
A metric model of PCF
First version: 9 March 1998. This version: 7 October 1999.

Mart́ın Hötzel Escardó

Laboratory for Foundations of Computer Science, The University of Edinburgh,
King’s Buildings, JMCB, Mayfield Road, Edinburgh EH9 3JZ, Scotland
M.Escardo@ed.ac.uk http://www.dcs.ed.ac.uk/home/mhe/

Abstract

We introduce a computationally adequate metric model of PCF, based on the fact
that the category of non-expansive maps of complete bounded ultrametric spaces
is cartesian closed. The model captures certain temporal aspects of higher-type
computation and contains both extensional and intensional functions. We show that
Scott’s model arises as its extensional collapse. The intensional aspects of the metric
model are illustrated via a Gödel-number-free version of Kleene’s T -predicate.

Keywords: Simply typed lambda-calculus, higher-type recursion theory, metric
semantics.

MSC: 03B40, 03D65, 68Q55.

Sections 2, 3, 4 and 9 contain full proofs. Sections 6 and 8 contain enough
details. Sections 5 and 7 contain proof sketches only, but no other section
depends on them.

1 Introduction

Scott’s model of PCF is based on the introduction of bottom elements in the
interpretation of ground types [14]. Conceptually, bottom stands for absence
of information. This is made mathematically precise via the information order.
Computationally, bottom stands for non-termination. The precise formulation
of this statement is referred to as computational adequacy : A PCF program
denotes a non-bottom value in Scott’s model if and only if it reduces to that
value in finitely many computation steps [11].

In practice, a value computed in a very large number of steps gets con-
fused with non-termination. We introduce a metric model of PCF that cap-
tures some aspects of this situation. It is based on the fact that the category
of non-expansive maps of complete bounded ultrametric spaces is cartesian

Escardó

closed [15]. The ground types are interpreted as metric spaces as follows. A
point ∞ stands for non-termination. For each value v, a point v(k) stands
for v computed in k steps. The distance between points is defined in such a
way that v(k) gets close to ∞ as k increases. The interpretation of constants
is defined in such a way that computational adequacy holds in the following
form:

Theorem 1.1 A PCF program denotes a point v(k) in the metric model if
and only if it reduces to the value v in k computation steps.

If one were going to apply the metric model to develop a semantic approach
to complexity theory, a careful analysis of what should count as a computation
step in PCF would be needed. For the purposes of this paper, however, the
precise way computation steps are counted is completely irrelevant. What
is important is that the computation of a convergent program takes finitely
many steps, and that the computation of a divergent program takes infinitely
many steps.

We first consider a model that counts recursion unfoldings only. This is
justified by the fact that the fragment of PCF without the fixed-point com-
binator is normalizing. Computational adequacy is easily proved via Kripke
logical relations in a standard way, but one doesn’t need to consider the in-
terpretation of the fixed-point combinator as a limit of approximations as in
usual proofs of adequacy of Scott’s model. We then consider a more realistic
interpretation that counts all “atomic reductions”. In this case the proof of
computational adequacy is even simpler. Essentially, the denotational and the
operational semantics are both fixed points of the same contractive functional
on a complete metric space. Therefore, by Banach’s fixed-point theorem, they
have to be the same. One can say that soundness implies completeness.

In the metric model one has both intensional and extensional functions.
Roughly, a function is extensional if its value doesn’t depend on the time that
its argument takes to be computed, and it is intensional if it does. Techni-
cally, extensionality is defined via a logical partial equivalence relation. All
PCF-denotable functions are extensional. In order to be able to define inten-
sional functions as well, we extend PCF with a Gödel-number-free version of
Kleene’s T -predicate that tests whether the computation of a given term of
ground type terminates within a given amount of time. Interesting intension-
al functions, such as fair-merge and McCarthy’s ambiguity operator, become
denotable. Moreover, extensional functions that are not PCF-denotable, such
as metric versions of Scott’s parallel-or [14] and Plotkin’s existential quantifi-
er [11], become denotable too. Of course, the intensional information of the
metric model can be removed by taking subquotients.

Theorem 1.2 Scott’s model is the extensional collapse of the metric model.

One can say that the metric model of PCF is intensional enough so that one
can express Kleene’s T -predicate at a semantic level, but extensional enough

2

Escardó

so that computational mechanisms remain largely invisible. We haven’t inves-
tigated the following two natural questions: Is the metric model of PCF+T
fully abstract? Is PCF+T universal for the metric model, with respect to
suitable notions of effectively given ultrametric space and computable non-
expansive map?

Non-termination in PCF is silent. In order to gain a better understand-
ing of the metric model, we also consider a variant of PCF in which non-
termination is chattering. The PCF-denotable and chattering-PCF-denotable
points coincide, but the operational semantics of chattering PCF explicitly
manipulates the intensional information contained in the metric model.

Related work

The ACG (Amsterdam Concurrency Group) and their collaborators have suc-
cessfully applied metric topology to the denotational semantics of concurren-
cy [1]. In their introduction to the collection of selected ACG papers [3],
de Bakker and Rutten say, in page 10,

“A recurring question posed to ACG members concerns the precise math-
ematical relationship between models based on complete metric spaces and
the more familiar models based on complete partial orders.”

An answer to this question is given by de Bakker and Meyer [2]. In our case, a
mathematical relationship between the metric and cpo models of PCF is given
by Theorem 1.2, whose formulation is made precise by Theorems 7.3 and 7.1.
They add that

“Subsidiary to this point, we are often asked what advantages we see in
metric spaces as a tool over the—allegedly simpler—cpo’s.”

The main advantage of the metric approach that they mention is the useful-
ness of Banach’s unique-fixed-point theorem for complete metric spaces over
Kleene’s least-fixed-point theorem for cpo’s. This is illustrated by Kok and
Rutten [8], who prove that the denotational and operational semantics of cer-
tain languages coincide by showing that both are fixed-points of the same
contractive functional on a complete metric space. We apply this technique
in Section 8 to establish computational adequacy of a metric model of PCF.
They continue by saying that

“In a purely functional setting (e.g. when modelling (un)typed lambda cal-
culus), this argument does not apply: We certainly do not claim that the
metric machinery has similar advantages over cpo theory to handle lambda
models or related constructions.”

The present paper shows that this is an underestimation of the scope of the
metric machinery. It is natural to ask whether metric models of the untyped
lambda calculus also exist—we haven’t investigated this question. Regarding
the generality of Kleene’s fixed-point theorem over Banach’s, they comment,

3

Escardó

in page 2,

“A simple, but not really convincing, way out is to postulate a silent step of
some sort at each entry of a recursive call.”

Implicitly, this refers to the method applied by de Bakker and Zucker in their
seminal paper [4, page 87] in order to ensure contractivity of a certain se-
mantic map and hence applicability of Banach’s fixed-point theorem. Our
metric interpretation of the fixed-point combinator is based precisely on this
simple method, generalized to higher types—see Lemma 3.3. We hope that
Theorem 1.1 makes this way out a bit more convincing. Computations do
take place in time, and it may be desirable, on occasions, to distinguish short
and long computations at a semantic level. Other convincing arguments are
given by Theorem 7.1, which relates the metric and cpo interpretations of the
fixed-point combinator, and by Theorem 5.3, which shows that our metric
interpretation of the fixed-point combinator is extensional (see also Corol-
lary 5.2).

2 Metric lifting

In order to obtain a metric model of PCF, we begin by considering a construc-
tion analogous to ordered lifting. For the purposes of this paper, it is enough
to consider the metric lifting of a set. The lifting of a metric space is briefly
discussed in Section 2.3 from a concrete point of view and in Section 2.4 from
a conceptual point of view.

2.1 The metric lifting of a set

Notation 2.1 We denote by r an arbitrary but fixed number with 0 < r < 1,
so that limn rn = 0 in a non-trivial way.

The metric lifting of a set A is the set

LA = (A× N) ∪ {∞}

endowed with the distance function d : L A× LA → [0,∞) defined by

d(∞,∞) = d(a(k), a(k)) = 0, d(a(k),∞) = d(∞, a(k)) = rk,

d(a(k), b(l)) = rmin(k,l) if a 6= b or k 6= l,

where a(k) stands for 〈a, k〉. We regard the points of L A as “abstract compu-
tations” of elements of A. Specifically, we think of a(k) as computation of a
that converges in k steps, and of ∞ as a divergent computation.

Lemma 2.2 LA is a complete bounded ultrametric space.

Recall that a metric space is ultrametric if d(x, z) ≤ max(d(x, y), d(y, z)).

4

Escardó

Proof. We give an indirect proof that gives some insight on the nature of the
metric—see Section 9. We think of a(k) as the sequence [kaω, and of ∞ as the
sequence [ω, where [is a “blank symbol”. Define a family =n of equivalence re-
lations on LA by x =n y iff xi = yi for all i < n, where we interpret x, y ∈ LA
as sequences as above. It is easy to see that d(x, y) = inf{rn|x =n y}. For
x 6= y, this says that d(x, y) = rn where n is the least integer with xn 6= yn.
It is well-known that this construction via equivalence relations produces a
bounded ultrametric space [15, page 703, Example 3(a)]. Essentially, the rea-
son is that the ultrametric property coincides with transitivity of the relation
d(x, y) ≤ ε, for each fixed ε [15, page 717, Proposition 6.4.6]. Moreover, it is
easy to see that L A is complete, with all points isolated, except ∞. 2

For any isolated point x of any metric space, there is a smallest ε > 0 such
that the open ball Bε(x) is {x}, that is, such that d(x, y) < ε implies x = y.
For x = v(k), it is easy to see that the corresponding ε is rk. Notice that, as a
topological space, LN is not homeomorphic to the one-point compactification
of the discrete space of natural numbers. In fact, since d(∞, n(0)) = 1, the
open ball B1(∞) is {n(k+1)|n, k ∈ N} ∪ {∞} and has {n(0)|n ∈ N} as its
complement. This also shows LN is not compact, as the complement consists
of countably many isolated points.

Recall that a map f : X → Y of metric spaces is non-expansive if

d(f(x), f(x′)) ≤ d(x, x′).

If one interprets the assertion that x and x′ are close as saying that it is difficult
to distinguish x and x′ by observing their computations, then computable
maps have to be non-expansive: distinguishing f(x) from f(x′) is at least as
computationally hard as distinguishing x from x′.

Lemma 2.3 For every function f : A → B there is a non-expansive map
Lf : LA → LB defined by

Lf(a(k)) = f(a)(k), L f(∞) = ∞.

Proof. If x = y then d(Lf(x), L f(y)) = 0 = d(x, y). If x = a(k) and y = ∞
then d(L f(x), L f(y)) = d(f(a)(k),∞) = rk = d(x, y). Finally, if x = a(k) and

y = b(l) with a 6= b or k 6= l, then d(Lf(x), L f(y)) = d(f(a)(k), f(b)(l)) ≤
rmin(k,l) = d(x, y). 2

It follows that L is a functor from the category of sets to the category of
non-expansive maps of complete bounded ultrametric spaces.

5

Escardó

2.2 Delay operators

For each set A define a “delay operator” δA : LA → LA and an “inclusion”
ηA : A → LA by

δA(a(n)) = a(n+1), δA(∞) = ∞, ηA(a) = a(0).

The idea is that, for a convergent computation x ∈ LA, we have that x and
δ(x) compute the same element of A, but the computation δ(x) takes longer
than the computation x. This is made precise in Section 7 via the use of
partial equivalence relations.

It is clear that every point of LA is either ∞ or else of the form δn(η(a))
for unique n and a. The following proposition is easily proved:

Proposition 2.4 The metric on LA is uniquely determined by the equations

d(∞,∞) = d(η(a), η(a)) = 0, d(η(a), η(b)) = 1 if a 6= b,

d(η(a), δ(x)) = d(δ(x), η(a)) = 1, d(δ(x), δ(y)) = r · d(x, y).

2.3 The metric lifting of a metric space

In this subsection, which is not needed in the development that follows, we
discuss the generalization of metric lifting from sets to metric spaces.

The functor L can be extended to an endofunctor of the category of non-
expansive maps of complete 1-bounded ultrametric spaces by defining

d(∞,∞) = 0, d(x(k),∞) = d(∞, x(k)) = rk,

d(x(k), y(k)) = rkd(x, y), d(x(k), y(l)) = rmin(k,l) for k 6= l.

Moreover, we then have a monad with unit and multiplication given by

ηX(x) = x(0), µX

((
x(n)

)(m)
)

= x(m+n).

The metric lifting monad is easily seen to be computational in the sense of
Moggi [10]. This fact can be used to tackle call-by-value PCF. In this paper
we are considering call-by-name PCF as in [11] and we don’t need the monad
structure of the metric lifting functor.

2.4 A conceptual account of metric lifting

A conceptual construction of metric lifting is discussed by Daniele Turi and the
author in [6]. We have shown that L is the free monad over the endofunctor ∆
defined by

∆X = X, d∆X(x, y) = r · dX(x, y), ∆f = f.

Explicitly, LX is the initial algebra of the functor FY = X + ∆Y . From
this one concludes that the Eilenberg-Moore algebras of the monad L are in

6

Escardó

bijection with the algebras of the functor ∆. In order to obtain a concrete
description of the bijection, we consider the natural map idr : X → ∆X
which is the identity on points. It is easy to see that a map f : X → Y
is r-contractive iff it factors through idr : X → ∆X. By a slight abuse of
notation, we denote the unique factor by f : ∆X → Y . Thus, the ∆-algebras
are essentially the r-contractive endomaps. The bijection takes an algebra
α : ∆X → X to the Eilenberg-Moore algebra α : LX → X defined by

α(x(k)) = αk(x), α(∞) = the unique fixed point of α.

Then the delay operator defined above arises from the bijection as the unique
map with

µX = δX .

Thus, structure maps of L-algebras correspond to generalized delay operators.

We remark that, as a set, LX also appears in the work of Rutten [13] on
the analysis of while-programs by coinduction, as the final coalgebra of the
endofunctor FY = X + Y of the category of sets.

3 A metric model of PCF

The following folklore result is proved in [15], where some useful full subcate-
gories that don’t arise in this paper are also considered:

Lemma 3.1 The category of non-expansive maps of complete bounded ultra-
metric spaces is cartesian closed.

For the purposes of this paper it is enough to know that the points of a
cartesian product are the pairs of points and that the points of an exponential
are the non-expansive maps, with distance defined by

dX×Y (〈x1, y1〉, 〈x2, y2〉) = max(dX(x1, x2), dY (y1, y2)),

dX→Y (f, g) = sup{dY (f(x), g(x)) | x ∈ X}.
In later sections we use the fact that limits in function spaces are computed
pointwise.

The metric interpretation of PCF is defined as follows. First, the interpre-
tation of types is inductively defined by

Xo = LB, Xι = LN, Xσ→τ = (Xσ → Xτ),

where B = {true, false} and (Xσ → Xτ) is the function space constructed
in Lemma 3.1. Then constants are interpreted as in Fig. 1, and lambda-
abstraction and application are interpreted in the usual way, via the (well-
pointed) cartesian-closed structure of our base category using environments.
It is easy to check that the interpretation of the conditional is non-expansive
and hence well-defined.

7

Escardó

JvK = η(v) for every value v = false, true, 0, 1, 2, . . . , n, . . .

JsuccK = L(n 7→ n + 1)

JpredK = L(0 7→ 0, n + 1 7→ n)

JzeroK = L(0 7→ true, n + 1 7→ false)

JifK(x)(y)(z) =





δk(y) if x is of the form true(k)

δk(z) if x is of the form false(k)

∞ otherwise

JYσK = fixσ as constructed in Lemma 3.3

Fig. 1. A metric interpretation of PCF

In order to define a fixed-point operator fixσ : (Xσ → Xσ) → Xσ, we first
inductively define δσ : Xσ → Xσ by

δo = δB, δι = δN, δσ→τ (f)(x) = δτ (f(x)).

Recall that a map f of metric spaces is contractive if there is a non-negative
constant c < 1, called a contractivity factor of f , with

d(f(x), f(y)) ≤ c · d(x, y).

Lemma 3.2 δσ : Xσ → Xσ is a contractive map for each type σ.

Proof. We show by induction on σ that dσ(δσ(x), δσ(y)) = r · dσ(x, y). The
base case is given by Proposition 2.4. By definition of the metric on function
spaces,

dσ→τ (δσ→τ (f), δσ→τ (g)) = sup{dτ (δσ→τ (f)(x), δσ→τ (g)(x)) | x ∈ Xσ}.

By definition of δσ→τ and by the induction hypothesis, the last term is equal
to

sup{dτ (δτ (f(x)), δτ (g(x))) | x ∈ Xσ} = sup{r · dτ (f(x), g(x)) | x ∈ Xσ}.

Finally, the last term is equal to r·sup{dτ (f(x), g(x)) | x ∈ Xσ} = r·dσ→τ (f, g)
by the fact that multiplication by r preserves suprema and by definition of
the metric on function spaces. 2

Banach’s fixed-point theorem says that every contractive endomap f :
X → X of a non-empty complete metric space X has a unique fixed point,
given by limn fn(x0), where x0 is an arbitrary point of X. It is clear that if
g : X → X is contractive and f : X → X is non-expansive then the composite

8

Escardó

map g◦f is contractive. Therefore, for every non-expansive map f : Xσ → Xσ,
the map δσ ◦f has a unique fixed point.

Lemma 3.3 The map fixσ : (Xσ → Xσ) → Xσ that sends f to the unique
fixed point of δσ ◦f is non-expansive.

Proof. Let Yσ = (Xσ → Xσ) → Xσ and define a functional Φσ : Yσ → Yσ by
Φ(F)(f) = δσ ◦f(F (f)). Then

d(Φ(F), Φ(G)) = sup{d(δσ(f(F (f))), δσ(f(G(f))))|f ∈ (Xσ → Xσ)}

by definition of the metric on function spaces. By Lemma 3.2 and the fact
that f is non-expansive, we have that

d(δσ(f(F (f))), δσ(f(G(f)))) ≤ c · d(f(F (f)), f(G(f))) ≤ c · d(F (f), G(f)),

where c is a contractivity factor of δσ. By definition of the metric on function
spaces, the fact that taking suprema is a monotone operation, and the fact
that multiplication by a non-negative number preserves suprema, we conclude
that d(Φ(F), Φ(G)) ≤ c ·d(F, G) and hence that Φ is contractive. By Banach’s
fixed-point theorem, Φ has a unique fixed point, say F . By construction, for
any f ∈ (Xσ → Xσ), one has that F (f) is a fixed point of δσ ◦f . This shows
that fixσ = F and hence that fixσ ∈ Yσ, which is equivalent to saying that fixσ

is non-expansive. 2

4 Computational adequacy

The metric interpretation matches the operational semantics in the following
way, where M ⇓k v means that the program M evaluates to the value v in
finitely many computation steps, k of which are recursion unfoldings:

Theorem 4.1 If M is a PCF program then JMK = v(k) if and only if M ⇓k v.

Recall that a program is a closed term of ground type. Formally, a relation
M ⇓k v, where M is a closed term of arbitrary type, can be obtained by dec-
orating the standard inductive definition of the “big-step” evaluation relation
of PCF with a superscript as in Fig. 2. It is clear that M ⇓ v if and only if
M ⇓k v for some (necessarily unique) k. Therefore, the metric denotation of
a program M is of the form v(k) if and only if M ⇓ v.

Here, with or without the superscripts, one has to regard the constants
as constructors [7]. For example, “if true” is not a well-formed PCF term,
but “λx.λy. if true x y” is. Notice however that, in order to avoid unnecessary
syntactical complications, we have defined the metric semantic function by
regarding constants as terms. We hope that this causes no confusion.

In order to prove the theorem, we split its statement into two parts, sound-
ness and completeness, generalizing them to higher types in order to obtain

9

Escardó

(Val) v ⇓0 v if v is false, true, 0, 1, . . . , n, . . . , λα.M,

(Succ)
M ⇓k n

succM ⇓k (n + 1)

(Pred)
M ⇓k 0

predM ⇓k 0
M ⇓k (n + 1)
predM ⇓k n

(Zero)
M ⇓k 0

zeroM ⇓k true
M ⇓k (n + 1)

zeroM ⇓k false

(Cond)
L ⇓k true M ⇓l v

if LMN ⇓k+l v

L ⇓k false N ⇓l v

if LMN ⇓k+l v

(Fix)
M(Yσ M) ⇓k v

Yσ M ⇓k+1 v

(Appl)
M ⇓k (λx.L) L[N/x] ⇓l v

MN ⇓k+l v

Fig. 2. A temporal operational semantics of PCF

suitable induction hypotheses. In the case of soundness, the generalization is
easy:

Lemma 4.2 For every closed term M : σ, if M ⇓k v then JMK = δk
σJvK.

Proof. By induction on the definition of the evaluation relation. The base
case (Val) is trivial. Out of the rules (Succ), (Pred), (Zero) and (Cond),
we consider (Cond) as a representative example. Assume that L ⇓k true
and M ⇓l v, and hence that if LMN ⇓k+l v by virtue of the left-hand
rule (Cond). By the induction hypothesis, JLK = δkJtrueK and JMK = δlJvK.
Hence Jif LMNK = δk+lJvK by definition of JifK. The right-hand rule is han-
dled symmetrically. Now assume that M(Y M) ⇓k v and hence that Y M ⇓k+1

v by virtue of rule (Fix). By the induction hypothesis, JM(Y M)K = δkJvK.
But, by definition of JYK, we have that JY MK = δJM(Y M)K = δ(δkJvK) =
δk+1JvK, as required. Finally, assume that M ⇓k

σ→τ λx.L and L[N/x] ⇓k
τ v,

and hence that MN ⇓k+l
τ v by rule (Appl). By the induction hypothe-

sis, JMK = δk
σ→τJλx.LK and JL[N/x]K = δl

τJvK. It follows that JMNK =
JMKJNK = δk

σ→τJλx.LKJNK = δk
τ (Jλx.LKJNK) = δk

τJ(λx.L)NK = δk
τJL[N/x]K =

δk
τ (δ

l
τJvK) = δk+l

τ JvK, as required. 2

In order to establish completeness, we inductively define a reducibility
property of closed terms as follows:

• A program M is n-reducible iff for every k ≤ n, JMK = v(k) implies M ⇓k v.

• A closed term M : σ → τ is n-reducible iff for every k ≤ n, the term MN : τ

10

Escardó

is k-reducible whenever N : σ is a k-reducible closed term.

• A closed term is reducible iff it is n-reducible for every n.

Notice that if a term is n-reducible then it is k-reducible for every k ≤ n.
Thus, reducibility is a Kripke logical property of closed terms. In order to
show that the fixed-point combinator is reducible, we need a lemma.

Lemma 4.3 For every type σ = τ1 → · · · → τm → γ, every natural number
l ≤ m, every term M : σ → σ and all terms Ni : τi with 1 ≤ i ≤ l, the
following derived rule holds:

M(Yσ M)N1 . . . Nl ⇓k v

Yσ MN1 . . . Nl ⇓k+1 v
.

Proof. By induction on l. The base case is just rule (Fix). For the induction
step, assume that the claim holds for l < m and that M(Yσ M)N1 . . . NlNl+1 ⇓k

v. Since l < m, the term M(Yσ M)N1 . . . Nl has a functional type. It fol-
lows that the only rule that allows such an evaluation is (Appl). Hence
M(Yσ M)N1 . . . Nl ⇓l λx.L and L[Nl+1/x] ⇓m v with l + m = k. By the
induction hypothesis, Yσ MN1 . . . Nl ⇓l+1 λx.L. Hence, by rule (Appl), we
have that Yσ MN1 . . . NlNl+1 ⇓l+1+m v, as required. 2

Lemma 4.4 Every closed term is reducible.

Proof. By the logical-relations lemma, it suffices to show that every constant
is reducible. The first-order constants are trivially reducible. We consider
succ as an example. Let n and k ≤ n be natural numbers, let M : ι be a
reducible closed term, and assume that JsuccMK = v(k). By the assumption,

v > 0 and JMK = (v − 1)(k). By reducibility of M , we conclude that M ⇓k

v − 1. Finally, by rule (Succ), we conclude that succM ⇓k v, which shows
that succ is n-reducible for every n, and hence that it is reducible. We show
that Yσ is n-reducible for every n by induction on n. First, recall that every
type σ can be uniquely written in the form ~τ → γ (a shorthand for the iterated
function type τ1 → · · · → τm → γ) with γ ground. Also, it is enough to show

that, for all k ≤ n, the term YσM ~N : γ is k-reducible whenever M : σ → σ and
~N : ~τ are k-reducible terms. The base case of the induction holds vacuously
because JYσM ~NK = v(0) is impossible as JYσM ~NK = δγJM(YσM) ~NK. Assume
that Yσ is n-reducible. In order to show that it follows that Yσ is (n + 1)-

reducible, let M : σ → σ and ~N : ~τ be k-reducible terms, for k ≤ n + 1, and
suppose that JYσM ~NK = v(k). Since JYσM ~NK = δγJM(YσM) ~NK, it follows

that k > 0 and JM(YσM) ~NK = v(k−1). Since k − 1 ≤ n, and M(YσM) ~N is

(k−1)-reducible, M(YσM) ~N ⇓k−1 v. By Lemma 4.3, it follows that YσM ~N ⇓k

v, and hence that YσM ~N is k-reducible. Therefore Yσ is (n + 1)-reducible. 2

11

Escardó

5 Extensional points of the metric model

We endow the metric space Xγ, for γ ground, with the least (total) equivalence
relation ≈γ such that

v(k) ≈γ v(l),

and the metric space Xσ→τ with the “logically” induced partial equivalence
relation ≈σ→τ :

f ≈σ→τ g iff f(x) ≈τ g(y) whenever x ≈σ y.

We say that two points x, y ∈ Xσ are extensionally equivalent if x ≈σ y, and
we say that a point of Xσ is extensional if it is extensionally equivalent to
itself; otherwise, we say that the point is intensional. Explicitly, all ground
points are extensional, and a function f ∈ Xσ→τ is extensional iff fx ≈τ fy
whenever x ≈σ y. In particular, extensional functions map extensional points
to extensional points.

The sets of extensional points of functional types are not closed. For
example, consider idn : Xι → Xι defined by

idn(v(0)) = v(0), idn(v(k+1)) = v(k+1+n), idn(∞) = ∞.

It is easy to see that this is a Cauchy sequence of non-expansive maps. More-
over, idn ≈ id. Let id∞ be the limit of the sequence. Since limits of non-
expansive maps are computed pointwise, one has that v(k+1) ≈ v(0) but that

id∞(v(k+1)) = lim
n

v(k+1+n) = ∞ 6≈ v(0) = id∞(v(0))

so that id∞ is intensional.

However, we can show that extensional points are closed under limits of
increasing Cauchy sequences, for a suitably (hereditarily) defined partial or-
der, for which extensional non-expansive maps are monotone. Using this one
can prove:

Lemma 5.1 The fixed points of two extensionally equivalent contractive en-
domaps are extensionally equivalent.

In particular, the fixed point of an extensional contractive endomap is exten-
sional.

Corollary 5.2 If f ∈ Xσ→σ is an extensional contractive endomap, then its
unique fixed point is extensionally equivalent to fixσ(f).

Proof. Since idσ ≈ δσ and f ≈ f , we have that f ≈ δσ ◦ f . 2

Theorem 5.3 All PCF-denotable points of the metric model are extensional.

12

Escardó

(SPZ)
M ⇑k

succM ⇑k

M ⇑k

predM ⇑k

M ⇑k

zeroM ⇑k

(Cond)
L ⇓k true M ⇑l

if LMN ⇑k+l

L ⇓k false N ⇑l

if LMN ⇑k+l

L ⇑k

if LMN ⇑k

(Fix)
M(Yσ M) ⇑k

Yσ M ⇑k+1
Yσ M ⇑0

(Appl)
M ⇓k (λα.M ′) M ′[N/α] ⇑l

MN ⇑k+l

M ⇑k

MN ⇑k

Fig. 3. Inductive definition of the divergence predicates

Proof. By the logical relations lemma, it suffices to show that the the denota-
tions of constants are extensional. The only non trivial case is the fixed-point
combinator. By (the proof of) Lemma 3.3, we know that its interpretation is
the unique fixed point of a contractive functional, which is clearly extensional.
Hence the result follows from Lemma 5.1. 2

6 PCF+T

We now make time visible within PCF by introducing a first-order constant
for a Gödel-number-free version of Kleene’s T -predicate. The idea is that
one can test how long computations take, and give up if they take too long.
We consider extensions of the metric and operational semantics discussed in
Sections 3 and 4.

We first define divergence predicates M ⇑k by induction as in Fig. 3.

Proposition 6.1 If M is a PCF program then M ⇑k if and only if M ⇓l v
implies l > k.

That is, M is “k-divergent” if and only if the computation of M takes
more than k steps. Notice that Theorem 4.1 implies that JMK = ∞ if and
only if M ⇑k for every k.

PCF+T is obtained by extending PCF with a constant Tγ : γ → ι → o
for each ground type γ and rules

(T)
M ⇓k v N ⇓l n

TMN ⇓k+l true
(k ≤ n),

N ⇓k n M ⇑n

TMN ⇓k+n false
,

N ⇑k

TMN ⇑k
.

Roughly, this says that if the value of N is n, then TMN is true if the
computation of M terminates in n or fewer steps, and false otherwise—but
one also has to take into account that the computation of TMN itself takes
time.

13

Escardó

A useful alternative point of view is the following. First, notice that TM
has type ι → o. We thus think of TM as a sequence of boolean values. This
sequence consists of either infinitely many false’s, if M diverges, or else of
finitely many false’s followed by infinitely many true’s, if M converges. Under
this interpretation, TM codes the (finite or infinite) number of steps needed
to compute M .

Notice that, for PCF, we have defined the divergence predicate from the
evaluation relation. For PCF+T, however, we have defined divergence and
evaluation by simultaneous induction. But we still have that M ⇑k if and only
if M ⇓l v implies l > k. It is easy to conclude from this that the relations
M ⇓k v and M ⇑k are both decidable. In fact, they are primitive recursive. In
contrast, M ⇓ v is recursively enumerable but not decidable, of course. Notice
also that the relation M ⇓k v is deterministic—but see Proposition 7.2.

The metric interpretation of PCF given in Section 3 is extended to PCF+T
by

JTK(x)(y) =





true(k+l) if y is of the form n(k) and x is of the form v(l) with l ≤ n,

false(k+n) if y is of the form n(k) and x is either ∞ or v(l) with l > n,

∞ otherwise (that is, if y = ∞).

As easy extensions of the methods developed in Section 4 show, we still have
a good match between the denotational and operational semantics:

Theorem 6.2 If M is a PCF+T program then JMK = v(k) if and only if
M ⇓k v.

An application of T is given in the proof of Lemma 7.2.

7 The extensional collapse of the metric model

In order to relate the metric model with Scott model, let Dσ denote the
interpretation of type σ in Scott’s model and let ∼σ be the logical relation
between Xσ and Dσ such that ∼γ is the least relation with

∞ ∼γ ⊥, v(k) ∼γ v.

Let X and D denote the metric and Scott interpretation functions respectively.

Theorem 7.1 The relation X JMK ∼σ DJMK holds for every closed PCF term
M : σ.

Proof. By the logical-relations lemma, it is enough to show that this is the
case if M is a constant, the only difficult and interesting case being the fixed-
point combinator. Things are complicated by the fact that it isn’t true that,
for a Cauchy sequence xk, if xk ∼ d for every k then limk xk ∼ d. In fact,

14

Escardó

this already fails at ground types: one has that v(k) ∼ v, by definition, but
that limk v(k) = ∞ 6∼ v. However, under the assumption that the sequence xk

is increasing for a suitably (hereditarily) defined order, the conclusion holds,
and this is sufficient for the purposes of this proof. At grounds types, such
sequences are eventually constant. 2

In Section 5 we defined notions of extensional and intensional functions
of the metric model. Clearly, T denotes an intensional function. However,
it is interesting that one can define, from T, extensional functions that are
not PCF-denotable. Let por ∈ Do→o→o be Scott’s parallel-or [14] and E ∈
D(ι→o)→o be Plotkin’s existential quantifier [11].

Lemma 7.2 There are extensional PCF+T-denotable functions por′ ∈ Xo→o→o

and E′ ∈ X(ι→o)→o with por′ ∼ por and E′ ∼ E.

Proof. For simplicity, in this sketch we are deliberately informal concerning
the distinction between syntax and semantics. We begin by defining a metric
version amb : ι → ι → ι of McCarthy’s ambiguity operator. The specification
of amb requires that (1) amb xy ≈ x or amb xy ≈ y, (2) if x = ∞ then
amb xy ≈ y, and (3) if y = ∞ then amb xy ≈ x. We implement this by
returning the argument that terminates first: amb = amb′ 0 where amb′ : ι →
ι → ι → ι is recursively defined by

amb′ nxy = if Txn then x else if Tyn then y else amb′(n + 1)xy.

In order to define the existential quantifier, we first define a term witness :
ι → (ι → o) → ι by

witness np = amb(if pn then n else Ω)(witness(n + 1)p),

where Ω is any divergent program, say Y (λx.x). The idea is that witness np
is the first m ≥ n with pm ∼ true, if such an m exists. Here the word first is
applied in its temporal sense and not in the ordinal sense. We then define

E′(p) = p(witness 0 p).

The important observation here is that if p is extensional and pΩ ∼ false then
p is constant, and, in particular, there is no n with pn ∼ true. Therefore in this
case witness 0 p = Ω and E′(p) ∼ false. Parallel-or can be defined similarly.
(Notice that this proof doesn’t depend on the particular way computation
steps are counted.) 2

Theorem 7.3 The relation ∼σ induces a bijection between equivalence classes
of extensional points of Xσ and elements of Dσ.

Proof. The idea of proof sketched here arose after a conversation with John
Longley. A technique based on universal domains, which I learned [5] from
Thomas Streicher [16], is applied. We first show that the claim holds for

15

Escardó

σ = u where u = ι → o. Once this is done, we reduce the general case to this
particular case as follows.

(1) By the results of Plotkin [12], we know that there are continuous maps
E : Du→u ¿ Du : P with P ◦E = idDu→u . It follows that there are continuous
maps eσ : Dσ ¿ Du : pσ with pσ ◦ eσ = idDσ . For ground types this is clear.
We inductively lift them to higher types by eσ→τ (F) = E(eτ ◦ F ◦ pσ) and
pσ→τ (f) = pτ ◦ P (f) ◦ eσ.

(2) Since PCF+E+por is universal [11], the maps defined in step (1) are
PCF+E+por-definable. By taking the metric interpretation of the correspond-
ing PCF+E′+por′ terms, we conclude, using Theorem 5.3, that there are ex-
tensional non-expansive maps S : Xu→u ¿ Xu : R with R ◦ S ≈ idXu→u and
also S ∼ E and R ∼ P , and that there there are extensional non-expansive
maps sσ : Xσ ¿ Xu : rσ with rσ ◦ sσ ≈ idDσ . Moreover, by Theorem 7.1, we
have that sσ ∼ eσ and rσ ∼ pσ.

(3) We are now ready for the reduction. Suppose that d ∈ Dσ is given.
Then there is an extensional y ∈ Xu with y ∼ e(d). Since r ∼ p, it follows
that r(y) ∼ p(e(d)) = d, which establishes existence of an extensional x ∈ Xσ

with x ∼ d. Now assume that an x ∈ Xσ with x ∼ d is given. Then
s(x) ∼ e(d) because s ∼ e. But then y ∼ s(x), from which we conclude that
r(y) ∼ r(s(x) = x, which establishes uniqueness up to extensional equivalence.
Symmetrically, one concludes that for every extensional x ∈ Xσ there is a
unique d ∈ Dσ with x ∼ d (up to equality). 2

8 Another metric model of PCF

Perhaps it is more realistic to count one step for each reduction rule (including
application, as substitution can be implemented by pointer assignment). In
any case, to count steps in this way allows us to prove computational adequacy
by an alternative method based on Banach’s fixed-point theorem. Formally,
we inductively define an evaluation relation as in Fig. 4.

This operational semantics is matched by the metric semantics inductively
defined in Fig. 5, where ρ ranges over environments. In order to prove that
this is the case, we show that the denotational and operational semantics can
be seen as fixed points of a contractive endomap of a suitable complete metric
space. Let Pσ be the set of PCF closed terms of type σ and Vσ be the metric
lifting of set of PCF values of type σ. Then Vo = Xo and Vι = Xι, the set
of functions V Pσ

σ is a complete metric space with the sup-metric, and so is
the product

∏
σ V Pσ

σ , again metrized by the sup-metric. In Fig. 6 we define a
functional

Φ :
∏
σ

V Pσ
σ →

∏
σ

V Pσ
σ

16

Escardó

(Val) v ⇓0 v if v is false, true, 0, 1, . . . , n, . . . , λα.M

(Succ)
M ⇓k n

succM ⇓k+1 (n + 1)

(Pred)
M ⇓k 0

predM ⇓k+1 0
M ⇓k (n + 1)

predM ⇓k+1 n

(Zero)
M ⇓k 0

zeroM ⇓k+1 true
M ⇓k (n + 1)

zeroM ⇓k+1 false

(Cond)
L ⇓k true M ⇓l v

if LMN ⇓k+l+1 v

L ⇓k false N ⇓l v

if LMN ⇓k+l+1 v

(Fix)
M(Yσ M) ⇓k v

Yσ M ⇓k+1 v

(Appl)
M ⇓k (λx.L) L[N/x] ⇓l v

MN ⇓k+l+1 v

Fig. 4. Another temporal operational semantics of PCF

JαK(ρ) = ρ(α) where α is a formal variable

Jλα.MK(ρ) = (x 7→ JMK(ρ[x/α]))

JMNK(ρ) = δ(JMK(ρ))(JNK(ρ))

JvK(ρ) = η(v) for every value v = false, true, 0, 1, 2, . . . , n, . . .

JsuccMK(ρ) = δ ◦L(n 7→ n + 1)(JMK(ρ))

JpredMK(ρ) = δ ◦L(0 7→ 0, n + 1 7→ n)(JMK(ρ))

JzeroMK(ρ) = δ ◦L(0 7→ true, n + 1 7→ false)(JMK(ρ))

Jif LMNK(ρ) = δ





δk(JMK(ρ)) if JLK(ρ) is of the form true(k)

δk(JMK(ρ)) if JLK(ρ) is of the form false(k)

∞ otherwise

JYσ MK(ρ) = fixσ(JMK(ρ))

Fig. 5. Another metric semantics of PCF

17

Escardó

Φ(~E)(σ)(v) = η(v)

Φ(~E)(ι)(succM) = δ ◦L(n 7→ n + 1)(Eι(M))

Φ(~E)(ι)(predM) = δ ◦L(0 7→ 0, n + 1 7→ n)(Eι(M))

Φ(~E)(o)(zeroM) = δ ◦L(0 7→ true, n + 1 7→ false)(Eo(M))

Φ(~E)(γ)(if LMN) = δ





δk(Eγ(M)) if Eo(L) is of the form true(k)

δk(Eγ(N)) if Eo(L) is of the form false(k)

∞ otherwise

Φ(~E)(σ)(Yσ M) = δ(Eσ(M(Yσ M)))

Φ(~E)(τ)(Mσ→τNσ) = δ

{
v(k+l) if Eσ→τ (M) = (λx.L)(k) and Eτ (L[N/x]) = v(l)

∞ otherwise

Fig. 6. Definition of Φ

by equations of the form

Φ(~E)(σ)(M) = v,

where ~E ∈ ∏
σ V Pσ

σ , σ is a type, M ∈ Pσ, and v ∈ Vσ.

Lemma 8.1 Φ is a contractive map.

Proof. This immediately follows from the fact that each equation, except the
base case, is guarded by a delay map. 2

Lemma 8.2 Let ~Eval be the unique fixed point of Φ. If M : σ is a closed term
then Evalσ(M) = v(k) iff M ⇓k v.

Proof. By induction on the definition of M ⇓k v. This is a triviality, as Φ is
just a reformulation of the definition of M ⇓k v. 2

The following lemma can be regarded as a formulation of soundness:

Lemma 8.3 The vector ~S ∈ ∏
σ V Pσ

σ defined by Sγ(M) = JMK for each
ground type γ, and Sσ = Evalσ for each functional type σ, is a fixed point
of Φ.

Proof. Essentially the same as that of Lemma 4.2. 2

Completeness is a corollary of soundness:

Theorem 8.4 If M is a PCF program then JMK = v(k) iff M ⇓k v.

Proof. By Lemma 8.3 and Banach’s fixed-point theorem, we have that Sγ =
Evalγ for γ ground. Therefore the result follows from Lemma 8.2. 2

18

Escardó

(PVal) w ⇓ w if w is false, true, 0, 1, . . . , n, . . . , λα.M, δσM,

(Succ)
M ⇓ n

succM ⇓ (n + 1)
M ⇓ διN

succM ⇓ δι(succN)

(Pred)
M ⇓ 0

predM ⇓ 0
M ⇓ (n + 1)
predM ⇓ n

M ⇓ διN

predM ⇓ δι(predN)

(Zero)
M ⇓ 0

zeroM ⇓ true
M ⇓ (n + 1)

zeroM ⇓ false
M ⇓ διN

zeroM ⇓ δo(zeroN)

(Cond)
L ⇓ true M ⇓ w

if LMN ⇓ w

L ⇓ false N ⇓ w

if LMN ⇓ w

L ⇓ δoL
′

if LMN ⇓ δγ(if L′MN)

(Fix) Y M ⇓ δσ(M(Y M))

(Appl)
M ⇓ (λα.M ′) M ′[N/α] ⇓ w

MN ⇓ w

M ⇓ δσ→τM
′

MN ⇓ δτ (M ′N)

Fig. 7. Operational semantics of chattering PCF

9 Chattering PCF

Non-termination in PCF is silent. In order to gain a better understanding
of the nature of the metric model, we introduce a variant of PCF in which
non-termination is chattering. The terminology was suggested to me by John
Longley.

Chattering PCF is PCF extended with a constant δσ : σ → σ for each
type σ. The metric interpretation of chattering PCF is the same as that of
PCF, extended by JδσK = δσ . Since Jλx.Yγ(λy.x)K = δγ, we have that the
PCF- and chattering-PCF-denotable points coincide. The idea is that the
operational semantics of chattering PCF explicitly manipulates the temporal
information contained in the metric model.

A pseudo-value (or weak head-normal form) is either a value or a term of
the form δM . A relation M ⇓ w between closed terms and pseudo-values is
inductively defined in Fig. 7. Notice that the rules in the third column have
the role of “propagating delays”. Notice also that there are no reductions
under δ—but see Proposition 9.5. Chattering PCF programs are normalizing:

Theorem 9.1 For every program M there is a unique w with M ⇓ w.

Notice that if reductions under δ were allowed, uniqueness would fail. For
example, one would have that Y λx.x ⇓ δk((λx.x)(Y λx.x)) for every k. We

19

Escardó

prove Theorem 9.1 by induction on types. Uniqueness is clear. In order to
prove existence, we define the reducible closed PCF terms are by induction on
types as follows:

(i) A program M : γ is reducible if and only if M ⇓ w for some w.

(ii) A closed term M : σ → τ is reducible if and only if the term MN : τ is
reducible for every reducible closed term N : σ.

Thus, reducibility is a logical property of closed terms.

Lemma 9.2 Every chattering PCF closed term is reducible.

Proof. By the logical-relations lemma, it suffices to prove that constants are
reducible. Every ground constant is reducible, because ground constants are
values and values reduce to themselves. In order to show that succ is re-
ducible, we have to show that succM is reducible whenever M : ι is a re-
ducible closed term. Reducibility of M : ι means that M ⇓ w form some
w, which has to be either of the form n or else of the form δN for a unique
N . In the first case succM ⇓ n + 1 and in the second M ⇓ δ(succN).
Similarly, pred, zero, if , and δ are reducible. In order to show that Yσ is re-
ducible, notice that any type σ can be uniquely written as τ1 → · · · → τk → γ
with γ ground. Hence it is enough to show that Y MN1 · · ·Nk is reducible
whenever N1 : τ1, . . . , Nk : τk are reducible closed terms. First, by one appli-
cation of rule (Fix), we have that Y M ⇓ δγ(M(Y M)). Then, by k applica-
tions of rule (Appl), we first have that Y MN1 ⇓ δτ2→···→τn→γ(M(Y M)N1),
then that Y MN1N2 ⇓ δτ3→···→τn→γ(M(Y M)N1N2), . . . , and finally that
Y MN1N2 · · ·Nk ⇓ δγ(M(Y M)N1N2 · · ·Nk). 2

This establishes the normalization theorem. Again, we have a good match
between the denotational and operational semantics. First, it is straightfor-
ward to formulate and prove soundness:

Proposition 9.3 If M ⇓ w then JMK = JwK.
Of course, completeness cannot be formulated as the literal converse of

soundness, because pseudo-values are week head-normal forms. Recalling that
every point of Xγ is either of the form η(v) or else of the form δ(x) for a unique
x ∈ Xγ, completeness can be formulated as follows:

Theorem 9.4 Let M be a chattering PCF program.

(i) If JMK = η(v) then M ⇓ v.

(ii) If JMK = δ(x) then M ⇓ δM ′ for some M ′ with JM ′K = x.

This follows from the normalization theorem and soundness. Operational-
ly, PCF and chattering PCF are related as follows:

Proposition 9.5 If M is a PCF program, and hence a chattering PCF pro-
gram, then the relation M ⇓k v holds in PCF if and only if there are (nec-

20

Escardó

essarily unique) chattering PCF programs M1, . . . ,Mk such that the following
relations hold in chattering PCF:

M ⇓ δM1, M1 ⇓ δM2, M2 ⇓ δM3, . . . , Mk ⇓ v.

If reductions under δ were allowed, then the proposition could be formu-
lated as: M ⇓k v if and only if M ⇓ δkv.

In the chattering-style operational semantics, one doesn’t need the diver-
gence predicates in order to define the operational semantics of T:

(T)

N ⇓ n M ⇓ v

TMN ⇓ true
,

N ⇓ 0 M ⇓ δM ′

TMN ⇓ false
,

N ⇓ (n + 1) M ⇓ δM ′

TMN ⇓ δ(TM ′n)
,

N ⇓ δN ′

TMN ⇓ δ(TMN ′)
.

For chattering PCF extended with T in this way, it is easy to see that the
above results still hold.

Acknowledgements

I am grateful to John Longley for many stimulating discussions. I have also
benefited from discussions with Samson Abramsky, Martin Hofmann, Alex
Simpson and Thomas Streicher. Dana Scott found a mistake in the definition
of metric lifting in an earlier version of this paper. Jan Rutten helped me with
the bibliographic references to metric semantics of concurrency.

References

[1] J.W. de Bakker and E. de Vink. Control Flow Semantics. Foundations of
Computing Series. The MIT Press, 1996.

[2] J.W. de Bakker and J.J-. Ch. Meyer. Order and metric in the stream semantics
of elemental concurrency. Acta Informatica, 24:491–511, 1987.

[3] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency
Semantics, Selected Papers of the Amsterdam Concurrency Group. World
Scientific, 1992.

[4] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54(1/2):70–120, 1982.

[5] M.H. Escardó. Real PCF extended with ∃ is universal. In A. Edalat,
S. Jourdan, and G. McCusker, editors, Advances in Theory and Formal Methods
of Computing: Proceedings of the Third Imperial College Workshop, April 1996,
pages 13–24, Christ Church, Oxford, 1996. IC Press.

21

Escardó

[6] M.H. Escardó and D. Turi. A conceptual account of metric lifting. Laboratory
for Foundations of Computer Science, University of Edinburgh. Work in
progress, June 1999.

[7] C. A. Gunter. Semantics of Programming Languages—Structures and
Techniques. The MIT Press, London, 1992.

[8] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency
semantics. Theoretical Computer Science, 76:179–222, 1990.

[9] J.R. Longley. Matching typed and untyped realizability. Presented at Tutorial
Workshop on Realizability Semantics, FLoC’99, Trento, Italy 1999. Available
at http://www.dcs.ed.ac.uk/home/jrl/. To appear in Electronic Notes in
Theoretical Computer Science, Elsevier, 1999.

[10] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[11] G.D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(1):223–255, 1977.

[12] G.D. Plotkin. Tω as a universal domain. Journal of Computer and System
Sciences, 17:209–236, 1978.

[13] J.J.M.M. Rutten. A note on coinduction and weak bisimilarity for while
programs. Technical Report SEN-R9826, ISSN 1386-369X, CWI, Amsterdam,
October 1998.
http://www.cwi.nl/static/publications/reports/reports.html.

[14] D.S. Scott. A type-theoretical alternative to CUCH, ISWIM and OWHY.
Theoretical Computer Science, 121:411–440, 1993. Reprint of a manuscript
produced in 1969.

[15] M.B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1, pages 641–761.
Clarendon Press, Oxford, 1992.

[16] T. Streicher. A universality theorem for PCF with recursive types, parallel-or
and ∃. Mathematical Structures for Computing Science, 4(1):111 – 115, 1994.

22

