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University of Birmingham, Birmingham B15 2TT, England�

jrm,mhe � @cs.bham.ac.uk

Abstract

We study a programming language with a built-in ground
type for real numbers. In order for the language to be suffi-
ciently expressive but still sequential, we consider a con-
struction proposed by Boehm and Cartwright. The non-
deterministic nature of the construction suggests the use of
powerdomains in order to obtain a denotational semantics
for the language. We show that the construction cannot be
modelled by the Plotkin or Smyth powerdomains, but that
the Hoare powerdomain gives a computationally adequate
semantics. As is well known, Hoare semantics can be used
in order to establish partial correctness only. Since com-
putations on the reals are infinite, one cannot decompose
total correctness into the conjunction of partial correctness
and termination as it is traditionally done. We instead in-
troduce a suitable operational notion of strong convergence
and show that total correctness can be proved by establish-
ing partial correctness (using denotational methods) and
strong convergence (using operational methods). We illus-
trate the technique with a representative example.

1. Introduction

This is a contribution to the problem of sequential com-
putation with real numbers, where real numbers are taken
in the sense of constructive mathematics [2]. It is fair to say
that the computability issues are well understood [17]. Here
we focus on the issue of designing programming languages
with a built-in, abstract data type of real numbers. Recent
research, discussed below, has shown that it is notoriously
difficult to obtain sufficiently expressive languages with se-
quential operational semantics and corresponding denota-
tional semantics that articulate the data-abstraction require-
ment. Based on ideas arising from constructive mathemat-
ics, Boehm and Cartwright [3] proposed a compelling op-
erational solution to the problem. However, the proposal
falls short of providing a full solution to the data abstrac-
tion problem, as it is not immediately clear what the corre-
sponding denotational interpretation would be. A partially

successful attempt of solving this problem has been devel-
oped by Edalat, Potts and Sünderhauf [5], as discussed be-
low.

The purpose of this paper is two-fold: (1) to establish
the intrinsic difficulties of providing a denotational model
of Boehm and Cartwright’s operational approach, and (2) to
show how it is possible to cope with the difficulties. Before
elaborating this research programme, we pause to discuss
previous work.

Di Gianantonio [11], Escard ó [6], and Potts et al. [24]
have introduced various extensions of the programming lan-
guage PCF with a ground type for real numbers. In the three
cases, the real numbers type is interpreted as a variation of
the interval domain introduced by Scott [25]. In the pres-
ence of a certain parallel conditional [22], all computable
first-order functions on the reals are definable in the lan-
guages [11, 7]. By further adding Plotkin’s parallel existen-
tial quantifier [22], all computable functions of all orders
become definable in the languages [11, 7, 9]. In the ab-
sence of the parallel existential quantifier, the expressivity
of the languages at second-order types and beyond is not
known. Partial results in this direction are developed by
Normann [20].

It is natural to ask whether the presence of such parallel
constructs is an artifact of the languages or they are needed
for intrinsic reasons. Escard ó, Hofmann and Streicher [8]
have shown that, in interval models, the parallelism is in
fact unavoidable: weak parallel-or is definable from addi-
tion and other manifestly sequential unary functions, which
indicates that addition, in these models, is an intrinsically
parallel operation. Moreover, Farjudian [10] has shown that
if the parallel conditional is removed from the language,
only piecewise affine functions on the reals are definable.

Essentially, the problem is the following. Because com-
putable functions on the reals are continuous (see e.g. [17]),
and because the real line is a connected space, any com-
putable boolean-valued relation on the reals is constantly
true or constantly false unless it diverges for some inputs.
Hence definitions using the sequential conditional produce
constant total functions or else partial functions. If one al-
lows the boolean-valued relations to diverge at some inputs,



then non-trivial predicates are obtained, and this together
with the parallel conditional allow us to define non-trivial
total functions [6].

This phenomenon had been anticipated by Boehm and
Cartwright [3], who also proposed a solution to this prob-
lem. In this paper, we develop the proposed solution and
study its operational and denotational semantics. The idea
is based on the following observations. In classical math-
ematics, the trichotomy law “ ����� , ����� or �	�
� ” holds
for any pair of real numbers � and � , but, as is well known,
it fails in constructive (and in classical recursive) math-
ematics. However, the following alternative cotransitiv-
ity law holds in constructive settings: for any two num-
bers ����
 and any number � , at least one of the rela-
tions ����� and �	��
 holds. Equivalently, one has that������� 
���� � � ��� ����� . Boehm and Cartwright’s idea is
to consider a language construct  "!"#%$&!�')( * , for �
�+
 ratio-
nal, such that:

1.  &!,#%$&!,')( * � �-� evaluates to true or to false for every real
number � ,

2.  &!,#%$&!,')( * � �-� may evaluate to true iff ����
 , and

3.  &!,#%$&!,')( * � �-� may evaluate to false iff ����� .

It is important here that evaluation never diverges for a con-
vergent input. If the real number � happens to be in the
interval

� � � 
�� , then the specification of  "!"#)$�! ')( * � �-� allows it
to evaluate to true or alternatively to false. The particular
choice will depend on the particular implementation of the
real number � and of the construct  &!,#%$&! ')( * (cf. [18]), and is
thus determined by the operational semantics.

As an application of the construction, we give an exam-
ple of a recursive definition of a sequential program for ad-
dition, which is single-valued at total inputs, as required, but
multi-valued at partial inputs. Thus, by allowing the output
to be multi-valued at partial inputs, we are able to over-
come the negative results of Escard ó, Hofmann and Stre-
icher mentioned above.

We take the view that the denotational value of &!,#%$&! ')( * � �.� lives in a suitable powerdomain of the booleans.
Thus (1) if �/�
�0�1
 then the denotational value would be
the set 243�57698 ��:<;>= ? 8A@ , (2) if ��B�C� and ���D
 then it would
be the set 243�576)8E@ , and (3) if ����� and ��B�F
 then it would
be the set 2 :<;>= ? 8A@ . Technically, one has to be careful regard-
ing which subsets of the powerset are allowed, but this is
postponed to the body of the paper. One of our main results
is that the Hoare powerdomain gives a computationally ad-
equate denotational semantics. Unfortunately, the Plotkin
and Smyth powerdomains do not even make the  "!"#)$�! con-
struction continuous. These and other examples of power-
domains are discussed in the body of the paper.

As is well known, Hoare semantics can be used in order
to establish partial correctness only. Because computations

on the reals are infinite, one cannot decompose total cor-
rectness into the conjunction of partial correctness and ter-
mination, as is usually done for discrete data types. We in-
stead introduce a suitable operational notion of strong con-
vergence and show that total correctness can be proved by
establishing partial correctness (using denotational meth-
ods) and strong convergence (using operational methods).
The technique is illustrated by a proof of total correctness
of our sequential program for addition. Further applications
are discussed in the concluding section.

Related work. Edalat, Potts and Sünderhauf [5] have pre-
viously considered the denotational counterpart of Boehm
and Cartwright’s operational solution. However, they re-
strict attention to what can be referred to as single-valued,
total computations. In particular, their computational ade-
quacy result for their denotational semantics is restricted to
this special case. Although it is indeed natural to regard this
case as the relevant one, we have already met compelling
examples, such as the fundamental operation of addition, in
which sequentiality cannot be achieved unless one allows
e.g. multi-valued outputs at partial inputs.

For their denotational semantics, they consider the
Smyth powerdomain of a topological space of real numbers
(which they refer to as the upper powerspace). Thus, they
consider possibly non-deterministic computations of total
real numbers, restricting their attention to those that happen
to be deterministic. In the work reported here, we instead
consider non-deterministic computations of total and partial
real numbers. In other words, instead of considering a pow-
erdomain of a space of real numbers, we consider a pow-
erdomain of a domain of partial real numbers. Our com-
putational adequacy result holds for general computations,
total or partial, and deterministic or not. For our domain of
partial real numbers, we consider the interval domain pro-
posed by Scott [25], but the work reported here is expected
to apply to many possible notions of domain of partial real
numbers.

Di Gianantonio [12] also discusses the problem of se-
quential real-number computation in the presence of data
abstraction, with some interesting negative results and
translations of parallel languages into sequential ones.

Organization. Section 2 presents a running example that
motivates the technical development that follows. Section 3
introduces some background. Section 4 studies the  &!,#%$&!
construction from the point of view of powerdomains. Sec-
tion 5 develops a programming language with the  &!,#%$&! con-
struction and establishes computational adequacy for the
denotational semantics developed in Section 4. Section 6
applies this to develop techniques for correctness proofs and
gives a sample application. Section 7 summarizes the main
results and discusses open problems and ongoing work.



2. Running example

In order to motivate the multi-valued construction dis-
cussed in the introduction, we give an example showing
how it can be used to avoid the parallel constructions used
in previous work on real-number computation. We take the
opportunity to introduce some basic concepts and construc-
tions studied in the technical development that follows.

In the programming language considered in [6], the av-
erage operation

����� � ����� � ���
	�� � � ���
	�
 � � ���
	 defined
by

� � � � ��� ��
can be implemented as follows:

� � � = ����� ���������� � ����� � �!������ �#" $ �&%(' � �*) � + ' � �-� � �*) � + ' � � �&�� + % �," $ �&%(- � �*) � + ' � �.� � �*) �.+./ � � �&�� + % � ����� � �!������ �#" $ �&%(- � �*) � +./ � �.� � �*) �.+ ' � � �&�� + % �," $ �&% / � �*) � +�/ � �-� � �0) � + / � � �&� .
Here

� � ��1 � �32 �4� � � � 	 �65 �7� ��1(8 �:9�1�8.	 �<; �7� � ����	7�

the function " $ �=% ' �>� � ���
	�
 � � ���
	 is the unique increasing
affine map with image the interval � , i.e.,

" $ �=% ' � �-� �1� 1 � � " $ �=% - � �.� ��� 1 � � ��1(8 �
" $ �=% / � �-� ��� 1 � � �(1 � �

and the function �*) � + ' �?� � ���
	&
 � � ���
	 is a left inverse, i.e.

�*) � + ' � " $ �&% ' � �-�&� ���A@
Because equality on real numbers is undecidable, the rela-
tion �	��� is undefined (or diverges, or denotes B ) if � �C� .
In order to compensate for this, one uses a parallel condi-
tional such that

�=���DB �����.�DE�� + % �FE � E @

The intuition behind this program is the following. If
both � and � are in the interval

2
, then we know that � � �

is in the interval
2

, if both � and � are in the interval
;

,
then we know that � � � is in the interval

;
, and so on. The

boundary cases are taken care of by the parallel conditional.
For example,

��1 �
is both in

2
and

;
, and an unfolding of

the program for � ��� � �(1 �
gives

�(1 � �G�(1 �
= ���(�HB�I��� � �����JB����� �#" $ �=% ' �K�L� � �� + % �," $ �=% - �M�L� �>�� + % � �����JB����� �#" $ �=% - � � � � �� + % �," $ �=% / � � � � � .

All branches of the conditionals evaluate to
�(1 �

, but in
an infinite number of steps. This can be seen as follows.
A repeated unfolding of

�N�O�
gives the infinite expres-

sion " $ �&% / � " $ �=% / � ".$ �=% / � @�@�@,�&�"� . Denotationally speak-
ing, the program computes the unique fixed point of " $ �&% / ,
which is

�
. Operationally speaking, the first unfolding says

that the result of the computation, whatever it is, lives in
the interval

;
, because, by definition, the image of " $ �=% /

is
;

; the second unfolding says that the result is in the right
half of the interval

;
, i.e. in the interval � 9�1(8 ����	 ; the third

unfolding tells us that the result is in the interval � P 1�Q ���
	 ,
and so on. Thus, the operational semantics applied to

�R���
produces a shrinking sequence of intervals converging to

�
.

The other cases are analogous.
Of course, a drawback of such a recursive definition is

that, during evaluation, the number of parallel processes is
exponential in the number of unfoldings. In order to over-
come this, we switch back to the usual sequential condi-
tional, and we replace the partial less-than test by the multi-
valued test discussed in the introduction:
S�T �IU*)IV*� � � � � � =
��� U��*��%(�IW ( X � �.��I��� �

�(� U��*�*%�� W ( X � � ��I��� �#" $ �=% ' � S�T �IU*)IV0� � �*) �.+ ' � �-� � �0) � + ' � � �&�"�� + % �," $ �=% - � S�T �IU*)IV*� � �*) � + ' � �.� � �*) � + / � � �&�"�� + % �
�(� U��*�*%�� W ( X � � ��I��� �#" $ �=%Y- � S�T �IU*)IV*� � �*) � +./ � �.� � �*) � + ' � � �&�"�� + % �," $ �=% / � S�T �IU*)IV0� � �*) �.+ / � �-� � �*) � +./ � � �&�&� ,

where � of the previous program splits into two points
Z � �(1�8 � [ � 9�1(8 @

and this time we choose
2 �7� � �:[Y	7�\5 �7� �(1.Q � P 1�Q.	7�]; �4� Z ���
	 @

The intuition behind this program is similar. What is
interesting is that, despite the use of the multi-valued con-
struction U��*�*%�� , the overall result of the computation is sin-
gle valued. In other words, different computation paths will
give different shrinking sequences of intervals, but all of
them will shrink to the same number. A proof of this fact
and of correctness of the program is provided in Section 6,
using the techniques developed below.



3. Background

For domain-theoretic concepts, the reader is referred
to [1, 23], and for topological concepts to [28, 29] (see
also [13]). Here we briefly summarize the notions and facts
that are relevant for our purposes.

3.1. Continuous Domains

Let � be a set with a preorder � . For a subset � of �
and an element ����� we write� ��� 2)�����	�9�
�
� for some � in � @ �� ��� 2)�����	�9���
� for some � in � @ �� � � � 2%� @ � � � � � 2%� @�@
We also say that � is a lower set iff � � � � , and that �
is an upper set iff ��� � � .

Let � and � be elements of a directed complete par-
tial order (dcpo) 
 . We said that � is way-below or ap-
proximates � , denoted ��� � , if for every directed sub-
set � of 
 , ������� implies � ����� with ��� � . We
say that � is compact if it approximates itself. We define�� ��� 2)����
�� ��� � @ , �� �1� 2)����
�� ��� � @ and� � 
 � � 2%� ��
!���#" $%$'&)(+*-,)$�!�@ . We say that a sub-
set . of a dcpo 
 is a basis for 
 , if for every element �
of 
 the set �� �0/�. contains a directed subset with supre-
mum � . A dcpo is called a continuous domain if it has a
basis. A dcpo is called an algebraic domain if it has a basis
of compact elements. An example of an algebraic domain
is the domain 132 ��2.B ��:<;>= ? 8 � 3�576)8E@ of booleans, ordered
by B4� :<;>= ? 8 � B4��3�57698 .
3.2. The Interval Domain

The set 5 of non-empty compact subintervals of the Eu-
clidean real line ordered by reverse inclusion,

���
� iff ��6�� ,

is a continuous domain, referred to as the interval domain.
Here intervals are regarded as “partial numbers”, with the
singleton intervals playing the role of “total numbers”. If
we add a bottom element to 5 , then 5 becomes a bounded
complete continuous domain 5 2 . For any interval �7��5 ,
we write

� �8":9<; � and � ��$>=?*��
so that � �4� � � � 	 . Its length is defined by� �@� � � � � @
A subset �BAC5 has a least upper bound iff it has non-
empty intersection, and in this caseD � �FEG� �GH $I=-*'KJ)L � � ":9<;'KJ)L �)M @

The way-below relation of 5 is given by

�
� � iff � �
� and �/� � .

A basis for 5 is given by the intervals with distinct ra-
tional (alternatively dyadic) end-points.

The set N of all non-empty closed intervals contained
in the unit interval � � ���
	 is a bounded complete, countably
based continuous domain, referred as the unit interval do-
main. The bottom element of N is the interval � � ����	 .
3.3. Powerdomains

Powerdomains [21, 26, 27] are usually constructed as
ideal completions [15] of finite subsets of basis elements.
For our purposes, it is more convenient to work with their
topological representations [23, 1, 16], which we now sum-
marize. It is enough for our purposes to restrict attention toO -continuous dcpos, which we refer to as domains in this
subsection.

A subset � of a dcpo 
 is called Scott closed if it is
closed in the Scott topology, that is, if it is a lower set and
is closed under the formation of suprema of directed sub-
sets. We use the notation P = � � � for the topological closure
of � , i.e. the smallest Scott closed set containing � . A
lense is a non-empty set that arises as the intersection of
a Scott-closed set and a Scott compact upper subset. Here
the notion of Scott compact set is to be understood in the
topological sense (every cover consisting of Scott open sets
has a finite subcover). On the set of lenses of a dcpo 
 ,
we define the topological Egli-Milner ordering, �RQTSVU by� �WQTSVU 2

if
2 A � � and

� AXP = � 2 � . Notice that in
a finite domain such as the flat domain of booleans, the
lenses are just order-convex sets, and that the topological
Egli-Milner order coincides with the usual order-theoretical
one [13]. This is because in a finite domain the closed sets
are precisely the lower sets, and all sets are compact.

The Plotkin powerdomain Y[Z\
 of a domain 
 con-
sists of the lenses of 
 under the Egli-Milner order, and
the formal-union operation � ��. is given by actual union�0�+. followed by topological convex closure (intersection
of all convex closed sets containing it). There is a natural
topological embedding ] �-
 
 Y[Z\
 given by �
^
 2%� @ .

The Smyth powerdomain Y#_`
 consists of the set of non-
empty Scott-compact upper subsets ordered by reverse in-
clusion, with formal union given by actual union. In this
case, we have a natural topological embedding ] �a
 

Y _ 
 given by ��^
 � �

The Hoare powerdomain Y#bR
 consists of all non-
empty Scott-closed subsets of 
 ordered by inclusion. Be-
cause we use this to obtain a denotational model of our lan-
guage, we consider it in more detail. Least upper bounds
are given by Dc J)d � c ��P =fec J)d � c @



The construction is the functor part of a monad, with action
on continuous maps given by�� � Y b 
 
 Y b��� ^
 P = � � � 	
for any

� �-
 
 � . Its unit is given by]�� � 
 
 Y bR
� ^
 � � �
which is also a topological embedding. Instead of consid-
ering multiplication, one can equivalently consider the ex-
tension operator [19, Proposition 2.14], in this case given
by �� � Y b 
 
 Y b��� ^
 P =�� 'KJ)L � �
for any continuous map

� �a
 
 Y[b�� . Finally, formal
unions are given by actual unions as in the case of the Smyth
powerdomain: � � . �8����. @
4. Semantics of the Multi-valued Construction

In order to make the development of the introduction pre-
cise, we assume that we are given a functorial powerdomain
construction Y , in a suitable category of domains, with a
natural embedding ] � �-
 
 Y 

and a continuous formal-union operation�&� � � ���<Y 
 � Y 
 
 Y 

for every domain 
 . Then the definition of the function &!,#%$&!,')( *�� � 
 Y 1 , where ���C
 are real numbers, can be
formulated as

 "!"#%$&! '9( * � �.� �
	
� 
� ] � 3�5 6989� � if ��� ������� � 	 ,] � 3�5 6989� � ] � :<;>= ? 8)� � if ��� � � � 
�� ,] � :<;>= ? 8)� � if ��� � 
 � � � .

Because in our language there will be computations on the
reals that diverge or fail to fully specify a real number, we
need to embed the real line into a domain of total and par-
tial real numbers. We choose to work with the domain 5 2 ,
where 5 is the interval domain introduced in Section 3.
Similarly, as usual, we enlarge the domain 1 of booleans
with a bottom element. Hence we have to work with an
extension 5
2 
 Y 1 2 of the above function, which we
denote by the same name:

�  "!"#)$�! '9( *�
 Y 1

5
2�
�

 "!"#)$�!�')( * 
 Y 1 2 @�

For the moment, we do not insist on any particular exten-
sion. However, in order for a powerdomain construction to
qualify for a denotational model of the language, the mini-
mum requirement is that it makes the  "!"#%$&!�')( * function con-
tinuous.

Lemma 1. If  "!"#)$�!�')( **�<5 2 
 Y 1 2 is a continuous exten-
sion of the function  "!"#)$�!�')( *D�-� 
 Y 1 , then the inequali-
ties

] � 3�5 6989� � ] � 3�576)8 � � ] � :<;>= ? 8 � �] � :<;>= ? 8)� ��] � 3�576)8 � � ] � :<;>= ? 89�
must hold in the powerdomain Y 1 2
Proof. Because the embedding ��� 
 5�2 is continuous
when � is endowed with its usual topology and 5 2 with
its Scott topology, so is its composition with the function
 &!,#%$&! ')( * �<5
2 
 Y 132 , which we denote by

[ � � 
 Y 132 .
(This is the diagonal of the above commutative square). In
any dcpo, the relation � ��� holds if and only if every
neighbourhood of � is a neighbourhood of � . Let � be
a neighbourhood of � � �G] � 3�5 698)� . We have to show that� � � ] � 3�5 698)� � ] � :<;>= ? 8 �7��� . The set �<� � [����A� � �
is open in � by continuity of

[ � � 
 Y 1 . Because[ � � ������� � , we have that ��� [!�"�A� � � �#� . Hence,
because � is open in � , there is an open interval

�%$ ��& � with� � �'$ �(& � A)� . Choose � such that � �1�0� & and �0��
 ,
that is, such that � � � � � 
4� / �%$ ��& �WA*� . By construction,[ � �.� � � . But ��� [ ��� � � � , which shows that � �+� and
hence that �3� � , which amounts to the first inequality. The
second inequality is obtained in the same way.

Thus, only powerdomains satisfying the above two in-
equalities qualify. In particular, this rules out the Plotkin
and Smyth powerdomains. In fact, for the Plotkin powerdo-
main one has that ] � 3�576)89� �F2%3�5 698A@ and ] � :<;>= ? 8)���C2 :<;>= ? 8 @ ,
and their formal union is 2%3�5 698 �&:<;>= ? 8 @ because this set is
order-convex, but the sets 2%3�5 698A@ and 2%3�5 698 ��:<;>= ? 8A@ are in-
comparable in the Egli-Milner order. For the Smyth pow-
erdomain, the same sets are obtained by the embedding,
formal union is given by actual union, and hence the in-
equalities do not hold because the order is given by reverse
inclusion. We omit routine proofs of the fact that e.g. the
mixed [14] and the sandwich [4] powerdomains also fail to
make the  &!,#%$&! ')( * construction continuous.

On the other hand, for the Hoare powerdomain, the
inequalities do hold. In fact, ] � 3�576)8 ��� 2%3�5 698 � B @ and] � :<;>= ? 89�
� 2 :<;>= ? 8 � B @ , their formal union is their actual
union 243�576)8 ��:<;>= ? 8 � B @ , and the ordering is given by inclu-
sion. Moreover:

Proposition 2. There is a continuous extension &!,#%$&! b ')( * �<5 2 
 Y b 1 2 of the function  "!"#%$&!�')( * � � 
 Y 1 .
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{      }

{false}

{true,false}

{true}
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Figure 1. Powerdomains of 1 2 .
Proof. The functions

� ��� �T5�2 
 Y 1 2 defined by

� � �.� �
� ] � 3�5 698)� � if � A ������� 
4� ,
B � otherwise,

� � �-� �
� ] � :<;>= ? 8 � � if ��A � � � � � ,
B � otherwise

�
are easily seen to be continuous, and they are consistent be-
cause ] � 3�57698)� and ] � :<;>= ? 8 � are consistent elements. Hence
their join

 "!"#)$�! b ')( * � ��� �
is well-defined and continuous. An easy verification shows
that this function has the required extension property.

As we want to match our model with the operational se-
mantics of the construction, it would be desirable to dis-
tinguish between the elements 2%3�5 698 @ and 243�57698 � B @ in the
model. However, the Hoare powerdomain does not distin-
guish them, and, on the other hand, as we have just seen,
other powerdomains do not give a continuous interpreta-
tion of our construction. In order to overcome this prob-
lem when the Hoare powerdomain is used as a denotational
model, one usually decomposes proofs of program correct-
ness into partial correctness and termination. A related ap-
proach is considered in Section 6.

From now on, we denote  "!"#)$�! b ')( * �?5
2 
 Y 1 2 simply
by 5 3�8 ? 3 ')( * . In our applications, we are only interested in the

situation ����� ��
 � �
and the restriction of this function

to the domain N of closed subintervals of the interval � � ����	 ,
again written 5 3�8 ? 3"'9( *0�)N 
 Y 1 2 .

Before proceeding to the main goal of this paper, we
briefly digress to discuss a natural variation  "!"#%$&!�� ')( * � � 

Y 1 of the  "!"#)$�! ')( * construction, defined by

 "!"#)$�! � ')( * � �.� �
	
� 
� ] � 3�576)89� � if � � �&����� � � ,] � 3�576)89� ��] � :<;>= ? 8 � � if � � � � � 
 	 �] � :<;>= ? 89� � if � � � 
 � � � .

With a proof similar to that of Lemma 1, we conclude that
if  "!"#)$�! � '9( * is continuous then ] � 3�576)89� � ] � :<;>= ? 89� ��] � 3�5 698)� �] � 3�576)89� �4] � :<;>= ? 8 ��� ] � :<;>= ? 8)�
@ This rules out the Plotkin
and Hoare powerdomains, but not the Smyth powerdo-
main. However, it is not clear what the operational (and
indeed constructive) counterpart of this function would be.
Hence we stick to the construction as originally proposed
by Boehm and Cartwright.

5. A Programming Language for Sequential
Real-Number Computation

We introduce the language LRT for the  "!"#%$&! construc-
tion, which amounts to the language considered by Es-
card ó [6] with the parallel conditional removed and a con-
stant for 5 3�8 ? 3 ')( * added. We remark that this is a call-by-
name language. Because real-number computations are in-
finite, and there are no canonical forms for partial real-
number computations, it is not clear what a call-by-value
operational semantics ought to be. We leave this as an open
problem.

Syntax. The language LRT is an extension of PCF with
a ground type for real numbers and suitable primitive func-
tions for real-number computation. Its raw syntax is given
by

� � � � [�� � 
 Z � �
� � � � �*)I� ��	 $�$ ++��
#� � 
 � �� � � � � � � � ��U
��� ��� ) + %.� � � ���9� � � �W� ��� �9� � � � �� ���>� � � �W�����3� ����� � � � + % � �	� " $ �=% ' � � �W��0) � + ' � � �W� U��*��%(� ')( * � � � ��� � � � @ �	� � � ���T� �

where the subscripts of the constructs " $ �&% , �*) � + are ratio-
nal intervals and those of U��*��%(� are rational numbers. (We
apologize for using the letters � and 
 to denote numbers
and intervals in different contexts.) Terms of ground type 

are intended to compute real numbers in the unit interval.

It is convenient for our purposes to first define the deno-
tational and then the operational semantics.



Denotational Semantics. The ground types 	 $�$ + � ��)I�
and 
 are interpreted as the Hoare powerdomain of the do-
mains of natural numbers, booleans and intervals, and func-
tion types are interpreted as function spaces in the category
of dcpos:

� ��)I��� ��Y b�� 2 � � 	 $�$ + � �8Y b 1 2 � � 
 � �8Y b N �
��� 
�� � � ��� � 
	�
� � @

This reflects the fact that we are considering a call-by-name
language.

The interpretation of constants in LRT is defined as fol-
lows:

� ��U ����� ��] � 3�5 698)� ��� � ) + % ��� ��] � :<;>= ? 8)� ��� �
� ��] ��� � �
�,� ���9� � ��� � ���)� ���,��� �9� � ��� �&� �)� ���"� � � � � ���� ���>� �

� " $ �&% ' � � �P�� �)? ' ��� �*) �.+ ' � ���3 ;�� = ' �
� U��*��%�� ')( * � � 5 3�8 ? 3 ')( * � � � � ��� � � D�� "! � � � B � �

� ��� � � . � � �$# ���
	


� 


�
� � if .D�8] � 3�576)8 � ,# �

if .D�8] � :<;>= ? 8 � ,� � # � if .D�8] � 3�576)8 � � ] � :<;>= ? 89� ,
B � if .D��B @

Here the symbols ] ��� � are defined as in Section 3.3, the
functions

� ���)� �%��� �9� �%� ���>� are the standard interpretations
in the Scott model of PCF, the functions P%� �9? ' � 3 ;�� = ' are de-
fined in Section 2, and the function 5 3�8 ? 3 ')( * is defined in
Section 4.

Operational Semantics We consider a small-step style
operational semantics for our language. The rules are those
given in [6], with the cases for the parallel conditional re-
moved and the following added:

1. U��*��%�� *&( & � " $ �=% '(' � 
 ��U
��� " ; �/�!� ,
2. U��*��%�� *&( & � " $ �=% ' ' � 
 � ) + %.� " ;�
��
� ,

3. U��*��%�� *&( &)' 
 U��*��%(� *&( &)'+* " ; ' 
 '+* @
Notice that if the interval � is contained in the interval � 
 � � 	
the first two rules can be applied. Of course, the role of
the third rule is to obtain more information when the first
and second rules cannot be applied. For that purpose, the
following rule from [6] plays a crucial role:

4. ".$ �=% ' � " $ �&% *,' � 
 " $.�=% '�*-' .

Here the interval � 
 is defined to be P�� �9? ' � 
�� , where P�� �9? is
the extension to the interval domain of the function defined
in Section 2. This rule is justified by the associativity law� � 
 �-��� � � 
4� � . The idea is that both � and 
 give partial in-
formation about a real number, and � 
 is the result of gluing
the partial information together in an incremental way.

We now introduce a notion of operational meaning of a
term, where the operational values are taken in a powerdo-
main too. The difference of this operational semantics with
the denotational semantics given above is that the former is
obtained by reduction but the latter is obtained, as usual, by
compositional means.

Definition 3. Firstly, we define the operational meaning of
closed terms ' of ground type . in

�
steps of computation,

written � ' 	 c , which is to be an element of the domain
� . � .

If ' � 
 , then we define

� ' 	 c � � 2 ] � � �W� � ' � �0/21 � � ' 3
 ".$ �=% ' ' � @
if this set is non-empty, and � ' 	 c � B otherwise. Here

the relation 3
 denotes the / -fold composition of the rela-
tion



.

If ' � �*)I� , then we define

� ' 	 c � � 2K] � � �W�)�4/51 � � ' 3
 � @
if this set is non-empty, and � ' 	 c � B otherwise. The
operational meaning of ' ��	 $�$ + is defined similarly.

It is immediate that � ' 	 c �,� ' 	 c76 � . Hence we can de-
fine

� ' 	 � D c � ' 	 c @
Of course, only in the case of the ground type of real num-
bers this definition is non-trivial, but it is convenient to have
a uniform treatment for all types.

Computational Adequacy. In our setting, computational
adequacy amounts to the equation � ' 	 � � ' � for all
closed terms ' of ground type, where � ' 	

is the opera-
tional meaning of ' and

� ' � is the denotational meaning
of ' defined above.

For a deterministic language such as PCF, soundness
of the denotational semantics follows from the fact that
' 
98

implies
� ' � � ��8 � . For our non-deterministic

language, we rely on the following:

Lemma 4.
� ' � � � 2 ��8 � � ' 
:8 @ .

Proof. By structural induction on ' .

Lemma 5. For every ; , � ' � � � 2 ��8 � � ' <
:8 @ .
Proof. By induction on the length ; of the evaluation using
the previous lemma.



Lemma 6 (Soundness). For all closed terms M of ground
type,

� ' 	 � � ' � @
Proof. It suffices to show that, for all closed terms ' of
ground type,

� ' 	 c � � ' � @
Let 
 � � ' 	 c � 
1B� B . By definition, 
7��� for some �
and ' � such that '

c
 ".$ �=% ' ' � . Because �P�� �)? ' � ' � � �� " $ �=% '�' � � , Lemma 5 shows that 
R� � � ".$ �=% ' ' � � . There-
fore 
#� � ' � because � ��P�� �9? ' � �-� for all ����N , and in
particular for all ��� � ' � � .

In order to establish completeness, we proceed as
in [22, 6].

Definition 7. We define a notion of computability for closed
terms by induction on types as follows:

� A closed term ' of ground type is computable when-
ever

� ' � ��� ' 	
,

� A closed term ' � �4
��
is computable whenever

' � � � is computable for every closed computable
term

�
of type

�
,

An open term ' � � with free variables � � � @�@�@ � � � of type� � � @�@�@ �$� � is computable whenever � 8 � 1 � � 	������ � 8 � 1 � � 	 '
is computable for every family

8 c � � c of closed computable
terms.

Because Y b � 
/� is a continuous domain if 
 is, we
have:

Lemma 8. A closed term ' of ground type is computable
iff for every ��� � ' � there is

�
with �G� � ' 	 c .

Proof.
��� � Suppose that ' is computable and let � �� ' � . We have that � ' 	 � �O� ' 	
	 � �����

is a chain whose
supremum is � ' 	

, and hence there is
�

with �G��� ' 	 c . ��� �
By continuity of the Hoare powerdomain of a continuous
domain, in order to show that

� ' � � � ' 	
, it suffices to

show that for all � � � ' � , � �O� ' 	
. But this holds by

hypothesis.

Lemma 9. For any continuous function
� �R
 
 � of

continuous dcpos, if �7� � � �-� then there is � � � � with�#� � � � � � .
Proof. See [1] or [13].

Lemma 10 (Completeness). Every term is computable.

Proof. The proof is by structural induction on the forma-
tion rules of terms. Here we only consider the constantU��*��%�� ')( * . We have to show that if ' is computable, then
so is U��*��%�� ')( *,' .

Assume that
� U��*��%�� ')( *$' � B� B for computable ' of

type 
 . Let � � � U��*��%�� ')( *$' � . We need to show that
there is

�
with � � � 5 3�8 ? 3"')( * ' 	 c . Because U��*��%�� ')( * � ' � �5 3�8 ? 3"')( * � ' � , Lemma 9 shows that there is �X� � ' � with� � 5 3�8 ? 3"')( *I� . As ' is computable, there is ; such that� � � ' 	
< .We proceed by cases on � :

(a) �C��B : immediate.

(b) � � 243�57698 � B @ : Then 2%3�5 698 � B @ � 5 3�8 ? 3,')( * � and
hence 2%3�5 698 � B @ � 5 3�8 ? 3"')( *�� ' 	

< because 5 3�8 ? 3"')( * is mono-
tone and �B� � ' 	

< . This means that 3�576980� 5 3�8 ? 3"'9( *�� ' 	
< ,and hence there is �
� � ' 	

< such that 3�57698 � 5 3�8 ? 3 ')( * � �&� .
By definition of � ' 	

< , �	�6� ' 	
< implies that there is

' � with ' 3
 ".$ �=%�
 ' � for /�1:; . Because 3�5 698��5 3�8 ? 3"')( * � �&� , we conclude that ��� 
 , so we have a reduc-

tion U��*��%�� '9( * � ".$ �=% 
 ' � � �
 ��U
��� and then a reductionU��0��%�� '9( *$' 3
 U��*��%�� ')( * � " $ �=%�
 ' � � �
 ��U ��� . HenceU��0��%�� '9( *$' 3
6 �
 ��U
��� � / 1 ; . and we can take

� ��/ � �
.

(c) �C� 2 :<;>= ? 8 � B @ . Similar to (b).

(d) � � 243�57698 ��:<;>= ? 8 � B @ : Then 2%3�5 698 �&:<;>= ? 8 � B @ �5 3�8 ? 3"')( *I� and 243�576)8 ��:<;>= ? 8 � B @ � 5 3�8 ? 3"')( *�� ' 	
< because5 3�8 ? 3 ')( * is monotone and � � � ' 	

< . This means that3�5 698�� 5 3�8 ? 3 ')( * � ' 	
< and

:<;>= ? 8�� 5 3�8 ? 3 '9( * � ' 	
< , and hence

there are � ��� � � ' 	
< such that 3�57698 ��5 3�8 ? 3 '9( * � �&� and:<;>= ? 8 � 5 3�8 ? 3 '9( * ��� � . By definition of � ' 	

< , we con-
clude that there are ' � � ' � � and

Z � Z � 1 ; such that

'
W
 " $.�=% 
 ' � and '

W
*
 " $ �=%�� ' � � . Because 3�576)8 �5 3�8 ? 3"')( * � �&� , we deduce that � ��
 . We then have a reductionU��0��%�� '9( * � ".$ �=% 
 ' � � �
 ��U
�*� , from which it follows thatU��0��%�� '9( *$'

W
 U��0��%�� '9( * � ".$ �=%�
 ' � � �
 ��U
�*� , and hence

that U��0��%�� ')( * '
W 6 �
 ��U
��� . Because

:<;>= ? 8�� 5 3�8 ? 3,')( * ��� � ,
we conclude that � � �

, and so we have a reductionU��0��%�� '9( * � ".$ �=% � ' � � � �
 � ) + % � , from which it follows that
U��0��%�� '9( *$'

W
*
 U��*��%�� ')( * � " $ �=% � ' � � � �
 � ) + % � , and so

U��0��%�� '9( *$'
W 6 �
 ��U
��� and U��0��%�� ')( *$'

W
* 6 �
 � ) + % � . Hence

we can take
� � Z � Z �I� �

.

Soundness and completeness show that

Theorem 11. Computational adequacy holds.

6. Program Correctness

In this section, we assume that during evaluation, no re-
dex can be infinitely delayed. Intuitively, this means that
the reduction rule 3 for U��*��%�� ')( * cannot be applied in-
finitely often, giving rise to a divergent computation, unless
rules 1 and 2 are never applicable. This restriction to the



operational semantics could have been imposed in the for-
mulation of computational adequacy, but it does not make
any difference, because B is always a possible denotational
value of any term.

Computational adequacy allows us to prove partial cor-
rectness, but given that denotationally B is always a pos-
sible result, it does not allow us to prove total correctness.
To overcome this problem, we introduce a generalization of
the notion of termination.

Definition 12. A term ' of type 
 is strongly convergent if
for every infinite reduction sequence

' 
 ' � 
 ' 	 
 @�@�@ �
and every � � � there is

�
such that ' c is of the form".$ �=% *,' � with � 
 � ��� .

We henceforth refer to strong convergence as simply
convergence for the sake of brevity. The following is im-
mediate from definition 12.

Lemma 13. A term ' of type 
 is convergent iff for every
reduction sequence

' ! 
 6 ' � 
 6 ' 	 
 6 '�� 
 6 ����� �
with ' � ' ! and every � ��� there is

�
such that ' c is of

the form
" $ �&% ' ' � with � � � ��� .

Lemma 14. If a term ' is of the form
" $ �&% ' ' � and

' 
�� 8
then

8
is of the form

" $.�=% * 8 � with ����
 .
Proof. By case analysis of the reduction rules for " $ �&% ' .
According to the complete set of rules that define the oper-
ational semantics [6], if the reduction is in zero steps we are
done, otherwise there are two cases:

(1): If " $ �=% ' � " $.�=% * 8 � � 
 ".$ �=% '�* 8 � , then ' � is of
the form " $.�=% * 8 � with � � � 
 . Hence

8
is of the form".$ �=% '4* 8 � ,

(2): If " $.�=% ' ' � 
 ".$ �=% ' ' � � and ' � 
 ' � � , then
8

has to be of the form " $ �=% ' ' � � for ' � 
 8 � , and hence
we can take 
 � � .

The following lemma is immediate:

Lemma 15. If a term ' is convergent and ' 
�� 8
then8

is convergent.

Lemma 16. If ' is a convergent term then
" $ �=% ' � ' � and�0) � +A' � ' � are convergent.

Proof. The proof is by induction over the number of reduc-
tion steps. The first is trivial, but the second is not.

As an application, we indicate how the programS�T �IU*)IV0� defined in Section 2 can be shown to be correct
using our denotational semantics and the notion of strong
convergence. In view of computational adequacy, partial
correctness of the program can be formulated as follows:

Lemma 17.
� S�T � U*)IV*� � � ] � �-� � ] � � �&����] � � � � � for all total

� � � �+N .

To prove this, we use the following lemma. As usual,
a recursive program is interpreted as the least fixed point
of a functional extracted from the program. For the pro-
gram

S�T �IU*)IV*� , we denote this functional by
� �a
 
 


where, according to the denotational interpretation of types,
 has to be the domain
� Y[b N � Y b N 
 Y b N � . Then� S�T �IU*) V*� � � ���	��
 8A5 ;
� 8 � , where ��
 8A5 ;
� 8 � � � � � B � .

Lemma 18. For all total � � �
�#N , the following conditions
hold:

1.
� ��
 8A5 ;
� 8 � � � ] � �-� � ] � � �&� is of the form

� � � for
� � A N

finite,

2. � E � 1������� � � 6 � for each
E � � � ,

3.
� � ��] � � � � � .

To conclude, we need to establish the following:

Lemma 19. If
8 � �$8 	 � 
 are convergent terms thenS�T �IU*)IV*� �
8 � �$8 	 � is convergent.

Lemma 17 amounts to commutativity of the diagram

� � ��� 
 N � N � 
 Y b N � Y b N
�

� � � 
 N � 
 Y b N �
� S�T �IU0)IV*� ��

where
� � � � ���
	 and the horizontal arrows are the obvi-

ous inclusions. The results of Escard ó, Hofmann and Stre-
icher [8] show that the diagram cannot be completed with
a sequentially computable down arrow N � N 
 N . Thus,
we overcome the problem by allowing our program to be
multi-valued at partial inputs. Lemma 18 shows that the
single-valued output of the program at a total input arises
as the least upper bound of multi-valued partial outputs. In
other words, there are different computation paths that give
different, but consistent partial results at finite stages, but all
of them converge to the same total real number.

7. Conclusion and Ongoing Work

The sample application given in Section 6 illustrates two
important ideas discussed in the introduction:



1. By considering a multi-valued or non-deterministic
construction, it is possible to have sequential programs
for important functions that only admit parallel real-
izations in the (singled-valued) interval-domain model,
overcoming the problem identified by Escard ó, Hof-
mann and Streicher [8].

2. In order to obtain total correctness from partial cor-
rectness, a generalization of the notion of termination
is needed in the case of real-number computations.

Regarding 1, we know that, in fact, all computable first-
order functions are definable in the language, and we have
some partial results regarding definability of second-order
computable functionals such as definite integration. This
will be reported elsewhere, but we remark that the ideas
regarding 2 are applied for that purpose.

It is an open problem to find a denotational semantics
which would allow to prove total correctness without the
need of resorting to operational methods such as strong con-
vergence. As we have seen, the Plotkin and Smyth power-
domains cannot be used for that purpose either. In fact, the
results of Section 4 immediately imply that even other pow-
erdomains such as the sandwich and the mixed powerdo-
main cannot be used. Moreover, it is easy to verify that any
of the known powerdomains which do not arise as the com-
position of powerdomains with the Hoare powerdomain as
the last component in the composition cannot be used.
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