Semantics of a Sequential Language for Exact
Real-Number Computation

J. Raymundo Marcial-Rometd™!,
Martin H. Escaré?

aUniversity of Birmingham, Birmingham B15 2TT, England

Abstract

We study a programming language with a built-in ground tygedal numbers. In order
for the language to be sufficiently expressive but still sgqial, we consider a construction
proposed by Boehm and Cartwright. The non-deterministiareaof the construction sug-
gests the use of powerdomains in order to obtain a denogis@mantics for the language.
We show that the construction cannot be modelled by the iRlotkSmyth powerdomains,
but that the Hoare powerdomain gives a computationally aategsemantics. As is well
known, Hoare semantics can be used in order to estapéigial correctness only. Since
computations on the reals are infinite, one cannot decomimakcorrectness into the
conjunction of partial correctness and termination astitaditionally done. We instead in-
troduce a suitable operational notion of strong convergemzl show that total correctness
can be proved by establishing partial correctness (usingtd@onal methods) and strong
convergence (using operational methods). We illustragaegbhnigue with a representative
example.

Key words: exact real-number computation, sequential computatemastics,
non-determinism, PCF.

1 Introduction

This is a contribution to the problem of sequential compatatvith real numbers,
where real numbers are taken in the sense of constructiveematics [2]. It is fair

* Corresponding author.

Email addresseg: r m@s. bham ac. uk (J. Raymundo Marcial-Romero),
nmhe@s. bham ac. uk (Martin H. Escardo).
I Present address: Division de Computacion, UAEM, Ciudadvérsitaria S/N, 50040,
Toluca, Estado de México, México

Preprint submitted to Elsevier Science 20 November 2006

to say that the computability issues are well understoofl [3&re we focus on the
issue of designing programming languages with a builtiisti@act data type of real
numbers. Recent research, discussed below, has shown ighabtoriously diffi-
cult to obtain sufficiently expressive languages with setjaeoperational seman-
tics and corresponding denotational semantics whichudatie the data-abstraction
requirement. Based on ideas arising from constructive emagtiics, Boehm and
Cartwright [3], however, proposed a compelling operati@dution to the prob-
lem. Yet, their proposal falls short of providing a full sban to the data abstraction
problem, as it is not immediately clear what the correspogdienotational inter-
pretation would be. A partially successful attempt at sauvhis problem has been
developed by Potts [29] and Edalat, Potts and Stinderhfugg@liscussed below.

In light of the above, the purpose of this paper is two-foltl: {0 establish the
intrinsic difficulties of providing a denotational model Bbehm and Cartwright’s
operational approach, and (2) to show how it is possible pe ®ath the difficulties.
Before elaborating on this research programme, we paussdioss previous work.

Di Gianantonio [14], Escard6 [11], and Potts et al. [28] da@vtroduced various
extensions of the programming language PCF with a ground typreal num-

bers. Each of these authors interprets the real numbersatyjpevariation of the
interval domain introduced by Scott [30]. In the presenca oértain parallel con-
ditional [26], all computable first-order functions on theals are definable in the
languages [14,8]. By further adding Plotkin’s parallelst&ntial quantifier [26], all

computable functions of all orders become definable in thguages [14,7,10]. In
the absence of the parallel existential quantifier, the esqivity of the languages
at second-order types and beyond is not known. Partialteeisuthis direction are

developed by Normann [24].

It is natural to ask whether the presence of such paralledtoocts is an artifact of
the languages or whether they are needed for intrinsic nsagscardo, Hofmann
and Streicher [9] have shown that, in the interval domain elmdhe parallelism
is in fact unavoidable: weak parallel-or is definable frondiidn and other mani-
festly sequential unary functions, which indicates thatitoh, in these models, is
an intrinsically parallel operation. Moreover, Farjudid] has shown that if the
parallel conditional is removed from the language, onlcewise affine functions
on the reals are definable.

Essentially, the problem is as follows. Because computtinletions on the reals
are continuous (see e.g. [35]), and because the real lineasrected space, any
computable boolean-valued function on the reals is cotigttmie or constantly
false unless it diverges for some inputs. Hence, definitissiag the sequential
conditional produce either constant total functions otiphiunctions. If one allows
the boolean-valued functions to diverge at some inputs, tloa-trivial predicates
are obtained, and this, together with the parallel conai#tipallow us to define the
non-trivial total functions [11].

This phenomenon had been anticipated by Boehm and CartwBgyhwvho also
proposed a solution to the problem. In this paper we devéleptoposed solution
and study its operational and denotational semantics. déeeis based on the fol-
lowing observations. In classical mathematics ttlehotomylaw “z < y, x = y or

x > y” holds for any pair of real numbersandy, but, as is well known, it fails in
constructive (and in classical recursive) mathematicsvéver, the following alter-
nativecotransitivitylaw holds in constructive settings: for any two numbers b
and any number, at least one of the relations< x or = < b holds. Equivalently,
one has that—oo, b) U (a,0) = R. Boehm and Cartwright’s idea is to consider a
language construetest, ;, for a < b rational, such that:

(1) rtest, () evaluates to true or to false for every real number
(2) rtest,(z) may evaluate to true iff < b, and
(3) rtest,,(z) may evaluate to false iff < z.

It is important here that evaluation never diverges for aveayent input. If the real
numberz happens to be in the intervéd, b), then the specification afest, ,(x)
allows it to evaluate to true or alternatively to false. Tlatigular choice will de-
pend on the particular implementation of the real numband of the construct
rtest,; (Cf. [20]), and is thus determined by the operational serognt

As application of the construction, we give an example otargve definition of a
sequentiaprogram for addition, which is single-valued at total ingus required,
but multi-valued at partial inputs. Thus, by allowing thejmut to be multi-valued
at partial inputs, we are able to overcome the negativetsestilEscardd, Hofmann
and Streicher mentioned above.

We take the view that the denotational valuetekt,,(x) lives in a suitable pow-
erdomain of the booleans. Thus (1pik = < bthen the denotational value would
be the seftrue, false}, (2) if a £ x andz < b then it would be the seftrue}, and
(3)if a < z andx «£ b then it would be the sdffalse}. Technically, one has to be
careful regarding which subsets of the powerset are allplugdhis is tackled later
in the body of the paper. One of our main results is that therélpawerdomain
gives a computationally adequate denotational semamiesalso show that the
Plotkin and Smyth powerdomains do not renderitfegt construction continuous
and hence cannot be used as models. These and other exafmpd@godomains
are discussed in the body of the paper.

As is well known, Hoare semantics can be used in order to kesttigdartial correct-
ness only. Because computations on the reals are infinieecannot decompose
total correctness into the conjunction of partial corresgrand termination, as is
usually done for discrete data types. Instead, we introduseitable operational
notion of strong convergence and show that total correstoas be proved by es-
tablishing partial correctness (using denotational mgghand strong convergence
(using operational methods). The technique is illustrated proof of total correct-

ness of our sequential program for addition. Further appbos are discussed in
the concluding section.

1.1 Related work.

Potts [29] considers a redundant if operator (rif) for hisggamming language
LAR (an extension of PCF with linear fractional transforioas), defined as

rif :I°K x I°F? x (I°K — t)* - t

rif x < (I,J); then f else g= {f(x), !f I«
g(x), ifJ<ux.

whereK ¢ T¢R> andF is a dense subset &f. He uses the Hoare powerdomain
to develop a denotational semantics for his language aneg mmmputational ad-
equacy. Our work justifies this choice. Potts considers argehistic one-step re-
duction relation, while we consider a non-deterministlatien so as to have a pre-
cise match as possible with the denotational semanticeicdbe of multi-valued
terms.

Edalat, Potts and Sunderhauf [6] had previously consititre denotational coun-
terpart of Boehm and Cartwright’s operational solutionwdger, they restrict at-

tention to what can be referred to as single-valued, totalgdations. In particular,

their computational adequacy result for their denotalisamantics is restricted to
this special case. Although it is indeed natural to regaisi ¢hse as the relevant
one, we have already met compelling examples, such as tlarfuental opera-

tion of addition, in which sequentiality cannot be achieuetess one allows, for

example, multi-valued outputs at partial inputs.

For their denotational semantics, they consider the Smytvepdomain of a topo-
logical space of real numbers (which they refer to as the uppeerspace). Thus,
they consider possibly non-deterministic computationsotdl real numbers, re-
stricting their attention to those which happen to be deitgistic. In the work re-
ported here, we instead consider non-deterministic coatiouis of total and partial
real numbers. In other words, instead of considering a pdoveain of a space of
real numbers, we consider a powerdomain of a domain of peghnumbers. Our
computational adequacy result holds for general compurtstitotal or partial, and
whether deterministic or not. For our domain of partial reamnbers, we consider
the interval domain proposed by Scott [30], but the presadirigs are expected to
apply to many possible notions of domain of partial real narsb

Farjudian [13] has developed a programming language, whiectalled SHRAD,
which satisfies the three requirements mentioned at thebiegj of the paper: se-

guentiality, data abstraction and expressivity. In hiskyte defines a sequential
language in which all computable first order functions arindéle. However ex-
tensionality is traded off for sequentiality, in the sertss &ll computable first order
functions are extensional over total real numbers but net partial real numbers.
Hence functions such as the rounding functions, which aeuiently used in prac-
tice, cannot be defined in SHRAD.

Di Gianantonio [15] also discusses the problem of sequia@number compu-
tation in the presence of data abstraction, with some istieiggnegative results and
translations of parallel languages into sequential ones.

In order to characterize computable functions on the realbars, Brattka [4] in-
troduces a class of relations that includes a contructiorchwis essentially the
same as Boehm and Cartwright’s multi-valued test discuagbede. The main dif-
ference is that we articulate relations as functions witlhieson a powerdomain.
With this, we are able to capture higher-type computatioarédver, as discussed
above, we take a powerdomain of the interval domain, not efrdal line, and
hence we are able to distinguish partiality from multi-wadness: an interval gives
a partially specified real number, and a set of intervalsectdl the possible (total
or partial) outputs of a non-deterministic computation.

1.2 Organization.

Section 2 presents a running example that motivates theitadldevelopment that
follows. Section 3 introduces some background. Sectiorudiss thertest con-
struction from the point of view of powerdomains. Sectionéve&lops a program-
ming language with thetest construction and establishes computational adequacy
for the denotational semantics developed in Section 4i@e6tapplies this to de-
velop techniques for correctness proofs and gives samlécapons. Section 7
summarizes the main results and discusses open problenfgrdret work.

2 Running example

In order to motivate the use of the multi-valued construttisscussed in the in-
troduction, we give an example showing how it can be used ¢idae parallel

constructions used in previous works on real-number coatiout. \We take the
opportunity to introduce some basic concepts and congingstudied in the tech-
nical development that follows.

In the programming language considered in [11], the aveopgeation

(—& —):[0,1] x [0,1] — [0, 1]

defined by
T @y =(r+y)/2

can be implemented as follows:

rdy= pif z<c
then pif y<c
then consy(taily(z) @ tailg(y))
else consc(taily(z) @ tailg(y))
else pif y<c
then consc(tailg(z) @ taily(y))
else consg(tailg(x) @ tailg(y)).

Here
c=1/2, L=[0,c, C=1[1/4,3/4], R=]c1],

the functioncons,: [0, 1] — [0, 1] is the unique increasing affine map with image
the interval, i.e.,

consy(x) = x/2, conscg(z) = x/2+1/4,
consg(x) =x/2+1/2,

and the functiortail,: [0, 1] — [0, 1] is a left inverse, i.e.
tail,(cons,(z)) = x.

More precisely, the following left inverse is taken, whetgis the length of: and
11, IS the left end-point ofi:

taily(x) = max(0, min(k.x + q, 1)).

Because equality on real numbers is undecidable, thearlatk c is undefined
(or diverges, or denotes) if + = c. In order to compensate for this, one uses a
parallel conditionalsuch that

pif L then zelse z = 2.

The intuition behind the above program is the following.dtivx andy are in the
interval L, then we know that @ y is in the intervalL, if both z andy are in the
interval R, then we know that @ y is in the intervalR, and so on. The boundary
cases are taken care of by the parallel conditional. For plarty/2 is both in L
andR, and an unfolding of the program fer=y = 1/2 gives

1/2®1/2 = pif L
then pif L
then consp(1 & 1)
else consc(l & 0)
else pif L
then consc(0 & 1)
else consg(0 @& 0).

All branches of the conditionals evaluatelt@®, but in an infinite number of steps.
This can be seen as follows. A repeated unfolding®fl gives the infinite expres-
sionconsy(consg(consg(. . .))). Denotationally speaking, the program computes
the unique fixed point otons g, which is1. Operationally speaking, the first un-
folding says that the result of the computation, whateves, ilives in the interval

R, because, by definition, the imageahsy, is R; the second unfolding says that
the result is in the right half of the interval, i.e. in the interval3/4, 1]; the third
unfolding tells us that the result is in the intery@)8, 1], and so on. Thus, the
operational semantics appliedt@> 1 produces a shrinking sequence of intervals
converging tal. The other cases are analogous.

Of course, a drawback of such a recursive definition is thaingd evaluation, the
number of parallel processes grows exponentially in thebarrof unfoldings. In
order to overcome this, we switch back to the usual sequeatmlitional, and we
replace thepartial less-than test by theulti-valuedtest discussed in the introduc-
tion:

Average(z,y)= if rtest;,(x)
then if rtest;,(y)
then consy(Average(taily(z),taily(y)))
else consc(Average(taily(z),tailg(y)))
else if rtest;,(y)
then consc(Average(tailg(z),tailr(y)))
else consp(Average(tailg(x),tailg(y))),

wherec of the previous program splits into two points
I=1/4, r=3/4
and this time we choose

L=10,r], C=[1/87/8], R=][1].

The intuition behind this program is similar. What is int&ieg is that, despite the
use of the multi-valued constructiantest, the overall result of the computation
is single valued. In other words, different computationhgatvill give different

shrinking sequences of intervals, but all of them will skria the same number. A

proof of this fact and of correctness of the program is predith Section 6, using
the techniques developed below. For further examples &ge [2

3 Background

For domain-theoretic concepts, the reader is referred,B¥[1and for topological
concepts to [33,34] (see also [16]). Here we briefly sumnedhe notions and facts
that are relevant to our purposes.

3.1 Continuous Domains

Let P be a set with a preorder. For a subseX of P and an element € P we
write

X ={yeP|yC xforsomerin X},
1X ={ye P|xzCyforsomerin X},
le =W}, Tz =T1{z}.

We also say thai is alower setiff X = | X, and thatX is anupper setiff
X =1X.

Let x andy be elements of a directed complete partial order (ddpdjve say that

x IS way-belowor approximateg, denotedr < y, if for every directed subset of
D,y C | JAimpliesda € Awith z C a. We say that is compacif it approximates
itself. We definelz = {y e D |2 < y}, [z ={y € D | y < z} andK (D) =

{z € D | z is compact}. We say that a subsét of a dcpoD is abasisfor D, if for
every element of D the set|z N B contains a directed subset with supremum

A dcpo is called aontinuous domaior simply a domain if it has a basis. A dcpo
is called analgebraic domainf it has a basis of compact elements. An example
of an algebraic domain is the domdih = {_L, false, true} of booleans, ordered
by L C false, L C true. A function f from a domainD to a domainF is Scott
continuos if it is monotone anfl(| | A) = || f(A) for all directed subsed of D. A
Scott closed subset of a domdinis a lower set closed under directed supremum.
We say that a Scott closed set is finitely generated if it iddler set of a finite
set. The following is easily established:

Lemma 3.1 If D is a continuous domair; a finitely generated Scott closed subset
of Dandf : D — D Scott continuous then

W) v el =d{f(z)|zeC}

wherecl denotes topological (Scott) closure.

3.2 The Interval Domain® andZ

The setR of non-empty compact subintervals of the Euclidean realdirdered by
reverse inclusion,

rCyiff z Dy,

is a continuous domain, referred to as therval domain Here intervals are re-
garded as “partial numbers”, with the singleton intervdis/img the role of “total
numbers”. If we add a bottom element® thenR becomes a bounded complete
continuous domaifR , . For any intervalr € R, we write

z = inf x andT = sup =
so thatr = [z, T|. Its length is defined by
Ky =T — .

A subsetd C R has a least upper bound iff it has non-empty intersectiod,iman

this case
|_|A = ﬂA = [supg, ingal .

acA A€
The way-below relation oR is given by

r <L yiff z <yandy <7.

A basis forR is given by the intervals with distinct rational (altervatly dyadic)
end-points.

The setZ of all non-empty closed intervals contained in the unit rivdé [0, 1]
is a bounded complete, countably based continuous donedaryed as theinit
interval domain The bottom element f is the interval0, 1].

3.3 Powerdomains

Powerdomains [25,31,32] are usually constructed as ideaptetions [18] of finite
subsets of basis elements. For our purposes, it is more e@mieo work with
their topological representations [27,1,19], which we rsmmnmarize. It is enough
for our purposes to restrict attentiondecontinuous dcpos, which we refer to as
domaingn this subsection.

A subsetA of a dcpoD is calledScott closedf it is closed in the Scott topology,
that is, if it is a lower set and is closed under the formatibsuprema of directed
subsets. We use the notatidhA) for the topological closure of, i.e. the smallest

Scott closed set containing A lenseis a non-empty set that arises as the intersec-
tion of a Scott-closed set and a Scott compact upper subset.thle notion of Scott
compact set is to be understood in the topological sensey(evger consisting of
Scott open sets has a finite subcover). On the set of lensekpbd), we define the
topological Egli-Milner ordering Crgm by K Crem L if L C 1K andK C cl(L).
Notice that in a finite domain such as the flat domain of bodgtre lenses are
just order-convex sets, and that the topological Egli-Etilorder coincides with
the usual order-theoretical one [16]. This is because inigefdomain the closed
sets are precisely the lower sets, and all sets are compact.

The Plotkin powerdomaiP? D of a domainD consists of the lenses @ under
the Egli-Milner order, and the formal-union operatidnd B is given by actual
union A U B followed by topological convex closure (intersection df @nvex
closed sets containing it). There is a natural topologiga@dedding;: D — PY'D

given byz — {z}.

The Smyth powerdomai®® D consists of the set of non-empty Scott-compact up-
per subsets ordered lbgverseinclusion, with formal union given by actual union.
In this case, we have a natural topological embeddind® — P°D given by
r—lz

The Hoare powerdomairP’ D consists of all non-empty Scott-closed subsets of
D ordered by inclusion. Because we use this to obtain a deong&imodel of our
language, we consider it in more detail. Least upper bouralgigen by

| | A = A

el el

The construction is the functor part of a monad, with actiancontinuous maps
given by

f: PED — PHE
A cf[A4]
forany f: D — E. Its unitis given by

np: D — PHD
r — |z,
which is also a topological embedding. Instead of considemultiplication, one

can equivalently consider the extension operator [21, &5itipn 2.14], in this case
given by

f: PiD - PHE
A = clUgea fa
for any continuous map: D — P E. Finally, formal unions are given by actual

10

unions as in the case of the Smyth powerdomain:

AUB=AUB.

4 Semantics of the Multi-valued Construction

In order to make the development of the introduction preeisesassume that we are
given a functorial powerdomain constructi® in a suitable category of domains,
with a natural embedding

np: D — PD

and a continuous formal-union operation
(-4 —=):PDxPD—PD

for every domainD. Then the definition of the functioftest,;, : R — PT, where
a < b are real numbers, can be formulated as

n(true), if v € (—o0,d,
rtest,p(x) = < n(true) U n(false), if x € (a,b),
n(false), if z €[b,00).

Because in our language there will be computations on tHe tkat diverge or
fail to fully specify a real number, we need to embed the rige into a domain

of total and partial real numbers. We choose to work with theainRR ,, where

R is the interval domain introduced in Section 3. Similarly,wsual, we enlarge
the domainT of booleans with a bottom element. Hence we have to work with a
extensioriR ;| — PT, of the above function, which we denote by the same name:

rtest, p

R PT

L

rtestq p

RJ_ — PTJ_

For the moment, we do not insist on any particular extensi@mwever, in order for
a powerdomain construction to qualify for a denotationateimf the language,
the minimum requirement is that it makes thest, ; function continuous.

Lemma 4.1 If rtest,,: Ry, — PT, is a continuous extension of the function
rtest,, : R — PT, then the inequalities

n(true) C n(true) Y n(false),
n(false) C n(true) U n(false)

11

must hold in the powerdomaiAT |

PROOF. Because the embeddii®)y — R, is continuous wherR is endowed
with its usual topology an@® ;, with its Scott topology, so is its composition with
the functionrtest,,: R, — PT,, which we denote by: R — PT,. (This is
the diagonal of the above commutative square). In any déordlationd C e
holds if and only if every neighbourhood dfis a neighbourhood of. Let V' be a
neighbourhood of := 7(true). We have to show that := 7(true) U n(false) € V.
The setl/ := r~1(V) is open inR by continuity ofr : R — PT. Because(a) =

t € V, we have thatt € r~'(V) = U. Hence, becaus¥ is open inR, there is
an open intervalu, v) with a € (u,v) C U. Chooser such thats < =z < v and
x < b, thatis, such that € (a,b) N (u,v) C U. By constructiony(z) = n. But
z € r~}(V), which shows that € V and hence thatC n, which amounts to the
first inequality. The second inequality is obtained in themsavay. O

Thus, any powerdomain not satisfying the above two inetjgaldoes not qualify
for a model. In particular, this rules out the Plotkin and $mgyowerdomains. In
fact, for the Plotkin powerdomain one has thétrue) = {true} andn(false) =
{false}, and their formal union iqtrue, false} because this set is order-convex,
but the sets{true} and {true, false} are incomparable in the Egli-Milner order.
For the Smyth powerdomain, the same sets are obtained bynibedeling, formal
union is given by actual union, and hence the inequalitiesatdold because the
order is given by reverse inclusion. We omit routine prodfthe fact that e.g. the
mixed [17] and the sandwich [5] powerdomains also fail tasfathe inequalities
and hence to make theest, ;, construction continuous.

On the other hand, for the Hoare powerdomain, the inegesaldo hold. In fact,
n(true) = {true, L} andn(false) = {false, L}, their formal union is their actual
union{true, false, L }, and the ordering is given by inclusion. Moreover:

Proposition 1 There is a continuous extensim@stfb: R, — PHT, of the func-
tionrtest,;, : R — PT.

PROOF. The functionsf,g: R, — PT, defined by

f(x) = {n(true), if 2 C (—o00,b),

1, otherwise,

1, otherwise

o) = {n(false), if z C (a,00),

12

Hoare: Smyth:

{true,false,l } {true} {false}
{true, 1 } {false, L } {true,false}
{1} {true false, L }
(Inclusion order) (Reverse Inclusion order
Plotkin:
{true,false}
{true} {true,false,l. } {false}

NSNS

{true, L} {false, | }

{L}
(Egli-Milner order)

Fig. 1. Powerdomains df | .

are easily seen to be continuous, and they are consistenig®ctrue) andn(false)
are consistent elements. Hence their join

rtestgb =flUg

is well-defined and continuous. An easy verification shoves this function has
the required extension property

As we want to match our model with the operational semanfitiseoconstruction,
it would be desirable to distinguish between the elemétrise} and{true, L} in
the model. However, the Hoare powerdomain does not disshghiem, and, on the
other hand, as we have just seen, other powerdomains dovecd gontinuous in-
terpretation of our construction. In order to overcome phigblem when the Hoare
powerdomain is used as a denotational model, one usualyngeuses proofs of
program correctness into partial correctness and teriomak related approach is
considered in Section 6.

From now on, we denotetest//,: R, — PYT, simply by rtest, ;. In our appli-
cations, we are only interested in the situatiorR: @ < b < 1 and the restriction
of this function to the domaiff of closed subintervals of the interval, 1], again
writtenrtest, ,: Z — PT,.

4.0.0.1 Remark on the boundary cases aftest. Before proceeding to the
main goal of this paper, we briefly digress to discuss a nawaréationrtest,, , :

13

R — PT of thertest,, construction, defined by

n(true), if v € (—o0,a),
rtest,, , () = ¢ n(true) U n(false), if z € [a,],
n(false), if z € (b,00).

With a proof similar to that of Lemma 4.1, we conclude thatikt,, , is continuous
then

n(true) U n(false) C n(true)
n(true) Y n(false) C n(false).

This rules out the Plotkin and Hoare powerdomains, but ne{Simyth powerdo-
main. However, it is not clear what the operational courddrpf this function
would be. The functiomtest, iS operationally computable because, for any argu-
mentz given intensionally as a shrinking sequence of intervals computational
rules systematically establish one of the semidecidabiditonsa < = andx < b.
However, the conditions < z andx < b are not semi-decidable, and hence it is
not immediately apparent what a computationally adequpégational semantics
for rtest’ would be. But it is interesting, as pointed out by one of tHenees, that
the cotransitivity law given in the introduction as a coustive justification oftest
can be equivalently formulated ag < x or x < b whenever < b". In any case,

it is not clear to us, at the time of writing, whether or howstheformulation of the
cotransitivity law would lead to a computational mechanfenrtest’.

5 A Programming Language for Sequential Real-Number Compuation

We introduce the language LRT for th&st construction, which amounts to the
language considered by Escardo [11] with the parallel tamél removed and a
constant fortest, , added. We remark that this is a call-by-name language. Becau
real-number computations are infinite, and there are norgealdforms for partial
real-number computations, it is not clear what a call-bijy@@perational semantics
ought to be. We leave this as an open problem.

5.1 Syntax

The language LRT is an extension of PCF with a ground typegfarmumbers and
suitable primitive functions for real-number computatitis raw syntax is given

by

14

x € Variable,

t:=nat |bool |I |t —t,

P:=x|n|true|false | (+1)(P) | (—1)(P) |
(=0)(P) | if Pthen Pelse P | cons,(P) |
tail,(P) | rtesty,(P) | Az : t.P | PP | YP,

where the subscripts of the constructais, tail are rational intervals and those
of rtest are rational numbers. (We apologize for using the letiensdb to denote
numbers and intervals in different contexts.) Terms of gbtypeI are intended
to compute real numbers in the unit interval.

It is convenient for our purposes to first define the denataliand then the opera-
tional semantics.

5.2 Denotational Semantics.

The ground typesool, nat andI are interpreted as the Hoare powerdomain of the
domains of booleans, natural numbers and intervals, régplc Function types
are interpreted as function spaces in the category of dcpos:

[bool] =P¥T., [nat] = PYN., [I]=P"T,

lo = 7] =lo] =[]

This reflects the fact that we are considering a call-by-nkmguage.

The interpretation of constants in LRT is defined as follows:

[true] = n(true), [false] =n(false), [n] = n(n),

— — —

[(+D] =), (0] = (1), [(=0)]=(=0),

[cons,] = Gons,, [tail,] = tail,,

[rtest,,] = riest,y,, [Y](F) = | | F"(L),

n>0
X, if B = n(true),
[£](B.X,Y) = Y, ff B = n(false),
X UY, if B=n(true)d n(false),
1, if B=1.

Here the symbols, =, ~ are defined as in Section 3.3, the functiosg), (—1), (= 0)
are the standard interpretations in the Scott model of R@HRunctionsons,, tail,
are defined in Section 2, and the functioest, ; is defined in Section 4.

15

5.3 Operational Semantics

We consider a small-step style operational semantics fofamguage. We define
the one-step reduction relatiea to be the least relation containing the one-step
reduction rules for evaluation of PCF [26] together withsagiven below.

We first need some preliminaries. For intervasndb in Z, we define

ab = cons,(b),

wherecons is the extension to the interval domain of the function defimeSec-
tion 2. This operation is associative, and has the bottomehe ofZ as its neutral
element [11]:

(ab)c = a(bc), al = la=a.

Moreover,

aCb <= dcel ac=0b,

and thisc is unique ifa has non-zero length, i.e. it is not maximal, and in this case
we denote: by

b\ a.

For intervalsa andb, we define

and

alb <= dc.al candbC c.

With this notation, the rules for Real PCF as defined in [1&] ar

16

(1) cons,(cons, M) — cons, M

(2) cons,M — cons, M’ if M — M’ & (1) is not
applicable

(3) tail,(cons,M) — Yconsy, ifo<a

(4) tail,(cons, M) — Yconsg ifo>a

(5) taily(consyM) — consy M if a C banda # b

(6) tail,(consyM) — cons(upya(tailpyeM) if a T ba £ bb £ a,
b aanda £ b

(7) taily(M) — tail, (M) if M — M’ & (3)-(6) are

not applicable
(8) if true M N — M
(9) if false M N — N

(10) if M Ny Ny — if M’ Ni Ny if M — M’&(S),(g) are
not applicable

For our languagé. RT, we add:

(11) rtesty(cons, M) — trueifa < ¢,
(12) rtest,.(cons, M) — falseif b < q,
(13) rtesty, . M — rtesty, M it M — M.

Remark 5.1

(1) Rule 1 plays a crucial role and amounts to the associgtiaw. The idea is
that botha andb give partial information about a real number, and is the
result of gluing the partial information together in an imenental way. See the
paper [11] for a further discussion, including a geometiiggerpretation.

(2) Notice that if the intervad is contained in the intervdb, ¢|, rules 11 and 12
can be applied.

(3) Rules 11-13 cannot be made deterministic given theqdati computational
adequacy formulation which is proved in Section 5.4. Wel shalw that the
set of rewrite rules is rich enough to allow one to derive @penally every-
thing that the denotational semantics suggests. This doesean that we
are giving a specification for an implementation oR7'. In the absense of
rtest;., the rules 1-10 are deterministic without loss of compuotadi ade-
guacy. See Section 6 for a further discussion.

(4) In practice, one would like to avoid divergent compuiasi by considering
a strategy for application of the rules. This is the topic etc®on 6 where
we study total correctness. For the purposes of this sectienconsider the
non-deterministic view.

We now introduce a notion of operational meaning of a terngnelthe operational

17

values are taken in a powerdomain too. The difference betlgs operational
semantics and the denotational semantics given above ihthformer is obtained
by reduction but the latter is obtained, as usual, by contiposil means.

Definition 5.2 Firstly, we define the operational meaning of closed temsof
ground typesy in i steps of computation, writtdd/|;, which is to be an element of
the domairv].

If M : I, then we define
[M]; =Y {n(a) | IM'3k < i, M £ cons,M'}.

(If this set is empty, then of cours®/|; = L.) Here the relation”s denotes the
k-fold composition of the relation-.

If M : nat, then we define
[M]; =9 {n(n) | 3k < i, M 5 n}

if this set is non-empty, and/]; = L otherwise. The operational meaning of
M : bool is defined similarly.

It is immediate thatM|; C [M];,,. Hence we can define

Of course, only in the case of the ground type of real numb@ssdefinition is
non-trivial, but it is convenient to have a uniform treatrhtor all types.

5.4 Computational Adequacy.

In our settingcomputational adequa@mounts to the equatign/] = [A/] for all
closed termsV/ of ground type, wheré)/| is the operational meaning af and
[M] is the denotational meaning 6f defined above.

For a deterministic language such as PCF, soundness oftioéatienal semantics
follows from the fact thaf\/ — N implies[A/] = [N]. For our non-deterministic
language, we rely on the following:

Lemma5.3 [M] =4 {[N] | M — N} (notice that this is a finite union).

PROOF. The proof is by structural induction aty.

If M is avalue, there is nothing to prove.

18

Supposel/ = (—1)M’"andM — N, there are three rules that apply to predecessor.

First caseM = (—1)ko and(—1)ky — ko = N,

— e~

[(~1)ko] = (1) [ko] = (~1){0, L} = el{(~1)0, (~1) L}
—cl{0, 1} = {0, 1} = [ko] = [N].

Second case¥/ = (—1)kpi1 — ky = N,

—

[(=1)kns1] = (1) ([Kas1]) = (—D{n+1, L} = cf(=1)n + 1, (=1) 1}
=c{n, L} ={n, L} = [k.] = [N].

Third case:M = (—1)M’' and M — (—1)N' if M’ — N’. By the induction
hypothesis[M'] = & {[N'] | M’ — N'}, applying(—1) to both sides of the
equation:

—

[M] = ()M = (=DM = (F1) ({INT | M — N
=S {(FDIV] | M = N}
=S {I-ON] | M= N

as we wanted.

The proof for the other constants follows similarly, excémt rtest,;, whose
proof we include below.

SupposeV! = rtest, ,(M’). There are three possible cases:

First case:M is of the formrtest, ,(M’) whereM’ is not acons, term. Hence,
the only single-step reductions available are of the fafm— rtest, ,/N' where
M'" — N'. As the semantics aftest, , is rtest, ,, we get

[M] =rtest, , (I {[N'] | M" — N'})
=u {rtest, ,[N'] | M' — N'}
=U {[rtest,N'] | M' — N'}

Since the last expression exhausts the terms that are siteglalerivable fromd/,
we are done with this case.

19

Second caseY/ is of the formrtest, ,(cons,(M")). Note that the above equality
still holds but the last) does not exhaust the single-step derivations. Furthermore

[M] = rtest, ,(cons,(M')) O rtest, ,(a).

As U is inflationary, we can throw smaller terms into the aboveatign:

[M] =9 {rtest, ,N' | M' — N'}
=rtest, q(a) & (I {[rtest, ,N'] | M’ — N'})

Now rtest, ,(a) is exactly the set

bl {[6] | M — bandb € {true,false}}. O

Hence, by induction on the lengjtof the evaluation using the previous lemma, for
everyj, [M] =uJ {[N] | M + N}.

Lemma 5.4 (Soundness)or all closed terms M of ground type,

[M] E [M].

PROOF. It suffices to show that, for all closed terms of ground type,
[M]; E [M].

Letb € [M];,b # L. By definition,b C « for somea and M’ such thatV/ —
cons,M'. Becauséons,[M'] = [cons,M'], Lemma 5.3 shows thatc | [cons,M’].
Thereforeb € [M] because: C cons,(z) for all x € Z, and in particular for all
rxe[M]. O

In order to establish completeness, we proceed as in [26,11]

Definition 5.5 We define a notion of computability for closed terms by induct
on types as follows:

(1) Aclosed termV/ of ground type is computable wheneyjér| C [M],
(2) AclosedtermVf : ¢ — 7 is computable whenevér () : 7 is computable for
every closed computable terghof typeo,

AnopentermV/ : o with free variables, .. ., x, oftypeoy,.. ., o, is computable
wheneve(N; /xq] - - - [N, /z,|M is computable for every familyV; : o; of closed
computable terms.

20

BecauseP (D) is a continuous domain i is, we have:

Lemma 5.6 A closed term\/ of ground type is computable iff for eveky < [M]
there isi with X C [M];.

PROOF. (=) Suppose thal/ is computable and lek < [M]. We have that
[M]; C [M]s C --- is a chain whose supremum|i¥/|, and hence there iswith
X C [M];. (<) By continuity of the Hoare powerdomain of a continuous domai
in order to show thafM] T [M], it suffices to show that for alX' < [M],
X C [M]. But this holds by hypothesis.O

Recall the following from domain theory [1,16].

Lemma 5.7 For any continuous functiofi : D — FE of continuous dcpos, if <
f(x) thenthere is’ < = withy < f(2').

Lemma 5.8 (CompletenessEvery term is computable.

PROOF. The proof is by structural induction on the formation rulésssms.
Constants(1) rtest, , is computable:

We have to show that
[rtest, ,M] C [rtest, ,M]

for computableV/. So

[rtest, ,M] =rtest, ,[M]
C rtest, ,[M]

= test,q | |[M

sy 1),

—|_| rtest,., I {n(a) | IM'3k < i.M — cons, M’}
—|_| {7est,.q(n(a)) | 3M'3k < i.M —* cons, M’}
—le‘{rtestpq) [3M'3k < i.M —* cons,M'}.

But when M —* cons,M’ holds, so doestest,,(a) T [rtest, Mz C
[rtest, ,M]. So the directed sup of formal joins also lies belewest,, ,1/].

21

(2) if is computable:

We have to show that

[if L M N] C [if L M N].
Suppose(true) C [L]. By the induction hypothesi§L] C [L], soL —! true
for somel. Thusif L M N —!*1 M. Hence,[M] C [if L M N]. Similarly,
if n(false) C [L], then[M] C [if L M N]. Now, we need the four cases of
the proof: if [L] = n(Ll), then[if L M N] = n(L); if [L] = n(true), then
[if L M NJ] = [M]; if [L] = n(false), then[if L M N] = [N]; andif[L] =
n(true) U n(false), then[if L M N] = [M] O [N]. Becaused is inflationary
(andn(_L) is the identity for it); in all four casefif L M N] C [if L M NJ.

(3) cons, is computable:
We have to show that i¥/ is computable, then so &ns, M.

Assume that[cons,M] # L for a computable term\/ of type I. Let Y <
[cons,M] = cons,[M]. We need to show that thereiisvith Y T [cons,M];. By
Lemma 5.7, there iX < [M] withY < cons,X. As M is computable, there is
such thatX C [)M];. Becaus&” C cons, X and by monotonicity ofons,, we have
thatY T cons,[M];. So for everyy € Y, there ism € cons,[M];, withy T m.
Let m € cons,[M];, by Lemma 3.1 there i € [M]; with m T cons,(t) = at.
Because there is € [M];, we deduce that there &’ such that the reduction
M5 cons;M', k < j holds, and s@ons, M LA cons,(cons; M) EN cons, M.
Hence we can take= j + 1.

(4) tail, is computable:

We have to show that if\/ is computable, then so isail, M. Assume that

[tail,M] # L for a computable term\/ of type I. LetY <« [tail,M] =

tail,[M]. We need to show that there dswith Y C [tail,M];. By lemma 5.7,
there isX < [M] with Y < tail,X. As M is computable, there is such that
X C [M];. Becaus&” # {_L}, it follows that[M]; Z {a} in the Egli-Milner or-
der, and if[M]; C {a} thenY < tail, X C tail,[M], C tail,{a} = cl{ L} = {L}.

Then exactly one of the following four cases holds:

(@) [M]; < {a}: Then sinceX C [M];, we have thatail, X C Ema[M]j and since
Y C tail, X, we havey C Ema[M]j. So for everyy € Y, there ism € Ema[M]j
withy C m. Letm € Eﬂa[M]j, so by lemma 3.1 there isc [M]; withm L tail,t.
Because there ise [M]; it follows that there is\/” such that\/ > cons, M’ k <

j holds. Becausé\/]; < {a} we conclude thatail, M % tail,(cons, M)
Ycons;. Hence we can take= k + 1.

(b) {a} < [M]; Similarto 1.

22

(c) {a} C [M];: Then sinceX C [M];, we have thatail, X C tail,[M]; = {b\ a |
b € [M];} and since&” C tail, X, we have that’ C tail,[M];. So for everyy € Y,
there ism € tail, [M]; withy C m. Letm € tail, [M];, so there ig € [M]; with
m C tail,t =t \ a. Because there isc [M]; it follows that there isM/’ such that
ML cons; M', k < j holds. We conclude thatail, M LA tail,(cons; M’) EN
tail,,M’'. Hence we can take= k + 1.

(d) {a} 1 [M];: Then sinceX C [M];, we have thatail, X T t/zma[M]j = {(a U
b)\a | b € [M];} and sinceY’ C tail, X, we have that’ C tail,[M];. So for
everyy € Y, there ism € t/zma[M]j with y © m. Letm € t/zma[M]j, so there is
t € [M]; with m C tail,t = (e Ut) \ a. Because there ise [M]; it follows that
there isM’ such that the reductioh/ = cons; M’ k < j holds. We conclude that
tail,M % tail,(cons,M’) - tail,, M’. Hence we can takie= k + 1.

(5) For M = (+1),(—1), (= 0) the proof is similar to the f case.
(6) If M is computable so idaM:

We must show that Ny, . .. NV, is computable whenevéY,, . .. N, are closed com-
putable terms and is a closed instantiation ofa.M by computable terms. Here
must have the forma M’ whereM’ is an instantiation of all free variables 61,
excepto, by closed computable terms.

If P < [LN;...N,]thenwe haveP? < [[N1/a]M'N;...N,] = [LN;...N,].
But [N,/a]M’ is computable and so therefof®, /a|M’'N, ... N,. Hence there
iSj with P C [[Nl/a]M’Ng c Nn]j SinceLN1 ...N, — [Nl/Oé]M/NQ ...N,
and the reduction relation preserves meanings, in ordevaluaeLN; ... N, it
suffices to evaluatgV, /a|M’'N;, . .. N,,. Hence we can take= j

(7) Y, is computable:
In order to prove that, is computable it suffices to show that the term
Yoi,..onP)IN1 -+ N},

is computable wheneveY, : oy, ... N . 0y, are closed computable terms. It fol-
lows from (6) above that the termss = Af.f"(L) are computable, because
the proof of computability of (™ depends only on the fact that variables are com-
putable and that the combination and abstraction formatites preserve com-
putability.

Let P < [YN;--- Nk] be different from L. Because[Y] = [|[Y™], by a ba-
sic property of the way-below relation of any continuous alcihere is some:
such thatP < [Y(™ N, --- Ng]. SinceY™ is computable, there ig with P C

YN, ... N,];. Since there is a term/ with YW N, - . N, 7, cons, M. Using

23

thesyntactic information ordefsee [26,11]), and Lemma 5.9 below(” < Y we
have that V; - - - N, - cons. M for somelM and thereforé = j. O

As in the last part of the above proof, we denote the syntactier by< (see [26]
or [11]).

Lemma59 If M <x NandM — M{,M — M,,---,M — M, then either
Vi, M; < N,1 <1 < n orelse for some term&,, N,,...,N,,, N — N;,N —
N277N_>Nm7andVMzalejaMz—\<Nj71S'Lgn?lg.]Sm

PROOF. The case that we must consider is the one that invateest, ;. The
other cases are treated as in Real PCF.

(1) rtest,, M < rtest, ;M holds by definition.

(2) M = rtest,,M' < rtest,,M” = N andM — true. These conditions
hold if rtest,,M — rtest,,(cons.M") and¢ < b. By the induction hy-
pothesis,M’ — M" sortest,,M” — rtest,,(conssM™) whered < b so

rtest,,M"” — true andtrue < true.

(8) M = rtest,,M' < rtest,,M” = N andM — false. Similar to the
previous case.

(4) M = rtest,,M' < rtest,,M” = N andM — true, M — false. These
follows if rtest,,M — rtest,;(cons.M") anda < ¢ < b. By the induction
hypothesisM’ — M” sortest,,M" — rtest,(cons,M™) wherea < d <
b sortest,,M" — true,rtest,;,M" — false andtrue < true,false <
false. O

In summary:

Theorem 5.10 Computational adequacy holds; that is, for every closeohtéf of
ground type, the operational and denotational meaningg/afoincide:

[M] = [M].

6 Program Correctness

We now develop tools for establishing correctnesg. &f" programs. In order to
show that a given program is correct with respect to a givegifipation, we show
that

24

(1) ifit converges, then it satisfies the specification, and
(2) itin fact converges.

In our examples, condition 1 will be achieved by applyingdleaotational seman-
tics with the aid of computational adequacy, and conditienlPbe achieved using
the operational semantics directly. Hence our first task tefine a suitable oper-
ational notion of convergence for terms of real-number type

Firstly, notice that the operational semantics defined ictiSe 5.3 allows diver-
gence when rule 13 fattest, ; is applied infinitely often. But the only purpose of
this rule is to get a sufficiently precise approximation @& #rgument, so that rules
11 and/or 12 can be eventually applied, provided such anoappation exists.
Hence we agree that

we do not apply rule 13 fartest, infinitely often unless rules 11-12 are never
applicable.

Definition 6.1 The subrelation of the reduction relatien that arises in this way
will be denoted by=-.

Secondly, in the case of a term of the fotwest, (M), after finitely many appli-
cations of rule 13 to compute an approximation of the arguménwe will have
three situations:

(1) Both rules 11 and 12 become applicable.
(2) One and only one of the rules 11 and 12 becomes applicable.
(3) It is still not possible to apply rules 11 and 12, and heowe should keep
applying rule 13, getting better and better approximatmhg/, either
(a) for ever, or
(b) so that we eventually arrive at one of the previous sibagt(1) or (2),
and the computation converges to a truth value.

If the situation (3a) may take place, we say that the teray divergeand other-
wise, that itmust convergelf the situation (1) takes place, we may imagine that
the computation bifurcates into two subcomputations, edakhich will give an
answer or diverge. For our definition of strong convergenacdie given below,
we require that both converge. In practice, an implemeoraif the language will
typically choose one of the branches, according to somégyrawhich will not
necessarily be known to the programmer, and such a brantthes lead to an
answer or divergence. In this case, the programmer has tweetisat any possible
answer satisfies the desired specification, or that bothchesnwill in fact lead to
the same answer (as will be the case with our running example)

In theory, if situation (2) takes place, one can carry on \thigh computation pro-
duced by the corresponding branch, and, at the same tinegtesly apply rule 13
in parallel so that maybe the other rule becomes applicaldenhd one has two

25

computations as in situation (1). This corresponds to tladiom = defined above.
In practice, we work with a deterministic, but unspecifie@dtggy, as follows:
Definition 6.2 A strategyis a subrelation=> of = such that

(1) = issingled-valued, i.e. for any/ there is at most on&’ such that\/ = N,
(2) ifthere is anV such thatV/ = N, then there is also ai such that\/ = N.

Notice that the only reason the relatien is multi-valued is the presence of rules
11 and 12. In summary, the relaties removes inessential infinite computations
from —, and=> gives a deterministic strategy for the application-ef

(=) (=)< (=)
Here are some examples of deterministic relatigns

(1) Ateach stage of the reduction of a term, apply the firstiegiple rule, for the
ordering of the rules given in Section 5.3.

(2) The same strategy as 1, but swapping the order of the Wstrailes for
rtestyp.

(3) Fix astream of binary digits. Whenever more than one @fitist two rules for
rtest,, IS applicable, use the next digit of the stream to decide whimould
be applied.

(4) Fix a stream of binary digits and a stream of natural nusb&/henever a
term of the formrtest, (M) is found, read a natural numberfrom the
second stream, then apply rule 13 fakst,;, n times. If only one of the two
rules 11 and 12 become applicable, apply it. If both are apple, use the
next digit from the first stream to decide which of them to gpplneither is
applicable, repeat the same procedure.

It is easy to see that for any closed tefwh of real-number type, there is at least
one termN such thatM/ = N, and hence there is at least one tekrsuch that
M = N. Hence, because the relatienis assumed to be single valued, there is a
unique infinite reduction sequengé = M, = M, = M, = M; = ---. By the
following lemma, if M; is of the formcons,, (M/) thenM;,; must be of the form
cons,,,, M, , with a; T a,;4,. For a closed termd/ of ground type other than,
such a reduction may be finite, leading to a truth value orradtwmber, or infinite
leading to divergence.

Lemma 6.3 If a term M is of the formcons, M’ and M =* N thenN is of the
form cons, N’ with a C b.

PROOF. By case analysis of the reduction rules éohs,. According to the com-
plete set of rules that define the operational semantics [fLttje reduction is in
zero steps we are done, otherwise there are two cases:

26

(1): If cons,(cons,N') = cons,,N', thenM’ is of the formcons, N with a C ab.
HenceN is of the formcons,, N/,

(2): If cons,M" = cons,M"” and M’ = M", then N has to be of the form
cons,M" for M’ = N’, and hence we can take=a. O

We modify the definition of operational meaning (Definitio2)pas follows.
Definition 6.4 For a strategy=> and closed ternd/ of typeI, we define
(M]7 =| {a€1|3M' .M =" cons,M'}.

If this set is non-empty, then Lemma 6.3 shows that it is ae&sing chain, and
hence the supremum exists. Notice that this is not a subseasfn Definition 5.2,
but rather an element df.

By a value of typ8ool or Nat we mean a constant for a truth value or a natural
number, and values are ranged over by the letteFor a closed term of any of
these two types, we define

(M]7 =| {v|M="o}

The set of which the supremum is taken is either empty or éesomgbecauses is
single valued.

Definition 6.5 We definestrong convergence, for closed terms, by induction on
types as follows:

(1) A closed term\/ of ground type is strongly convergent if for every strategy
as in Definition 6.2, its operational meaning/|= is total (i.e. a singleton
interval, a truth-value, or a natural number).

(2) A closed termM of typeo — 7 is strongly convergent wheneveéf N is
strongly convergent for every strongly convergent closeahtV of typeo.

We henceforth refer to strong convergence simply as coexegyfor the sake of
brevity.

The following observation is immediate.
Lemma 6.6

(1) AtermM: I is convergent iff for every strategy and every > 0 there are
an intervala of length smaller tham and a term/V such that\/ =* cons, V.
(2) AtermM is convergent iffV is convergent whenevérd =* N.

Lemma 6.7 A termcons.(M) is convergent iff\/ is convergent.

27

PROOF. (=) Let M = M; = M, = M3 = --- be an infinite reduction se-
guence and let > 0. We must findn such that)/,, is of the formcons,; N’ with
kq < €. Consider the reduction

cons.(M) =Ny = Ny=> Ny = ---,

andd = € x k.. By hypothesigons. (M) is convergent so there issuch thatV; is

of the formcons, N” with x, < §. Hence there should besuch that\/; is of the
form cons.N"” andcons.(M;) = cons,N”, which means that.x. = x, < ¢ and
hencex, < % = S — ¢,

(<) Letcons.(M) = N; = N, = N3 = --- be an infinite reduction sequence
and lete > 0. We must findn such thatV,, is of the formcons;N’ with x; < e.
Consider the reductiofd = M; = My, = M3 = --- andé = ¢/k,. Becausel/

is convergent, there issuch thatV/; is of the formcons,(M’) with x, < ¢. Hence,
there should bg such thatV; is of the formcons.(M") with k. < k,x;, and

Ke < Kakp < Kq 0 = Kq -+ (€/Rq) = €. O

To show thatail, is convergent, we need some lemmas. Whenever we talk about
rules in the following lemmas, we assume that these ruletaiem from the oper-
ational semantics.

Lemma 6.8

(1) Foralla,b € Z,if b [Z a then one of the conditions in rules 3—6 holds.
(2) For anya € 7 and any convergent/: I there areb Z a and N such that
M =* cons,(N).

PROOF. The firstitem is easily verified. For the second et x, /2. Because\/

is convergent, there abeof length smaller thanandN such thatV/ =* cons,(N).

If we hadb C a, then the length ob would be bigger than that ef, which is not
the case by construction.O

Lemma 6.9 If M is convergent then,

(1) tail, (M) =* L for some convergent terih, by finitely many applications
of rule 7 followed by an application of one of the rules 3-5, or

(2) M =* consy(N) andtail,(M) =* consupna(tailum(V)) for some
convergent termV, by finitely many applications of rule 7 followed by an
application of rule 6.

28

PROOF. By Lemma 6.8, after finitely many applications of rule 7 to teem
tail, (M), we will have reductiond/ =* cons,(N) and

tail,M =" tail,(consy(V)),
and one of the rules 3—6 will apply to the resulting term. IEaf the rules 3-5
applies thertail, (M) reduces to one of the terriisonsy,, Ycons g, consy q(/NV),
which are convergent, and we can letbe the corresponding term. Otherwise it

reduces by rule 6 to the tereons)\« (taileuss(N)). Becausél! =* cons, N
and M is convergent, so arens, N andN. O

Lemma 6.10 The termtail, iS convergent.

PROOF. Let M be convergent, consider the reduction

taila(M) :N03N1 3N23 ety
and letr; be the label of the rule that justifies the reductidh = N;,;. By
Lemma 6.9, if there ig such that-; is one of 3-5, therail, (M) is convergent,
and otherwise the sequenge); belongs to the set of word$6(7+61)~. We have to
argue that in the second caseil, (M) is also convergent. Let; be the sequence
such that the sequenegcan be written agm 6 [[,(7%+161).
By hypothesis, the term/, = M is convergent, and i#/; is convergent then

M; =7 cons,.,(M;,1)

for a unique intervat; and a unique term/;,; by finitely many applications of
rule 2, andM,;,; must also be convergent. This inductively defines sequences

andM;, and it is easy to see that, for aiy

M =7 conseye,..c;(Mis1).

Now, using the sequeneg inductively define

Bo = (aUc) \ co, ag = (alc) \ a,
Biv1 = (B Ucit1) \ Cit1s aip1 = (Bilciyr) \ Bi

A routine argument by induction arnshows that

tail, (M) =" consygag.a; (tails, (M),

29

as illustrated below:

7
tail,(M) = Ny =* M, = tail,(cons.,(M;))
6
= Npy+1 = cons,, (tailg,(M))

7

=" N,,, = cons,,(tailg,cons,, (M>))
6

= Np,+1 = cons,,cons,, (tailg, (Ms))

1
= Nn1+2 = CONBgpa, (tailﬁl (M2))

1
= Np,+2 = CONSqya, -, (tails (Mir1)).

Now lete > 0, and define’ = «,/e. BecauseV/ is convergent, there issuch that
Reger..c; < € and hences,/ke,e,. o, < €. An easy proof by induction onhshows
thatk,/Kegey..c; = Kagas-a;» Which shows thatail, (M) is convergent. O

As application, we show how the progratmerage, defined in Section 2 can be
proved to be correct using the denotational semantics addtion of strong con-

vergence. More examples, including multiplication, dioig and absolute value,
among others, are developed in the first-named author’s Ré&st[22] using the

same techniques.

Lemma 6.11 The termrtest, . IS convergent.

PROOF. Let N: I be a convergent term. Consider (¢ — b)/2. BecauseV is

convergent, there are an intervabf length smaller tham and a term\/ such that
N =* cons, M. For such an interval, at least one of the conditions neenlagply
the rules (11) or (12) holds, and henggest, .(N) =" v for some truth value.

6.1 Total Correctness of the Average Program

In view of computational adequacy, partial correctnessefdrogram can be for-
mulated as follows:

Lemma 6.12 [Average](n(z),n(y)) = n(xz & y) for all total z,y € Z.

To prove this, we use the following lemma. As usual, a regarprogram is inter-
preted as the least fixed point of a functional extracted ftoenprogram. For the
programAverage, we denote this functional b : D — D where, according to
the denotational interpretation of typd$,has to be the domaifP’Z x PHT —
PHT). Then[Average] = ||, Average,, whereAverage, = ®"(L).

30

Lemma 6.13 For all total =, y € Z, the following conditions hold:

(1) [Average,](n(z),n(y)) is of the form| F;, for F,, C 7 finite,

2) k. < (%)_"H for eachz € F,,

() F,Cnzavy).

PROOF. The proof is by induction on.

1.n = 0. We know thatAverage,(n(z),n(y)) = {L} = [{L} foranyz,y € [0, 1].
Takez € F, = {1},s0k, = 1 < (4/3)7""" = (4/3), and{L} Cy n(z @ y) for
allz,y € [0, 1].

2. Assume that it holds for. To show that it holds fon + 1, we proceed according
to the position ofr andy relative to the points = 1/4 andr = 3/4 used in
the definition of the average program. All cases are handledsimilar way. We
consider the case < 1/4 andy < 1/4 as a representative example.

Average, . (n(z),n(y)) = consy, (Average,, (tail (n(x)), tailL (n(y))))
= consy,(Average, (n(tail,(x)), n(tailL(y)))),

and by the induction hypothesi&yerage,(n(t),n(s)) is of the form | F,, for F,
finite, ¢ = tail () ands = tail;(y). TakeF, 1 = cons(F,). Then

Average,, 1 (n(z),1(y))

is of the form|cons,,(F},). Becauser, is finite, so isF,, ..

To show thats, < (%)‘" foranyz € F, 1, lett € F,, such that: = cons(t). By
the induction hypothesis, < (3) ""'. We havez = cons(t) = &, and hence

3 4 —n—+1
t—t< |-
= (3)

@6 -6

To show thatF,.; C n(z @ y), again letz € F,.; andt € F,, such that such that
z = consy,(t). By the induction hypothesisec 7(tail;(x) @ tail,(y)), hence

and sos, < (3)7"

z = consy,(t) € consy(n(tail,(z) @ tail,(y)))

= consy (v (5 0 %)) = camsy (n ()
_, (ConSL <4x24y)> . <G) <4x24y>>

n(x;y> =n(z&y).

31

as required. O

To conclude, we establish convergenceaoérage.

Lemma 6.14 For any two convergent term&;, N, : I, there are an intervahk
of length3/4 and two convergent term¥7, V) such thatAverage(Ny, N;) =7
cons,(Average(Nj, Nj)).

PROOF. Toreducetverage(N;, Ns), we must first unfold the definition, and then
reducertesty,s3/4(/N1), repeatedly applying rule 10, until we get a truth value,
which is possible by Lemma 6.11 becaug$ghas been assumed to be convergent.
At this point, we have to apply one of the rules 8 or 9. In eittege, we will next
have to reducetest; 4 3/4(/N2) until it becomes a truth value. Then again one of
the two rules 8 and 9 will have to be applied, which clearlydeto a term of the
form cons,Average(taily,, N1, tail,, No) with x, = 3/4. By Lemma 6.10, we can
take N{ = tail, N; andN) = tail,,N;. O

Lemma 6.15 The termAverage is convergent.

PROOF. Let N; and N; be convergent terms of type By repeatedly applying
Lemma 6.14 and rules 1 and 2, we conclude that for exehere are an intervail
of length(3/4)™ and a term)/ such thatverage(N;, N;) =7 cons,(M). Here
we use the fact that the length of the interval concatenatiasmthe product of the
lengths of the intervals andc in connection with rule 1. O

Lemma 6.12 amounts to commutativity of the diagram
IxI—~TIxTIT—PITxPIT

0 [Average]
I Tc PHAT,

wherel = [0, 1] and the horizontal arrows are the obvious inclusions. Thelt®
of Escardd, Hofmann and Streicher [9] show that the diagranmot be completed
with a sequentially computable down arr@wx 7 — Z. Thus, we overcome the
problem by allowing our program to be multi-valued at paiti@uts. Lemma 6.13
shows that the single-valued output of the program at a topalt arises as the
least upper bound of multi-valued partial outputs. In otherds, there are different
computation paths that give different, but consistentiplaresults at finite stages,
but all of them converge to the same total real number.

32

Several other examples of recursive definitions, includmgtiplication and di-
vision, are developed in [22], with total correctness psofafilowing the above
pattern.

7 Conclusion and Further Work

Our running example illustrates two important ideas disedsn the introduction:

(1) By considering a multi-valued or non-deterministic saction, it is possible
to have sequential programs for important functions th&¢ edmit parallel
realizations in the (singled-valued) interval-domain mipevercoming the
problem identified by Escardo, Hofmann and Streicher [9].

(2) Inorder to obtain total correctness from partial caimess, a generalization of
the notion of termination is needed in the case of real-nurobeputations.

Regarding 1, we conjecture that all computable first-ordacfions are definable
in the language. We have some partial results regardingatelity of second-
order computable functionals such as definite integrafidns will be reported
elsewhere, but we remark that the ideas regarding 2 areealdpli that purpose.

It is an open problem to find a denotational semantics thatidvallow to prove
total correctness without the need of resorting to opematimethods such as strong
convergence. As we have seen, the Plotkin and Smyth pow&idemannot be
used for that purpose either. In fact, the results of Secionmediately imply that
even other powerdomains such as the sandwich and the mixesig@mmain cannot
be used. Moreover, it is easy to verify that any of the knowwgralomains which
do not arise as the composition of powerdomains with the élpawerdomain as
the last component in the composition are ruled out.

Acknowledgements. We thank Achim Jung, Paul Levy, Steve Vickers and An-
drew Moshier for comments and suggestions.

References

[1] Samson Abramsky and Achim Jung, Domain Theory, in: Safdsky and D. Gabbay
and T. S. E. Maibaum, ed$iandbook of Logic in Computer Science Volun{®3gford
University Press, 1994) 1-168.

[2] E. Bishop, and D. Bridges;onstructive AnalysigSpringer, Berlin, 1985).

33

[3] H. J. Boehm and R. Cartwright, Exact Real Arithmetic: iRotating Real Numbres
as functions, in: Turner. D., editoResearch Topics in Functional Programming
(Addison-Wesley 1990) 43-64.

[4] V. Brattka, Recursive characterization of computabéalivalued functions and
relations, Theoretical Computer Sciend®2 (1996) 45—77.

[5] Peter Buneman and Susan Davidson and Aaron Watters, Ardas for complex
objects and approximate querie¥-SS43(1991) 170-218.

[6] Abbas Edalat and Peter John Potts and Philigpdgrhauf, Lazy Computation with
Exact Real Numbers|nternational Conference on Functional Programmiri$}998)
185-194.

[7] M. H. Escard6, Real PCF extended withis universal, in: A. Edalat and S. Jourdan
and G. McCusker, eds.Advances in Theory and Formal Methods of Computing:
Proceedings of the Third Imperial College Worksh@rist Church, Oxford, 1996)
13-24.

[8] M. H. Escarddé PCF extended with real numbers: A domhéetetic approach to
higher-order exact real number computati®mD thesis at Imperial College of the
University of London1997.

[9] M. H. Escard6 and M. Hofmann and Th. Streicher, On the-sequential nature of the
interval-domain model of exact real-number computatisiathematical Structures in
Computer SciencAccepted for publication (2002).

[10] M. H. Escardd and Th. Streicher, Induction and reaursin the partial real line with
applications to Real PCFTheoretical Computer Scien@4.0 (1)(1999) 121-157.

[11] M. H. Escardd, PCF Extended with Real NumbefEheoretical Computer Science
162 (1)(1996) 79-115.

[12] A. Farjudian, Sequentiality and Piece-wise affinity 8egments of Real-PCF,
Electronic Notes in Theoretical Computer Sciefi@42004) 3—4

[13] A. Farjudian, Sequentiality in Real Number ComputatiehD thesis at the University
of Birmingham 2004.

[14] Pietro Di Gianantonio, A Functional Approach to Comghitity on Real Numbers
PhD thesis(Udine, 1993).

[15] Pietro Di Gianantonio, An Abstract Data Type for reahmhers,Theoretical Computer
Science221(1999) 295-326

[16] G. Gierz and et al.,Continuous lattices and domaing&Cambridge University Press,
2003).

[17] C. A. Gunter, The Mixed Powerdomaiitheoretical Computer Sciend@3 (2)(1992)
311-334.

[18] C. A. Gunter and D. S. Scott, Semantic Domains, in: J. i@euwen, editor,
Handbook of Theoretical Computer Scieriz€1990) 633-674.

34

[19] Reinhold Heckmann, Power Domain ConstructionsScience of Computer
Programmingl? (1-3)(1991) 77-117

[20] H. Luckhardt, A fundamental effect in computations @alrnumbers, Theoretical
Computer Scienc® (3) (1977/78) 321-324.

[21] E. Manes Monads of Sets in: M. Hazewinkel, editbiandbook of Algebr8 (Elsevier
Science, 2003) 67-153.

[22] José R. Marcial-Romero, Semantics of a sequentiajuage for exact real-number
computationPhD thesis(Birmingham, December, 2004).

[23] N. Th. Muller, The iRRAM: Exact Arithmetic in C++, in: Bnck, Jens and Brattka,
Vasco and Hertling, PeteiComputability and Complexity in Analysig064(LNCS,
2001) 222-252.

[24] D. Normann, Exact real number computations relatieaieditarily total functionals,
Theoretical Computer Sciencg84 (2)(2002) 437-453.

[25] G. D. Plotkin, A Powerdomain ConstructioBlAM Journal on Computing (3) (1976)
452-487.

[26] G. D. Plotkin, LCF Considered as a Programming Languajeeoretical Computer
Scienceéb (1) (1977) 223-255.

[27] G. D. Plotkin, DomainsPost-graduate Lecture in Advanced Domain Theory Univesity
of Edinburgh, Departament of Computer Science. Availatdenfthe author's web
page(1983), pages 116.

[28] Peter John Potts and Abbas Edalat and Martin Hotz=d g6, Semantics of Exact real
arithmetic, Proceedings 12 IEEE Symposium on Logic in Computer Scierit897)
248-257.

[29] Peter John Potts, Exact real arithmetic using Mobiten$formationsPhD thesis at
Imperial College of the University of Londoh998.

[30] Dana Scott, Lattice theory, data type and semanticsR@amdall Rustin, editor, eds.,
Formal Semantics of Algorithmic Languagé&entice Hall, 1972) 65-106.

[31] M. B. Smyth, Power Domains,Journal of Computer and System Sciedégq1978)
23-36.

[32] M. B. Smyth, Powerdomains and predicate transform&nspological view ICALP
'83, LNCS154 (Springer, 1983) 662—675.

[33] M. B. Smyth, Topology, in: S. Abramsky, D. M. Gabbay, ah&.E Maibaum, eds.,
Handbook on Logic in Computer Scient€1992) 641-761.

[34] S. Vickers, Topolgy via Logic(Cambridge University Press, Cambridge, 1989).
[35] K. Weihrauch, Computable AnalysigSpringer-Verlag, 2000) .

35

