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Abstract

We show that, in intensional Martin-Löf type theory, negative consistent
axioms can be postulated so that every closed term of natural number type
reduces to a numeral. We also sketch some applications.

1 Introduction

Intensional Martin-Löf type theory (MLTT), which is a minimal foundation for
mathematics, is simultaneously a programming language, and hence constructive in
a strong sense. A number of well-known practical proof assistants and programming
languages are based on variations of MLTT.

Compared to classical (non-constructive) mathematics, it lacks excluded middle.
Compared to Brouwer’s intuitionism, it lacks continuity axioms and bar induction.
Compared to topos theory, it lacks impredicativity and has a different treatment
of the quantifiers. Compared to Homotopy Type Theory (HoTT), it lacks the
univalence axiom and higher-inductive types. Moreover, a fundamental property
of MLTT’s propositional equality with respect to function types, namely function
extensionality, which is desirable in all examples of mathematics discussed above
(and which follows from univalence), is lacking in MLTT, as is well known.

All of these mathematical theories can be accommodated in MLTT by simply
postulating the required “missing” axioms (impredicativity requires a more careful
treatment, but the topos-theoretic quantifiers can be reduced to the MLTT quan-
tifiers via (postulated) propositional reflections as in HoTT).

However, once an axiom is postulated, MLTT loses the fundamental canonicity
property that every closed term of natural number type reduces to a numeral. Thus,
in a practical manifestation of MLTT, after a (consistent) axiom is postulated, one
still has a proof assistant, but the proof language ceases to be a programming
language, which, as discussed above, is an important aspect of MLTT.

There are several ways out of this obstacle, some of which have been successful
in particular directions (e.g. how to realize classical countable (dependent) choice,
via variations of bar recursion, or how to realize function extensionality, via setoids),
and some of which are the subject of active research (e.g. how to realize univalence,
how to realize higher-inductive types).

In this note we discuss a cheap way of postulating axioms in (intensional) MLTT
so that canonicity is not lost. This technique has limited scope, but nevertheless
is applicable to a number of interesting examples. We observe that if a collection
of consistent axioms of the form ¬A are postulated, then canonicity is preserved
(Section 2), and we sketch examples where this is useful (Section 3).
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2 Canonicity of negative, consistent postulates

By MLTT we mean any of the received variations of intensional Martin-Löf type
theory that enjoy the strong normalization property. These variations may or may
not include universes, in a couple of flavours, or several forms of generalized induc-
tive definitions of types that have been put forward after Martin-Löf established
the bones of the theory.

We say that a collection An of closed syntactical types is jointly consistent with
MLTT if there is no closed term inhabiting the empty type in the extension of
MLTT with constants cn : An. By a numeral we mean a closed term of natural
number type N of the form succn(0). We will write, as usual, ¬A as a shorthand
for the type A→ ∅, where ∅ is the empty type.

Meta-Theorem 1 If ¬Bn is a finite or countably infinite collection of closed types
jointly consistent with MLTT, then every closed term of type N in MLTT extended
with constants cn : ¬Bn reduces to a numeral.

To prove this, consider An = ¬Bn in the definition of joint consistency. If the
collection An is jointly consistent, then, for any n, there is no closed term bn : Bn, for
if there were, the closed term cn(bn) would inhabit the empty type. One approach
to the proof is to use the normalization theorem, which holds when any collection of
constants is added, and to analyze the normal forms of closed terms of type N. As
there is no closed term of type Bn, these normal forms cannot contain any constant
cn : ¬Bn, so they have to be numerals. An alternative approach is to re-prove
the normalization theorem from scratch, using any of the known generalizations
of Tait’s computability method for system T to MLTT, where the base case of
the inductive definition of computability includes that any closed term of type N
reduces to a numeral. Then one can extend the definition of computability with
an inductive clause stating that if a closed term bn : Bn is computable, then so is
cn(bn), but this is vacuously true, because there is no such closed term bn, as we
have seen.

Some remarks and questions are in order. (1) In the applications given below,
the family consists of just one or two axioms. (2) The theorem for the unary case
gives the theorem for the finite case, as the reader can easily verify, by packing
finitely many axioms into a single one. (3) The theorem discusses only numerals.
It would be interesting to see a more complete characterization of the types for
which canonicity is not lost. Nevertheless, the given formulation of the theorem
is enough to guarantee that some of the programming-language character of the
theory is retained when the theory is extended with consistent negative axioms.
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3 Examples

Example 1. Danielsson (unpublished) considered the following two definitions of
“true infinitely often”, for a predicate P : N→ Type:

Inf1 : (N→ Type) → Type

P 7→ ¬(∃i,∀j, i ≤ j → ¬(Pj)),

Inf2 : (N→ Type) → Type

P 7→ ∀i,∃j, i ≤ j ∧ Pj.

Inf2 is “more constructive” (gives more information), and Inf2 P implies Inf1 P .
Together with Thierry Coquand he proved that

∀(P : N→ Type)→ Inf1 P → ¬¬(Inf2 P )

is logically equivalent to the following double-negation shift property:

∀(P : N→ Type)→ (∀i→ ¬¬(Pi))→ ¬¬(∀i→ Pi).

This property can be proved in a system with a suitable kind of bar recursion.
Norell suggested that, for this application, it would be easier to simply postulate
the double-negation of excluded middle, and that a consistent postulate without
computational content wouldn’t break canonicity.

Example 2. Escardó and Xu considered a construction in MLTT of a sheaf model
of type theory that validates the axiom that all functions 2N → N are uniformly
continuous, where 2 is the two-point type of binary digits and 2N = (N→ 2) is the
Cantor type. This proof, developed in Agda and published in TLCA 2013, relies on
the axiom of function extensionality (any two pointwise equal functions are equal).
However, they noticed that the double-negation of function extensionality is enough,
and they independently posited that postulating a negative axiom wouldn’t destroy
canonicity, and Xu also implemented the proof in Agda with the double-negation
of function extensionality as a postulate after the TLCA publication.

Example 3. Escardó proved (Journal of Symbolic Logic, 2013) that the set N∞
of decreasing binary sequences satisfies

∀p : N∞ → 2, (∃x : N∞, p(x) = 1) ∨ (∀x : N∞, p(x) = 0).

Two proofs, when rendered in type theory (developed in Agda notation), either
assume that p is extensional (it has the same value on pointwise equal arguments) or
else that the axiom of function extensionality holds. However, the double-negation
of function extensionality suffices, and Xu confirmed this by modifying the Agda
proof. Thus the above theorem has computational content when rendered in type
theory.

Example 4. Escardó proved (Mathematical Structures in Computer Science 2015)
that any function f : N∞ → N is either not continuous or not-not continuous. The
natural rendering of this theorem in MLTT assumes function extensionality. But
after knowing of Examples 2 and 3 above, Escardó and Xu noticed that again the
double negation of function extensionality suffices. Moreover, non-continuity of any
particular function f : N∞ → N is equivalent to WLPO, and doubly negated conti-
nuity for all f is equivalent to ¬WLPO. Thus, if we further postulate ¬WLPO, all
functions f : N∞ → N are not-not continuous, and canonicity is not lost with this.

Notice that some of the examples are mutually inconsistent: the double-negation
of excluded middle and the negation of WLPO contradict each other.
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