) — N. This is known as Grilliot’s
Trick in the research community, and sometimes in print, as in e.g. [16]. Here F
is called effectively discontinuous if there is a sequence g;: N — N with limit f,
with both g; and f recursive in F, such that F(f) # lim; F(g;).

We reproduce Grilliot’s argument, for comparison with a constructive counter-
part given below. By taking a subsequence, we may assume that F(f) # F(g;)
for every 4. Again by taking a subsequence, we may assume that g;(j) = f(j)
for all j < 4. Notice that, in both cases, one needs unbounded search (the
miminization operator u, which amounts to Markov’s principle) to find the next
element of the subsequence. If one now defines J: (N — N) — (N — N) by

J(h)(j) = 9i(§), where i = inf{n € [0,5] | h(n) = 0},

and where the infimum of the empty set is of course the largest element j of the
integer interval [0, 5], then

) f ifVneN(h(n) #0),
(k) = {gi if h(i) = 0 and Vn < i(h(n) # 0).

Therefore E can be defined by
B(h) =0 < F(J(h) # F(f).
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Although the definitions are explicit, their correcteness proofs rely on classical
logic (Hartley [16] addresses this to some extent).

We offer Theorem 7.1 below as a constructive counter-part of Grilliot’s Trick,
where we take discontinuity, as defined in Section 5.5 and investigated in Sec-
tion 6, as a constructive replacement of the notion of effective discontinuity. With
this stronger (classically equivalent) notion, we avoid unbounded search, but we
have not managed to get away without countable choice. Another difference is
our consideration of maps p: No, — 2 rather than F: (N — N) — N, but this is
inessential.

THEOREM 7.1. Assuming countable choice:

1. If there is a discontinuous map p: Noo — 2, then WLPO holds.
2. If there is a discontinuous strongly extensional map p: Noo — 2, LPO holds.

PROOF. An application of choice to the hypothesis gives a modulus of dis-
continuity ¢g: N — N with g(n) > n and p(g(n)) # p(cc). We can ensure, with
search bounded by g(n) after choice is applied, that g(n) is the least m > n
with p(m) # p(c0), so that g can be extended to a strongly extensional map
G: Ny — Ny with G(00) = oo by Lemma 5.4. To prove WLPO we show that
x = o0 or x # oo for any x € N, and to prove LPO we show that z = oo or
x # 0o. We reduce these tests to the decidable condition p(G(x)) = p(c0):

(i) p(G(x)) = p(c0): Then p(G(x)) # p(G(n)) for any n € N because
p(G(n)) = p(g(n)) # p(cx), and hence = # n by the extensionality of the map
p o G. Therefore x = oo by Lemma 3.3.

(i) p(G(x)) # p(oo) = p(G(00)): Then x # oo by the extensionality of p o G,
and x ff oo if p, and hence p o G, is strongly extensional. -

Notice that this argument, due to Grilliot, does not apply the omniscience
of Ny, and does not have it as a corollary. The argument shows that the hy-
pothetical existence of a discontinuous function entails a taboo, LPO, the omni-
science of N, rather than that of N, under the assumption of strong extension-
ality, or just WLPO without the assumption. The omniscience of N, which
is a fact rather than a taboo, is proved with an essentially different argument.
However, using the omniscience of N, as in Corollary 6.4 to get discontinuity
from non-continuity, we have (relying on countable choice):

COROLLARY 7.2. If some strongly extensional map p: Noo — 2 fails to be
continuous, then LPO must hold.

§8. The nature of the maps N, — 2 in the absence of continuity
axioms. We now briefly investigate the collection of sequences a: N — 2 that
arise as restrictions of functions p: N, — 2. Equivalently, we investigate the
sequences o € 2N that can be extended to functions p € 2N It turns out that,
even in the absence of continuity axioms, they are fairly restricted in character.
Eventually constant sequences constructively satisfy the LPO condition, and
hence the WLPO condition too. Although without continuity axioms one cannot
prove that only the eventually constant sequences o € 2V can be extended to
maps p € 2~ we can show that only those that satisfy the WLPO condition can
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be extended (Theorem 8.2). We begin with a lemma that mixes quantification
over N, and N.

LEMMA 8.1. For any map p: Noo — 2,
dr € Noo(z # 0o Ap(z) =0) VVn € N(p(n) =1).

PROOF. Because the condition p(y) = p(y + 1) is decidable, the omniscience
of N, tells us that one of the following two cases holds:

(1) FyeNolply) #p(y+1)) vV (2) Vy€No(p(y) =ply+1)).

(1) Then y # oo, for if we had y = oo, we would also have y = y+ 1 and hence
p(y) = p(y + 1) by extensionality. Hence we also have y + 1 # oo, for if we had
y + 1 = co we would have y = co. Because one of p(y) and p(y + 1) must be
zero, we conclude that 3z € Ny (2 # 0o A p(z) = 0).

(2) If p(0) = 0, then the example z = 0 shows that 3z € Ny (2 # coAp(z) = 0).
Otherwise we conclude that ¥n € N(p(n) = 1) by induction on n. 4

We now quantify over N only:

THEOREM 8.2. For any map p: Noo — 2,
vn € N(p(n) = 1) V —-¥n € N(p(n) = 1).

PROOF. If the second disjunct of the lemma holds, there is nothing to prove,
and hence assume the first. By Lemma 3.3, the condition z # oo implies that
—Vn € N(z # n). Therefore we conclude that =¥n € N(p(n) = 1) holds, for if
we had Vn € N(p(n) = 1) we would have ¥n € N(z # n) by extensionality and
the fact that p(x) = 0, which would be a contradiction. o

If a sequence o € 2N can be extended to a strongly extensional map p € 2N
then it must satisfy the LPO condition:

THEOREM 8.3. For any strongly extenstonal map p: Ny — 2,
In € N(p(n) =0) VVn € N(p(n) = 1).

PRrOOF. We again consider the cases (1) and (2) of Lemma 8.1.

(1) By the strong extensionality of p, we have that y f y + 1 and hence y = n
for some n € N by Section 5.3. Because one of p(y) and p(y + 1) must be zero,
we conclude that 3n € N(p(n) = 0).

(2) The argument is literally the same as that of case (2) of Lemma 8.1.
Notice that this is similar to, but not quite the same as, Lemma 6.1. With
the same kind of argument as in Lemma 6.3, using two nested applications of
Theorem 8.3, we conclude that:

COROLLARY 8.4. For any strongly extensional map p: Noo — 2,
In € NVm > n(p(m) =1) VVn € NIm > n(p(m) = 0).

89. Ordinals. For the purposes of this investigation, we define the notion
of ordinal by considering suitable formulations of well-ordering and transfinite
induction that involve decidability conditions. This notion of ordinal classically
coincides with the classical one, but, from the point of view of constructive
mathematics, it is probably at the same time audacious and restrictive, and hence
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not suitable as a substitute of more standard constructive notions of (countable)
ordinal encodings. Nevertheless, in this and the following section we will show
that N, and plenty of other subsets of the Cantor space are (omniscient) ordinals
in our sense, under the lexicographic ordering.

Regarding the following definition, we are not able to show that a well-ordered
set automatically satisfies the principle of transfinite induction, but we will not be
surprised if the conclusion is found to hold under additional, classically vacuous,
assumptions. Hence we live with a pinch of salt:

DEFINITION 9.1 (Ordinal). We take an ordinal to be a linearly ordered set
that is well-ordered with respect to decidable subsets, in the sense that every
inhabited, decidable subset has a least element, and satisfies the usual principle
of transfinite induction, restricted to decidable predicates.

We do not assume that our constructive setting allows us to quantify over the
subsets of a set or over predicates, but this definition is not problematic because
the two conditions amount to

V functions p: X — 2,
(Fy € X(p(y) =0)) =3Iz € X(p(x) =0AVy € X(p(y) = 0=z <)),
(Vz € X (Vy < z(p(y) = 0)) = p(z) = 0) =z € X(p(x) = 0)),
and we do tacitly assume that we can quantify over functions. By Lemma 3.4:

LEMMA 9.2. If a linearly ordered set X has a full subset that satisfies transfi-
nite induction for arbitrary predicates, then X satisfies transfinite induction for
decidable predicates.

To build finite ordinals in the lexicographic order of the Cantor space, we start
from 0 = () and 1 = {0}, and for X,Y C 2" we define X +Y = 0X U 1Y by
prefixing 0 and 1 to the elements of X and Y. The ordinal 0 is anomalous from
the point of view of this investigation, because it is not searchable. But 1 is (with
a unique selection function), and if X and Y are searchable then so is X + Y,
and the construction can be performed so that if the selection functions for X
and Y calculate infima of sets of roots, then so does that for X + Y, and hence
we get all the finite ordinals embedded into 2N.

We remark that we will not be able to embed into the Cantor space an ordinal
that classically is w (for the reasons discussed in Section 11). In fact, with clas-
sical eyes, we will be able to account for successor ordinals only, or equivalently
ordinal intervals of the form [0,+]. From this point of view, the situation for 0 is
no longer anomalous, as this naturally excludes the empty set, even when v = 0.
Moreover, still classically, we will be able to account for countable ordinals only.
The reason is that only countable ordinals can be embedded in the natural order
of the real line, as is well known, and the Cantor space (continuously) order-
embeds into the real line via Cantor’s third-middle construction. Of course, N,
classically is w + 1, or equivalently [0,w]. We work with the selection function
e: (Noo — 2) = Ny, constructed in Theorem 3.5.

LEMMA 9.3. For any map p: Noo — 2, the value (p) € Ny, is the infimum of
the set of roots of p.
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PRrROOF. For any lower bound y of the set of roots, y < e(p): If p(e(p)) =0
then e(p) is in the set and we are done. Otherwise the claim is vacuous because
the set is empty by definition of selection function, and so we are done with
the first part of the proof. To conclude, we show that e(p) is a lower bound of
the set of roots. In order to show that e(p) < x for any given root x, assume
that © < e(p). By the definitions of € and the order, there is n € N such that
(i) zp, = 0 and (i7) min{p(k) | K <n} =1. By (i) and Lemma 3.2, there is j <n
with = j. By (i4) we have p(k) = 1 for every k < n, and hence p(z) = p(j) =1
by the extensionality of p, which contradicts the fact that z is a root. Discharging
the assumption = < e(p), we conclude that e(p) < x, by definition of <. o

THEOREM 9.4. N, is an ordinal in the sense of Definition 9.1.

PROOF. The well-orderedness condition follows from Lemma 9.3, because,
taking Lemma 2.3 into account, it says that any map p: Ny, — 2 has a least
root if it has a root. The transfinite induction principle for p follows by Lem-
mas 3.3 and 9.2, because the full subset N U {oco} satisfies transfinite induction
for arbitrary predicates, by induction on N and case analysis. n

§10. Squashed sums. Given countably many searchable sets X,, C 2V, we
show that their squashed sum that arises as their disjoint union with an added
point at infinity is also searchable. We construct the squashed sum as a subset
of 2V so that we can (transfinitely) iterate this procedure. We rescale and
translate each set X,, by prefixing the finite sequence 10 to its members, in
order to make the sets disjoint, and at the same time smaller in diameter and
arbitrarily close to the sequence co = 1“ as n increases. The squashed sum can
be described as the closure of |J,, 1"0X,, in the Cantor space. With classical
eyes, this is [ J,, 1"0X,, U {oo}, and if the sets X,, are ordinals then the squashed
sum will be the successor of their ordinal sum. Constructively, it will be the case
that the squashed sum of countably many ordinals is an ordinal, for ordinals in
the sense of Section 9. The set N, will be the squashed sum of the constant
sequence X, = {0}, so that the results of this section will subsume the main
theorems we formulated and proved for N, in the previous sections (but see the
discussion at the end of this section).

LEMMA 10.1. Va € 2Y(Vn € N(1"0 Z o) = o = 0).

PrOOF. For any k we have oy = 1, for if we had o = 0 then we would have
10 C « for some n < k, which contradicts the hypothesis. B

For countably many given sets X,, C 2N, we define their squashed sum by

S X, ={ae2"|Vne NI C a—a € 1"0X,)}.
n

Then oo € fn X, vacuously, and by construction 10X, C in X,,. Moreover:
LEMMA 10.2. Yo €Y. X, (Vn € N(a € 1"0X,,) = a = o).

PROOF. For any n, if we had 1"0 E «, then we would have o € 1"0X,, by
definition of )", X,, which contradicts the hypothesis. Hence the result follows
from Lemma 10.1. =
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The n-tail of a sequence a € 2V is (™ € 2N defined by az(n) = Qpi.

PRrROPOSITION 10.3. The retracts of the Cantor space are closed under the for-
mation of squashed sums.

PROOF. Given idempotent maps r,: 2V — 2V with image X,,, define r: 2N —
2V by r(a)(n) =0 <= 3k < n(1%0 C a A (1F0rg (aF+1)),, = 0). -

To know that 170X, is searchable if X, is, we use the following construction
applied to the rescaling-translation map a +— 1"0«. This construction appears
in [10, Proposition 4.3] and is studied in more generality in [14], which also shows
it to be the functor of a certain selection monad J with JX = ((X — 2) —» X),
where the resulting selection function e x) amounts to Jf(ex).

LEMMA 10.4. If X is searchable, then so is its image f(X) for any function
f: X—>Y.

PROOF. Given a selection function € x for the set X, define a selection function
£f(x) for the set f(X) by erx)(p) = flex(po f))- n
For more details and more closure properties of searchable sets, the interested
reader can consult the above references.

THEOREM 10.5. If a sequence of sets X, C 2N have selection functions cx, ,
then the set’Y = Zn X, has a selection function ey .

PROOF. Define
ey (p)(n) =0 <= Ik <n(1*0 C (m = p(ermox,, (p))) A e1rox, (p)(n) = 0).

By Section 2, the condition 1¥0 C (m ~ p(e1mox,, (p))) holds iff p has a root in
1%0X}, but not in 1™0X,, for m < k, and in this case £1x¢x;, (p) is a root. Hence

(3) 1* Cey(p) <= Vm < k(Va € 1™0X,,(p(a) = 1),
(4) "0 Cey(p) = p(eirox, (p)) =0,

(5) 1k0 E Ey(p) g €Y(p) = glkOXk (p)a

(6) ey (p) = 00 <= Vn € NWa € 1"0X,,(p(a) = 1).

To prove that ey is a selection function for Y, let p: N, — 2 be a map and
assume that p(ey (p)) = 1. For any k, if 1%0 C ey (p) then ey (p) = £1x0x, (p)
by (5) and hence p(eqrgx, (p)) = 1 by the assumption and the extensionality of p,
which contradicts (4). Hence 10 Z ey (p), and so ey (p) = oo by Lemma 10.1. Tt
follows that p(oo) = 1, by the assumption and the extensionality of p. Because
U,, 170X, U{oo} is a full subset of Y by Lemma 10.2, we conclude that p(a) = 1
for any o € Y by (6) and Lemma 3.4, which shows that ey is a selection function
for the set Y. -

Say that ¢ is an inf-selection if e(p) is the infimum of the set of roots of p for
any map p. Notice that if X has an inf-selection then every decidable subset of X
has a supremum, given by the infimum of its complement. It is straightforward
that if ex,, is an inf-selection then so is €1ngs, . Continuing from Theorem 10.5:

LEMMA 10.6. If each €x,, is an inf-selection, then so is ey .
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Proor. With the same general argument of Lemma 9.3, for any lower bound y
of the set of roots, y < ey (p). In order to show that ey (p) < « for any given
root a € Y, assume that o < ey (p). Let s € 2* with s0 C « and sl C ey (p).
If s = 1™ where n is the length of s, then a € 1"0X,, by definition of Y, but
then p(a) = 1 by (3) with & = n + 1, which contradicts the assumption that «
is a root. Hence s is of the form 10t for a unique (k,t) € N x 2%, and 1%0 is a
prefix of both o and ey (p). By definition of Y, we have that o € 1¥0X},, and
€1k0x, (p) is a root by (4). Because k¢, is an inf-selection and « is a root in
a € 1%0X}, we conclude that €1k0x, (p) < a, which contradicts the assumption
a < ey (p) because ey (p) = 1x0x, (p) by (5). Hence we conclude that ey (p) < «
by definition of <. -

LEMMA 10.7.

1. If each X, has a (countable) full subset F,,, then |J,1"0F, U {co} is a

(countable) full subset of >, Xn.
2. If each F, satisfies transfinite induction for arbitrary predicates, then does
U, 1"0F, U {cc}.

PRrOOF. Fullness follows from Lemma 10.2. Given enumerations e,: N —
F,, define e: N — (J,, 1"0F,, U {oo} by e(0) = oo and e({m,n) + 1) = e, (n)
where (m,n) — (m,n): N x N — N is a pairing function. The preservation of
transfinite induction is trivial using induction, as the sets are mutually disjoint,
including {co}. o

COROLLARY 10.8. The squashed sum of countably many ordinals is an ordinal.

And the iteration of squashed sums produces ordinals with countable full subsets.

Alternative construction and technical discussion. For the sake of mathemati-
cal economy, because N, arises as the squashed sum of singletons, we could have
omitted the proofs of the main Theorems 3.5 and 9.4. Conversely, Theorem 10.5
can also be naturally derived from Theorem 3.5 as follows. Given a sequence of
searchable sets X,, C 2V, we can define an N-indexed family of searchable sets

Y, C 2N
such that Y, = 1"0X,, and Y, = {oo}, and, moreover,

YY" x, = | v

€N
so that search over Y can be reduced to search over No.:
Y,={aec2V|VneNz=n=ac1"0X,)},
ev,(p)(n) =0 <= Jk <n(x =k Aewmox,(p)(n) =0).
To conclude, we use:

LEMMA 10.9. If a set X has a selection function ex and Y, C Z is an X-
indexed family of sets with selection functions ey, , then the set Y = J, Yz
has a selection function ey given by

ey (p) = ey, (p), where x =ex(x — pley, (p)))-
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This lemma describes a higher-type functional (X — JZ) — (JX — JZ),
which amounts to the (internal) Kleisli extension operation of the selection
monad J discussed in [14].

The selection function of N, satisfies the equation

c(p) = {o, if p(0) =0,

e(x = plr+1))+1, otherwise.

This amounts to a definition by co-recursion, using the fact that N, is the final
co-algebra of the functor X — 1+ X. The definitions of €y as in Theorem 10.5
and of ey, can also be naturally written in co-recursive form, using the fact that
2V is the final co-algebra of the functor X + 2 x X. One is left wondering
whether, for the manifestation of ordinals discussed here, that arise by iterat-
ing successor and squashed sums, starting from one, suitable co-induction and
co-recursion principles generalizing those of N, would be more natural than in-
duction and recursion. Because our ordinals are retracts of 2V, the co-induction
principle for 2V is in a way inherited by them, but this is not the whole story.

§11. Meta-mathematical discussion. Coquand, Hancock and Setzer [§]
discuss how one can transfinitely iterate an N-ary operation. For this purpose,
they consider limit structures. A limit structure is a set X (which we will choose
to be the Cantor space, or the space of selection functions J2V) together with
an element x € X (we choose the ordinal one), a function f: X — X (we choose
the successor function), and I: (N — X) — X (they think of the supremum of
a sequence of ordinals, but we choose the squashed sum). They show how any
limit structure can reach ~y-transfinite iteration for any v < € in the presence of
simple types, and how to go beyond in richer type systems. Thus, with classical
eyes, one can see how to get these ordinals embedded in the Cantor space with
our constructions. It remains to explore how to see this constructively, and how
much ordinal arithmetic can be performed in the Cantor space.

In the model of continuous functionals of HA®, searchable sets satisfy a com-
pactness condition [10], and this is why w cannot be embedded within HA* as an
ordinal in our sense in the Cantor space. It is not hard to see that our embedding
of ordinals always produces successor ordinals, or closed ordinal intervals [0, 7],
with the interval topology, which are compact as they should. The ordinals 2 and
w1 can be embedded, but the ordinal 2¢7! = 2¥ x 2 = w x 2 cannot, because it
is not a successor ordinal. Hence there is no hope of performing exponentiation
for our notion of ordinal, but this argument does not preclude the possibility of
defining a construction that dominates exponentiation.

The argument of the first paragraph shows that it is not possible to embed ¢
in 2N using limit structures. However, in principle it would be possible to embed
[0, €0] and higher ordinal intervals in 2% within HA® without contradicting the
fact that limit structures can only reach ordinals below ¢;. We do not dare to
conjecture this or its negation, because we do not know enough about ordinals
embedded in the Cantor space, in the sense of Section 9, other than they are
closed under successor and squashed sums, they are searchable, they are retracts
of the Cantor space, and have countable full subsets.
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We conjecture that only sets with countable full subsets can be proved to be
searchable in HA®. Assuming Brouwerian axioms, it is well known that the Can-
tor space is searchable, but the Cantor space cannot be proved to be searchable
in HA” [12]. Because, classically, any uncountable compact subset of the Can-
tor space has a copy of the Cantor space, it is plausible that a construction of a
searchable set with no countable full subset allows the construction of a selection
function for the Cantor space. We leave this as an open problem, and this time
we do dare to conjecture this.

A (technically justified) philosophical conclusion of this investigation is that it
is misguided to assume that only the finite sets can satisfy the principle of om-
niscience in spartan constructive mathematics. We have shown that arbitrarily
complex, infinite examples can be constructed. As far as we know, this is new.
The reason N fails to provably satisfy the principle of omniscience in all varieties
of constructive mathematics is subtler and deeper than the mere fact that it
is infinite. There must be many more, seemingly unlikely or counter-intuitive
or surprising, and hopefully useful, instances of excluded middle to be found in
spartan constructive mathematics.

§12. Related work and acknowledgements. The investigation reported
here has its origin in Exercise 1 of [1, page 581], attributed to Kreisel, which
was brought to our attention by Gordon Plotkin and Alex Simpson, and which
we found to be intimately connected with our own work [9, 10]. Dag Nor-
mann directed us to Grilliot’s Trick [15, 16]. Thierry Coquand pointed out that
Brouwer’s 1927 proof of Theorem 1 of [22, page 459] can be seen as a forerun-
ner of Kreisel’s Trick, and Douglas Bridges mentioned Bishop’s 1967 proof of
Lemma 7 of [3, page 177]. John Longley mentioned the original proof of the
Kreisel-Lacombe—Shoenfield theorem [19], although the idea is perhaps some-
what obscured there by several other ingredients. This is compatible with the
clean view of this theorem offered by Ishihara [17].

In [22, page 459], [3, page 177], [17], the authors build a Cauchy sequence from
an infinite binary sequence in order to perform a feat that amounts to a construc-
tively valid instance of Markov’s principle without assuming the principle, or,
more ambitiously, a highly suspicious, but again constructively valid, instance
of LPO. In the KLS theorem a sequence is constructed in a similar manner, but
MP (or its weak version WMP [17]) is invoked in a step of the proof. All these
constructions of Cauchy sequences from binary sequences amount to the fact
that N, is the generic convergent sequence.

We warmly thank the people that provided the above references, and also
Thierry Coquand, Hajime Ishihara, John Longley, and Dag Normann for fruitful
discussions, and the three anonymous referees for their constructive criticism (no
pun intended).
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