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Abstract

‘We show that, in a fairly general setting including higher-types, may, must and probabilistic testing are semi-
decidable. The case of must testing is perhaps surprising, as its mathematical definition involves universal
quantification over the infinity of possible outcomes of a non-deterministic program. The other two involve
existential quantification and integration. We also perform first steps towards the semi-decidability of
similar tests under the simultaneous presence of non-deterministic and probabilistic choice.

Keywords: Non-deterministic and probabilistic computation, higher-type computability theory and
exhaustible sets, may and must testing, operational and denotational semantics, powerdomains.

1 Introduction

We consider a non-deterministic higher-type language, in the style of PCF [38,32,17],
which includes angelic, demonic and probabilistic choice. The types are closed under
finite products and function spaces, and certain powertype constructors, interpreted
as powerdomain monads, which capture various kinds of non-determinism. Choices
can only be performed at powertypes, and the different powertypes have different
operational interpretations of choice.

We show that (i) may, (ii) must and (iii) probabilistic testing are semi-decidable
for this language. The idea is that, given a semi-decidable property u, one can
semi-decide whether a given non-deterministic program (i) has some outcome sat-
isfying w, (ii) has all outcomes satisfying u, and (iii) has all outcomes satisfying u
with probability bigger than a given number. The proofs exploit recent results
on exhaustible sets in higher-type computation [13,8], and older results on exact
computability and definability of integrals in PCF-like languages [6,41,39].

Even at ground types, the claim for must testing may seem suspicious: for
example, it implies that for any non-deterministic program of natural number type,
possibly including subterms of arbitrarily high types, it is semi-decidable whether
the outcome of the program must be a prime number. The semi-decision procedure
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is expected to answer yes if all possible outcomes are prime numbers, and to diverge
if the outcomes include composite numbers or divergent computations. Of course, it
is also semi-decidable whether all outcomes are not prime, as primality is decidable
and hence non-primality is semi-decidable. However, it doesn’t follow that it would
be decidable whether all outcomes are prime, and in fact this is not the case because
some outcomes can be divergent computations.

From the point of view of computability theory, we have an extensional procedure
that operates on programs, but that is not definable directly on the observable
input-output behaviour of programs, and hence the Rice-Shapiro theorem [34] fails
for non-deterministic programming systems. This leads us to extend the language
with may, must and probabilistic testing primitives. It is interesting that these tests
define basic open sets of the Scott topology of powerdomains that are not definable
in the original language. The resulting language has an operational semantics and
is regarded as an executable program logic for semi-decidable properties, which
plays the role of a sort of “Rice-Shapiro completion” of the programming language
(although we don’t have at present a precise formulation of such a concept).

Our semi-decision procedures are defined using operational semantics, and their
correctness is proved using domain-theoretic denotational semantics. Perhaps sur-
prisingly, may testing is harder than must testing in a sense: inclusion of the former
to the language leads to definability of parallel-convergence (even on programs of
deterministic type), but the latter can be defined without parallel features. Proba-
bilistic testing also requires parallel features.

Our results on may, must and probabilistic testing are very general, but have
restrictions, discussed in the body of the paper, due to open problems in domain
theory involving the probabilistic powerdomain [27].

We also perform first steps towards the semi-decidability of similar tests
under the simultaneous presence of probabilistic choice and non-deterministic
choice [29,46,47]. We develop semi-decision procedures for this, but their correctness
is a conjecture and their scope is open (Section 7.4).

This work is related to Abramsky’s work on logic of observable properties [1],
going back to Smyth [44], but we take a different approach and also account for
probabilistic computation. The relationship between the two approaches certainly
deserves more scrutiny.

Organization. 2. A programming language for non-determinism and probability.
3. Logical types. 4. An executable program logic. 5. Operational semantics of the
executable logic. 6. Denotational semantics of the executable logic. 7. Discussion
and questions.
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2 A programming language for non-determinism and
probability

We consider a language with a type system that makes an explicit distinction be-
tween deterministic and various kinds of non-deterministic types. Any term of
deterministic type has only one outcome, including the possibility of divergence. A
term of non-deterministic type has one or more runs, in general continuum many;,
each of which either produces a single outcome, again including the possibility of
divergence, but different convergent runs may produce different outcomes. We take
the ground types to be deterministic, and the product- and function-type construc-
tions to preserve determinism.

2.1 An extension of PCF

We consider an extension of the programming language PCF [32] so that PCF
remains deterministic when it is embedded into the extension. Non-deterministic
and probabilistic terms have to be explicitly typed as such. Types that admit non-
deterministic and probabilistic terms are obtained via “powertype” constructors.

Types. The ground types, ranged over by -y, are those of PCF:
~ := Bool | Nat.
General types are ranged over by ¢ and 7 and are given by
o,Tu=v|oxT1|o— 71| Fo,
where F' ranges over type constructors defined by
F:=H|S|P|V.

The three constructors H, S, P (Hoare, Smyth and Plotkin powertypes) are for non-
deterministic computation. They respectively allow may, must and both testings.
The constructor V (probabilistic powertype) is for probabilistic computation.

Example 2.1 The type 0 x 7 — V7 can be used to code labeled Markov processes
with label space A = o, state space S = 7 and transition function t: A x S — VS.

Terms. We extend the inductive definition of PCF terms with the following rules.

Choice rules. The Hoare, Smyth and Plotkin powertypes have a binary choice
operator @. The idea is that the runs of a term M @ N are those of the term M
together with those of the term N. The probabilistic powertype has a binary choice
operator &. Again the runs of a term M & N are those of the term M together with
those of the term N. However, the choice M @ N is angelic or demonic, whereas
the choice M @ N is probabilistic, with equal probability for both branches.
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Non-deterministic choice rule. For each type o and F' € {H, S,P}, we have a constant
(©79): Fo x Fo — Fo,

written in infix notation.

Probabilistic choice rule. For each type o, we have an infix constant

(®%): VoxVo — Vo.

Monad rules. Let F' € {H,S,P,V} be a unary type constructor.

Functor rule. If f: 0 — 7 is a term, then so is
Ff: Fo— Fr.

This amounts to the fact that any deterministic function can be considered as a
non-deterministic function. To compute F'f: Fo — F'1 at a given input z: Fo, we
first compute an outcome of z and then feed it to f, which in turn gives one of the
possible outcomes of F'fx.

Unit rule. For each type o, we have a term

ng: o — Fo,

where in practice we often omit one or both super- and subscripts from 7 (and from
other terms that have similar decorations). This amounts to the fact that any deter-
ministic computation can be regarded as a possibly non-deterministic computation
which just happens to be able to produce precisely one outcome.

Multiplication rule. For each type o, we have a constant

up: FFo — Fo.

This amounts to the fact that a non-deterministic computation, each of whose
possible outcomes is another non-deterministic computation of an element of o, can
be seen simply as a non-deterministic computation of an element of ¢. To compute
an outcome of the term pX, we first compute an outcome x: Fo of X: FFo, and
then compute an outcome of z in o.

Strength rule. For all types o, we have a (for the moment nameless) constant of
type 0 X FT — F(o x 7). This is needed to get terms Foy x - -+ x Fo,, — F1 from
terms o1 X - - - X 0, — 7 and functoriality. An important example is the construction
of various non-deterministic and probabilistic conditionals from the deterministic
one.

Example 2.2 In this language, the terms n(Az.0) @ n(Az.1) and Az.n(0) @ n(1) are
distinguishable from their types F'(c — Nat) and 0 — FNat respectively, for any
type constructor F' € {H,S,P}. The first defines, non-deterministically, a function,
whereas the second defines a single function with non-deterministic output. In
languages that omit the type distinction we are making, and hence omit the coercion
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7, the terms (Az.0) @ (Az.1) and Az.(0@1) are indistinguishable under call by name,
as discussed e.g. by Sieber [40]. Here the two terms are distinguishable in terms of
their behaviour too. In the first case, once we see a zero in the output for some
given input, we’ll always see zeros afterwards, no matter what the input is, whereas
in the second we’ll be able to get zeros and ones even for the same input.

Example 2.3 The idea behind the above example can be illustrated in imperative
style as follows. The term n(Az.0) @ n(Az.1) corresponds to the non-deterministic
algorithm

(repeat for ever (print 0))
or
(repeat for ever (print 1))

If a run of this algorithm prints 0 first, then it must print 0 the second time as well.
The term Az.n(0) @ n(1) corresponds to the algorithm

repeat for ever ((print 0) or (print 1))

If this prints 0 first, it may print 1 the second time, and hence the two algorithms
can be distinguished by may and must testing.

Example 2.4 Think of the elements of the type Cantor = (Nat — Bool) as se-
quences of booleans. Then cons: Bool — Cantor — Cantor defined by

consp s = Ai.if i == 0 then p else s(i — 1),

adds p as a first new element of the sequence s, shifting the original elements to the
right. Define, using functoriality, a term prefix: Bool — VCantor — VCantor by

prefix p = V(cons p).

Then the following term random: VCantor is intended to randomly choose a total
element of Cantor with uniform distribution:

random = (prefix False random) @ (prefix True random).

Example 2.5 For any type o, recursively define a term
(s,v,w) — (v@®sw): Cantor x Vo x Vo — Vo

by
(v @ w) = if 5(0) then v @ (v By s w) else (v Bys w) B w

where tls = Xi.s(i 4+ 1) is the tail map. If s: Cantor is a term encoding the binary
expansion of a real number p € [0, 1], where False encodes zero and True encodes 1,
then it is intended that v @5 w chooses v with probability p, and w with probability
1—p.

More generally, using the same idea, it is possible to define an n-ary term
weighted-choice that chooses among n branches with given probabilities p1,...,pn
that add up to 1.
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2.2 Operational semantics

We extend the big-step operational semantics of PCF with the following rules.
Firstly, we stipulate that if v: o is a value (or weak head normal form) then so is
n(v): Fo. Then, omitting types and contexts, we add the rules:

M| v N v M| v N v
Mo@NJ|v M@NI|v M®&NJ|v M®&N|v

M §nw) flv)lw M v M ynV) VInW)
Ff(M) § n(w) n(M) | n(v) (M) |} n(W)

Thus, all choice operators have the same meaning under this semantics: this seman-
tics only says what the possible outcomes of a term are, if any, and hence doesn’t
fully capture the intended meaning (cf. [21]). The following is easy to establish (see

e.g. [40]):

Proposition 2.6 There is a computable partial function
M {° v,

with inputs M and s, and output v, where s ranges over the Cantor space of infinite
binary sequences, such that

M |} v iff there is some s with M |° v.

The idea is that s is a scheduler that dictates which branches the choice operators
have to take during evaluation. Once the scheduler is chosen, the evaluation is
completely deterministic. For a term term M, we can say that

M must converge iff for every s there is v with M |}° v.
M may converge iff there are s and v with M |° v.

Despite the universal quantification over an uncountable set, we can prove that must
convergence is semi-decidable for closed terms. The reason is that the Cantor space
is compact and computable functions are continuous [13,8]. However, we don’t know
how to define probabilistic testing and a more general must testing in the big-step
style in an elegant and algorithmic way. Hence we instead translate our language
into a deterministic language, using Proposition 2.6 above as the guiding idea, in
Section 5. Moreover, rather than performing the tests externally to the language,
we incorporate the tests into the language, obtaining an executable logic.

3 Logical types

The may, must and probabilistic testing operators of the executable program logic
defined in Section 4 below will have values in the types S (Sierpinski space) and I
(vertical unit interval), and in this section we extend PCF with such base types as
a preparation for that section. The Sierpinski type S is for results of observations or
semi-decisions, with an element T (observable true) and divergence (unobservable
false), and hence is interpreted as the Sierpinski domain {L,T}. The type I is
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for observations of probabilities, and is interpreted as the set [0,1] C R under the
natural order (hence zero is bottom and one is top).

3.1 The Sierpinski type

We have the following term formation rules for the Sierpinski type S:
(i) T:8is a term.

(ii) If M: S and N: o are terms then (if M then N): o is a term.

(iii) If M, N: S are terms then so is M V N: 8.

The only value (or canonical form) of type S is T. Notice that there is no “else”
clause in the above construction, and (V) is intended to be parallel convergence (or
weak parallel or). For future use, we define

p A q = if p then q.

The big-step operational semantics for these constructs is given by the following
evaluation rules:

MJyT NYV MJyT NJyT

it M then N J V MVNJYT MVN{|T

Recall that computational adequacy of the Scott model of PCF amounts to the
statement that:

If M is a closed term of ground type and v is a value then [M] =v iff M | v.

Standard proofs of adequacy, e.g. Streicher [45], easily apply to this extension of
PCF with the type S.

3.2 The vertical unit-interval type

Because we are concerned with semi-decision procedures, our computations of
terms M of type I are set-up so that, for any rational number p € [0,1], it is
possible to semi-decide the condition p < M, uniformly in M and p, but not the
conditions M = p or M < p in general. Hence the intended interpretation of the
type I is the set [0,1] € R under its usual order. This is naturally regarded as
a sub-dcpo of the unit-interval domain [11], by thinking of x € I as the interval
[x,1]. Thus, if M denotes z, then all we know about M from an operational (and
constructive) point of view is the set of rational numbers p with p < x (and so x is
a lower real number from a constructive point of view).

We take the primitive operations for I as those of the interval type of Real
PCF [11] (or the alternative version [7]), restricted to intervals of the form discussed
above, with the same operational rules.

These primitive operations include simple unary arithmetic functions, a partial
inequality test p < (—) with p rational, and a parallel conditional. Because the
value False doesn’t arise in our semi-decisions, we replace the boolean type of terms
of the form p < M by the Sierpinski type S. Similarly, we use the Sierpinski type
for the parallel conditional, obtaining a weak parallel conditional wif: SXI X I — I
so that
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wif T then x else y =

wif | then x else y =z My = min(z, y).
We omit the discussion of computational adequacy for closed terms M of type I,
referring the interested reader to the references [11,7]. For our purposes, it is enough
to know that this can be reduced to the computational adequacy of terms of type S,
by considering the term (p < M): S, as follows:

[M] = z iff for every rational number p, we have that p <z < (p< M) | T.

Basic definability results. Using the programming techniques developed in the ref-
erences [11,15], in fact with essentially the same programs, it is easy to see that the
average (or midpoint or mediation) operation, defined by

@y =(r+y)/2

and the multiplication and binary minimum and maximum operations are definable
in this language.

Quantification and integration over the Cantor space. For the operational semantics
defined in Section 5 below, we need quantification and integration over the Cantor

type
Cantor = (Nat — Bool).

As in Example 2.4, we think of this as a type of sequences of booleans, where we
are mostly concerned with total sequences, which will play the role of schedulers.
For the operational semantics of may and must testing we need two terms

3,V: (Cantor — 8) — S.
For definability of the existential quantifier one needs parallel-convergence, but the

universal quantifier is sequentially definable [13]:

A(p) =p(L) V (I(As.p(cons False s)) V I(As.p(cons True s))),
V(p) = p(if ¥(As.p(cons False s)) A V(As.p(cons True s)) then c),

where ¢ is an arbitrary total term of type (Nat — Bool), e.g. Ai. True, and where
cons is defined in Example 2.4.
For probabilistic testing, we need a term

/: (Cantor — I) — I,

where we take the uniform distribution on the total elements of Cantor. This can
be defined as

/ f = max < F(L), / Xs. f(cons False s) @ / As. f(cons True s)) .

The idea is the same as that applied for integration in Real PCF for the unit interval
domain [6].
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In Section 7.4, we also need supremum and infimum operators
inf, sup: (Cantor — I) — I,

which can be defined along the same lines [6].
For the sake of clarity, we use the following notation for writing terms, where
the letter s ranges over the Cantor type:

ds.p[s] = I(As.p[s]), Vs.p[s] = V(As.p[s] /f / (As.fls]),

and likewise for sup and inf.

4 An executable program logic

None of the powertypes can be distinguished on the basis of the possible outcomes
that their terms have (cf. [21]). The powertypes become observably different when
one considers may, must and probabilistic testing, which describe whether choice
is interpreted as angelic, demonic or probabilistic. Rather than having these tests
external to the language, we extend the language with them, obtaining an executable
program logic, which we refer to as MMP. Interestingly, and perhaps counter-
intuitively, we shall have terms defined on non-deterministic or probabilistic types
with values on deterministic types, which hence will produce deterministic outputs
from non-deterministic or probabilistic inputs. These arise from the introduction of
may, must and probabilistic testing constructs to the language.

The Hoare powertype admits only may testing, the Smyth powertype admits
only must testing, and the Plotkin powertype admits both. And, of course, the
probabilistic powertype admits probabilistic testing.

4.1 May and must testing

The S-valued terms are characteristic functions of open sets and hence we define a
type of opens

Oo=(0c—8).
May and must testing can be seen as ways of obtaining open sets of Fo from open
sets of o, for certain non-deterministic type constructors, and hence we postulate
corresponding constants ¢ (may) and O (must):

Op: Oo — OHo,

0g: Ooc— 0O8o,

Op: O — OPo,

g : Ooc — OPo.
The idea in the case of the Plotkin powertype is that if u: Qo and N: Po, then
O(u)(N) = T if and only u(z) = T for some outcome z of a run of N, and
O(u)(N) =T if and only u(z) = T for all outcomes z of runs of N. This is made
precise later, when we consider the (operational and denotational) semantics of the

language. The idea for the Hoare and Smyth powertypes is the same, but only one
kind of test is made available for each of them, as discussed above.
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Example 4.1 Suppose one wants to semi-decide whether the outcome of a term
n: FNat must be prime. Then one first writes a semi-decision term prime: Nat — S
and then runs, in the executable logic, the ground term Oprimen of type S. Of
course, considering a term Nat — S for semi-deciding non-primeness, one can semi-
decide whether n must be non-prime. However, it doesn’t follow that primeness of
all outcomes of n is decidable: if n has at least one non-divergent run, then both
must tests diverge. (Cf. the discussion in Section 7.3, which considers the possibility
of replacing the Sierpinski space by the type of booleans.)

Example 4.2 Recursively define a term f: Nat — PNat by

f(n) =n(n) @ f(n+1),

and let converge: Nat — S be a term such that converge(n) = T iff n # L. Then
we intend that

O converge(f(0)) =T  (“f(0) may converge”)
and that

O converge(f(0)) = L (it is not the case that f(0) must converge”),
but

O converge(n(0) @n(1)) =T.

Example 4.3 Parallel-convergence is definable from may testing. In fact, taking
converge: S — S as the identity function, the function (V): S x S — S is character-
ized by the equation

(pV q) = & converge(n(p) @ 1(q)).

However, it cannot be defined from must testing, because must testing can be defined
without parallel features (as we do). Notice that (pAgq) = O converge(n(p) @n(q)).

4.2 Probabilistic testing

This time, from an open set of o we get an expectation on Vo, where an expectation
on ¢ is an I-valued function:

Eo=(oc—1I).
By virtue of the vertical nature of the unit-interval type I, any Sierpinski-valued
term amounts to an I-valued term with values 0 (bottom) and 1 (top) by compo-
sition with a coercion function S — I that maps L to 0 and T to 1 (definable as

Ap.if p then 1). Hence expectations generalize open sets. For probabilistic testing,
we include a constant

O o —EVo.

For a term u: O o seen as a term of type £ o, as discussed above, and a term x: Vo,
the idea is that O(u)(x): I is the probability that u holds for outcomes of runs of
aterm z: Vo.

10



ESCARDO
Example 4.4 Cf. Example 4.2. Recursively define a term g: Nat — VNat by

g(n) =n(n) ®g(n+1),

Then we intend that
(O converge(g(0)) =1  (“the probability that g(0) converges is 17),
and
O converge,, (g(O)) =2 n-1 (“the probability that g(0) converges to n is 277 ~17),

where converge, : Nat — S is a term such that converge,(z) =T iff x = n.

Example 4.5 Parallel-convergence is definable from probabilistic testing (cf. Ex-
ample 4.3 and the references [10,6,30]):

(pVq) =0<(converge(n(p) ®n(q))-

Example 4.6 Cf. Example 2.4. Define a term prefix: I — VI — VI by
prefixx = V(\y.z ® y),

where here (®): I x I — I is the average operation. Then the term random: VI
defined below is intended to randomly choose a real number with uniform distribu-
tion:

random = (prefix 0 random) & (prefix 1 random).

Hence for example O(Ax.p < x)random = 1 — p for any p € I. That is, the
probability that a uniformly chosen random number x satisfies p < = is 1 — p. This
is generalized to invariant measures of iterated function systems in Example 5.1
below.

5 Operational semantics of the executable logic

We define the operational semantics of the executable logic MMP by compositional
compilation into its deterministic sub-language PCF +S+1I introduced in Section 3,
where the translation is the identity on this sub-language. The compilation map

¢: MMP — PCF +S +1I

acts on both terms and types (like a functor): for every source term M of type o,
the translation produces a target term ¢(M) of type ¢(o).

The idea is to reduce may, must and probabilistic testing in MMP to quantifi-
cation and integration in PCF + S+ I. In principle, as discussed in Section 5.1, the
quantifications and integrations are over sets of possible outcomes. For the trans-
lation, we further reduce them to quantifications and uniform integrations over the
Cantor space in Section 5.3, and Section 5.1 is intended as a motivation for this,
which anticipates the denotational semantics given in Section 6 below.
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5.1 Quantification and integration over sets of possible outcomes

Consider the may testing operator
O Ooc — OHo

and recall that Oo = (0 — S). By uncurrying this operator, then twisting the
product, and currying again, we get a term that will be natural to denote by

3: Ho — ((0 — 8) — 8).

That is,

C)(u) = G(w)(O).
For C': Ho, we write 3¢ rather than 3(C'). Moreover, for a term ulx]: 0 — S
possibly including a free syntactic variable z, we write

dz € Cuuz] = 3(C)(A\z.ulz]).
With this notation, we have
O(u)(C) = Jx € Coul(x).
Similarly, from the must testing operator [1: O o — O S0, we get a term
V: 80— ((c —8) —8),

for which analogous notational conventions are adopted. For the Plotkin powertype,
we get both quantifiers.
For the probabilistic powertype, recalling that £ o = (0 — I), from the proba-
bilistic testing operator
O:E0—EVo

we get a term
/: Vo— ((c = I)—1)
defined by
u=Ou)(®).
where v: Vo and u: 0 — I. ’

Example 5.1 Generalizing Example 4.6, if (o, f1,..., fn,P1,...,Pn) is an iterated
function system with probabilities [25,24], then its invariant measure v: Vo can be
defined as

v = weighted-choice(p1, ..., pn) (V(f1)(V), ..., V(fn)(v)),

where weighted-choice is the term discussed in Example 2.5. Scriven developed a
PCF program for computing integrals of functions u: ¢ — I with respect to the
invariant measure [39]. Here we get the alternative algorithm [ u = O(u)(v) in the
program logic MMP instead. Notice that the underlying space can be a function
space (as in Example 2.4).

12
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5.2 Translation of types
This is defined by induction:

¢(v) =7,
¢(o x 7)=¢(0) x ¢(7),
¢(o — 1) =d(0) — (),
¢(Fo)=Cantor — ¢(0), for F' € {H,S,P,V}.

Recall from Section 3 that Cantor is the type (Nat — Bool). As in Proposition 2.6,
the idea here is that the Cantor type plays the role of a type of schedulers. To run
a non-deterministic program, one non-deterministically comes up with a scheduler,
and then deterministically runs the program with respect to that scheduler, where
the scheduler is used in order to decide which branches of the choice constructs are
taken (think e.g. of false as left and of true as right). To run a probabilistic program,
one first comes up with a scheduler, where the choice of scheduler is performed with
uniform distribution over the Cantor space.

5.8 Translation of terms

This is also defined by induction. The translation of a syntactic variable is a variable
with the same name but its type modified appropriately for powertypes. In order to
be precise here, one needs some more-or-less evident syntactic bureaucracy which
can be safely omitted for our purposes. For PCF constants, the translation is the
identity. It is also the identity on all fixed-point combinators, including those of the
non-deterministic and probabilistic types, with a suitable change of types for the
latter. Moreover, we stipulate that the translation is a congruence:

P(MN) = ¢(M)p(N),
B M) = Ap(x).6(M).
This takes care of the deterministic fragment of the language, for which the trans-
lation is then the identity.
For x € {©, ®}, we define, where k¢ and k; range over ¢(Fo) = Cantor — ¢(0),
d(x) = M ko, k1).As.if hd(s) then ko(tl(s)) else k1 (t1(s)).

Here hd and tl are the head and tail maps on sequences, defined by hd(s) = s(0)
and t1(s)(i) = s(i + 1). As discussed above, the idea is that the first element of
the scheduler s dictates which branch is chosen, and the remainder of the scheduler
then acts on the corresponding branch.
For the translation of the testing operators, recall that the type of may and must
testing is
(0 —8) — (Fo —8),

and hence their translations are to have type
(¢(0) — 8) — ((Cantor — ¢(0)) — 8).
Similarly, the translation of probabilistic testing is to have type

(¢(0) — I) — ((Cantor — ¢(0)) — I).
13
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All quantifications and integrals in the following definitions are over the Cantor
type (as introduced in Section 3.2), and we let the variable k range over the type
¢(Fo) = Cantor — ¢(0):

d(O) = M k. Tsu(k(s))
o(O) = M. k. Vs.u(k(s))
(

#(O) = )\u.)\k./u k(s))ds.
For the functor and units of the monads, we define

O(Ff) = Ak.Xs.f(k(s)),
o(nr) = Az As.x.

For the multiplication, we consider PCF terms
evens, odds: Cantor — Cantor
that take subsequences at even and odd indices, and define:
d(up) = Mk As.k(evens(s))(odds(s)).

That is, we split the scheduler into two schedulers and pass each one to a different
subcomputation. In the target language, the monad laws fail for the translations
(both denotationally and operationally), but they will hold modulo the appropriate
notion of testing. The strength is translated in a similar, mechanical, manner.

5.4 Semi-decision procedures for may, must and probabilistic testing

Given a semi-decidable property coded as a term u: ¢ — S and a non-deterministic
program n: P o, in order to semi-decide may and must testing we evaluate the terms

of ground type S in the deterministic language PCF + S 4+ I. Similarly, to compute
the probability that outcomes of n satisfy u one evaluates the term

P(O(cou)(n))

of type I where ¢: S — I is the coercion defined by ¢(p) = if p then 1. To semi-decide
whether the probability that outcomes of n satisfy u is bigger than a definable real
number r: I, one evaluates the term

¢(r < Ocou)(n)).
5.5  Ground evaluation
For MMP terms M : o with «v # I ground, it is convenient to define

Myv <= ¢(M) | v.
14
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6 Denotational semantics of the executable logic

In this section we apply domain theory to prove the correctness of the semi-decision
procedures for may, must and probabilistic testing developed in Section 5.

We work in the category of dcpos and continuous maps to give the semantics,
but eventually need to consider continuous dcpos to prove the correctness of the
semi-decision procedures. As discussed in Section 3, for the sub-language PCF,
we consider its Scott model, and we interpret the type S as the Sierpinski domain
{L, T} and I as the unit interval [0,1] C R with its natural order, getting an
interpretation of the sub-language PCF+ S 4 I as in Section 3. We then interpret
the powertypes as the Hoare, Smyth, Plotkin and probabilistic powerdomains [2,26].

6.1 Computational adequacy

To establish semi-decidability of may, must and probabilistic testing, we first prove
computational adequacy of the model:

Lemma 6.1 For any closed term M in the executable logic MMP of ground type
other than I, and all syntactical values v,

[M] =[v] < M.
In particular, this will imply, for M : I closed and r € Q, that
r<[M] < r<MI|T.

Because the model is already known to be computationally adequate for the de-
terministic sub-language PCF + S + I, we have the following purely denotational
formulation of computational adequacy for the full language MMP:

Lemma 6.2 Computational adequacy holds if and only if [M] = [¢(M)] for every
closed term M of ground type.

To prove computational adequacy using this, we rely on the description of the
powerdomains as free algebras for the (interpretations of) the choice operators @
and @. The axioms for the operations can be found in [26,35,2]. Then the semantics
of the test operators {,d, () are uniquely determined by the conditions that {(u),
O(u) and O(u) are algebra homomorphisms:

where we are using the fact that S and I are algebras when endowed with the
operations(V), (A): Sx 8 — S and (@): I x I — I. This completes our proof sketch
for computational adequacy.
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6.2 Correctness proofs of the semi-decision procedures

An alternative, also well-known [26,35,2], definition of the powerdomains is in terms
of non-empty subsets and of valuations. The elements of the Hoare power domain
are the closed subsets, that of the Smyth powerdomain are the compact upper sets,
that of the Plotkin powerdomain are the lenses, and that of the probabilistic pow-
erdomain are the continuous valuations with total mass 1. The non-deterministic
choice constants are interpreted as the union operation, and the probabilistic choice
constant is interpreted as the convex-combination operation (v, 1) — vy @®v;. The
logical constants are interpreted so that, as expected,

(i) G(u)(X) =T iff u(x) =T for some z € X,
(ii) Ou)(X) =T iff u(z) =T for all z € X,
(ii)) Ow)(v) = J, u.

More usually, & and [J are seen as open-set constructors: The Scott topologies of
the Hoare, Smyth, and Plotkin powerdomains have the following bases of open sets:

(i) Hoare: { U, where U ranges over open sets, and X € (U < UNX # 0.
(ii) Smyth: OU, where U ranges over open sets, and X € QU «<— X CU.
(iii) Plotkin: Both ¢ U and U, but restricted to lenses.

Hence, writing O D for the lattice of open sets of a domain D, we have that {5 and
[ are functions:

(i) ¢: OD — OHD.
(i) O: ©D — OsD.

(iii) (a) ¢: OD — OPD.
(b) O: OD — OPD.

Now O D = (D — 8) via characteristic functions, and hence ¢ and [J can be seen
as the functions discussed earlier. Moreover, it is clear that the condition UNX # ()
amounts to existential quantification over X and the condition X C U amounts to
universal quantification. We have to show that these functions are continuous, but
this is straightforward.

6.3 Obstacles

It may seem that the above observations, together with computational adequacy,
would conclude the proof of semi-decidability of may, must and probabilistic test-
ing. Unfortunately, this is not the case, because the abstract descriptions of the
powerdomains given in Section 6.1 (in terms of universal properties) coincide with
the concrete descriptions given in Section 6.2 (in terms of subsets and valuations)
for restricted classes of domains only.

For the Hoare powerdomain, the abstract description given in Section 6.1 al-
ways agrees with the concrete one given in Section 6.2 (see [35]). But for the
Smyth, Plotkin and probabilistic powerdomains, the two descriptions agree only for
continuous domains [35,26,2]. However, not all continuous domains are closed under
function spaces and the Plotkin powerdomain, as is also well known, and there is
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no known cartesian closed category of continuous domains closed under the proba-
bilistic powerdomain [27]. Hence we cannot expect all the types of our language to
have continuous interpretations, unless further progress is made in domain theory.

Remark 6.3 These and similar issues led the authors of [4] to propose an alterna-
tive form of domain theory, called topological domain theory, that would overcome
these and other kinds of obstacles in semantics. We plan to investigate its use to
the resolution of the problems explained here, but, for the moment, we establish
very general, albeit partial, results using classical domain theory.

6.4 Partial results

The following theorem summarizes the above discussion, where the adjectives to
types refer to their domain interpretations defined above:

Theorem 6.4

(i) For any type o, may testing on terms of type Ho is semi-decidable.
(ii) For any continuous type o, must testing on terms of type S o is semi-decidable.

(iii) For any RSFP type o, may and must testing on terms of type Po are semi-
decidable.

(iv) For any continuous type o, probabilistic testing on terms of type Vo is semi-
decidable.

Remark 6.5 The smallest collection of types containing the ground types and
closed under finite products, function spaces, and the Hoare, Smyth and Plotkin
powertypes consists entirely of RSFP types [2]. Hence if we hadn’t included the
probabilistic powertype in our language, we wouldn’t have had any of the above
difficulties, and may and must testing would be semi-decidable for all types. What
causes the restrictions is the presence of the probabilistic powertype.

But still the restrictions are not severe in practice: for example, probabilistic
computations on any PCF type of any order have semi-decidable probabilistic test-
ing. More generally, we can syntactically capture a large class of types for which
the above theorem applies, as follows. Inductively define collections of types S, R,
C as follows, where ~ ranges over ground types:

Su=v|SxS|(C—S)|HC|SC,
R:=S|RxR|(R— R)|PR,
C:=R|CxC|VC.

By a continuous Scott domain we mean a bounded complete continuous dcpo.

Proposition 6.6

(i) The interpretation of an S type is a continuous Scott domain.
(ii) The interpretation of an R type is an RSFP domain.

(iii) The interpretation of a C type is a continuous dcpo.
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Proof The ground types are continuous Scott domains. Continuous Scott domains
are RSFP domains, and RSFP domains are continuous domains [2]. Plotkin showed
that the category RSFP is cartesian closed, and closed under the Plotkin power-
domain [2]. Scott showed that the continuous Scott domains are densely injective
spaces, and the densely injective spaces are an exponential ideal [16]. Schalk showed
that the continuous dcpos are closed under the Hoare and Smyth powerdomains,
and it is immediate that they are bounded complete [35]. Jones showed that the
continuous domains are closed under the probabilistic powerdomain [26]. O

7 Discussion and questions

Of course, the purpose of the algorithms developed here is to show that may, must
and probabilistic testing are semi-decidable in principle, and not to attempt to
provide usable algorithms for that purpose.

7.1  Programming with closed sets, compact sets and distributions

We have considered the full language as an executable logic for semi-decidable
properties, with a sub-language singled out as a programming language for non-
deterministic and probabilistic computation. From a different point of view, com-
patible with the denotational model, the full language can also be regarded as
a deterministic programming language for computation with closed sets, compact
sets, lenses, and probability distributions.

7.2 Turing universality

Can (a suitable extension of) our language define all computable elements of all
types? For the case of the Smyth powertype, this is not unlikely because every
compact upper set is a continuous image of the Cantor space, at least in the case
of continuous Scott domains. What we need is to show that every computable ele-
ment of the Smyth powerdomain is a computable image of the Cantor space. For the
probabilistic powerdomain, one would have to show that every computable proba-
bilistic continuous valuation is a computable image of the uniform distribution on
the Cantor space, in the sense that for every v € Vo there is a term f: Cantor — o
such that v = V(f)(u) where u: VCantor is the uniform distribution (cf. Exam-
ple 2.4). Of course, one first needs to define suitable effective presentations of the
domains of interpretation of the language [42]. This in itself stumbles on the fact
that it is not known whether, in the presence of the probabilistic powertype, all
types are interpreted as continuous domains, as discussed in Section 6.3, and that
the notion of effective presentation for domains is not well understood beyond the
continuous case. Again, it may be worth looking at the ideas of the reference [4]
(cf. Remark 6.3). Moreover, to achieve Turing universality, one has to take the dis-
cussion of Section 7.3 into account, and hence perhaps extend the language. Notice
also that, denotationally, I = VS. Is this isomorphism definable? The techniques
discussed in [12,15] applied to establish Turing-universality of PCF extended with
real numbers [11] may prove useful here.
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7.8 Categorical universality revisited

For simplicity, in this discussion we restrict our attention to the RSFP types that
exclude probabilistic powertypes. As discussed above, from the point of view of
our denotational semantics, the may testing operator 6: O o — OHo constructs,
from any given u: 0 — S, the unique H-algebra homomorphism @%: Ho — S ex-
tending u along n: ¢ — Ho, namely 4 = {u. The structure map of an algebra
is uniquely determined by its underlying domain, because H is a Kock-Zoberlein
monad [28,48,14], and amounts to the non-deterministic choice operator @ for Ho
and parallel convergence for S. In general, not every type is the underlying object
of a Hoare algebra, because the Hoare structure, when it exists, amounts to binary
join in the domain-theoretic order [35].

A similar observation applies to the Smyth power domain, but things get more
interesting. The monad is again of the Kock-Zoberlein type, and, additionally, all
types are (interpreted as) underlying objects of algebras (with domain-theoretic
meet as the structure map). Moreover, if one postulates generalized must testing
terms O: (o0 — 7) — (So — 7), for 7 ground, then one gets, by structural induction
on types, generalized must testing programs for all PCF types 7, which articulates
the universal property of the Smyth powerdomain construction within the language.
In connection with the discussion of Section 5.1, by currying, twisting and currying,
we get a term of type So — ((0 — 7) — 7), whose denotation is the functional
Q — (f — inf f(Q)), cf. [35]. Applying this to the ground case 7 = Bool, one gets
a semi-decision procedure for must testing that answers True or False, and diverges
if and only if some outcome of the given non-deterministic computation is divergent
(cf. Example 4.1).

The Plotkin powerdomain is not of the Kéck-Zdberlein type, and domains admit
zero, one or more structure maps, and Hoare and Smyth structures are always
Plotkin structures. Hence domains in the interpretation of PCF types have at least
one Plotkin structure, namely the Smyth structure. For example, the may operator
on the Plotkin powerdomain gives the universal property for the Hoare structure
on S, and the must operator for the Smyth structure.

7.4 Combination of probability with non-determinism

A number of authors have considered powerdomains that simultaneously account
for probability and non-determinism [29,46,47]. Here we discuss first steps in this
direction, closely following the ideas of [46]. A major difference is that this reference
considers non-negative real-valued valuations rather than unit-interval valued valu-
ations with total mass 1. To prove the correctness of the semi-decision procedures
discussed here, we would need a theory based on the latter.

Recall that the Hoare powerdomain can be defined as the set of non-empty
closed sets, and hence HV D is the collection of closed sets of valuations. Tix,
Keimel and Plotkin [46] consider a powerdomain Vg D consisting of the geometri-
cally convex, closed sets of valuations. Similarly, they consider powerdomains Vg D,
consisting of geometrically convex, compact upper sets of valuations, and Vp D,
consisting of geometrically convex lenses of valuations. Using our notations @ and
@ for non-deterministic and probabilistic choice, the equational theories for these
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powerdomains are given by the following distributive law
t@(Yy0z)=(rdy) 0 (ze=2),

for Vp, and where @ has to additionally satisfy the semi-lattice equations plus:

(i) 2 @y J x for Vg (@ is the binary join operation w.r.t. the information order),

(ii) x @y C x for Vs (@ is the binary meet operation w.r.t. the information order).

Non-deterministic/probabilistic powertypes. We now consider the extension of the
above programming language and logic with powertypes corresponding to these
powerdomains, using the same notation for them, where now each of them has
both constructs (@) and (@), as discussed above. Moreover, the functor, unit,
multiplication, and strength rules are defined in the same way as for the other
powertype constructors.

May-probabilistic and must-probabilistic rules. We need four constants

Ovy 2 Eo— EVyo,
0y, : E0— EVso,
Qv Eo— EVpo,
0y : Eo0— EVpo.

Continuing the discussion of Section 5.1, for the Hoare probabilistic powertype,
from the may-probabilistic operator : £o — £ Vo we get a term of type Vgo —
(6 — I) — I) written sup,cc [, u = {(u)(C). The fictitious bound variable v is
included to make the notation suggestive of the denotational semantics discussed
above. What we mean by this notation is that the application of the nameless
term Vgo — ((0 — I) — I) to a term C: Vyo followed by an application to a
term u: 0 — I is written sup,ce fy u. For the Smyth probabilistic powertype, we
get a similar term, but we instead write inf,co fy u. For the Plotkin probabilistic
powertype we get both.

Translation of types. For non-determinism combined with probability, we propose
that two schedulers are needed: one to perform the non-deterministic choices and
the other to perform the probabilistic choices. The first one is chosen in an angelic
or demonic way, but the second one with uniform distribution. We thus extend the
definition of the translation ¢ defined in Section 5 by stipulating that

»(Go) = Cantor x Cantor — ¢(0), for G € {Vy, Vs, Vp}.

Operational semantics. The translations of the non-deterministic choice operators
consume tokens from the first scheduler:

d(@) = A(ko, k1).A(s,t).if hd(s) then ko(tl(s),t) else k1 (tl(s),t).
Those of probabilistic choice operators consume tokens from the second scheduler:
d(®) = A(ko, k1).A(s,t).if hd(t) then ko(s,t1(t)) else k1 (s, t1(t)).
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The translations of may and must probabilistic testing have type
(¢(c) — I) — ((Cantor x Cantor — ¢(0)) — I),

and are given as follows, where we emphasize that the infima, suprema and integrals
are over the Cantor type as above:

8(0) = ANk sup( / w(k(s,1)) dt),
H(00) = XAk inf( / w(k(s, 1)) db).

For the monad structure, we define:

(Gf) = AkA(s,t).f(k(s, 1)),
d(na) = Az (s, t).z,
d(pug) = Ak A(s,t).k(evens(s), evens(t))(odds(s), odds(t)).

For the technical reasons discussed above, we leave the correctness of this proposed
translation open.
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