
Induction and recursion on the partial real line
via biquotients of bifree algebras

Mart́ın Hötzel Escardó
Department of Computing

Imperial College
180 Queen’s Gate

London SW7 2BZ, United Kingdom
m.escardo@doc.ic.ac.uk

Thomas Streicher
Fachbereich Mathematik

Technische Hochschule Darmstadt
Schloßgartenstraße 7

64289 Darmstadt, Germany
streicher@mathematik.th-darmstadt.de

Abstract

The partial real line is the continuous domain of
compact real intervals ordered by reverse inclusion.
The idea is that singleton intervals represent total real
numbers, and that the remaining intervals represent
partial real numbers. The partial real line has been
used to model exact real number computation in the
framework of the programming language Real PCF.

We introduce induction principles and recursion
schemes for the partial unit interval, which allow us
to verify that Real PCF programs meet their specifi-
cation. The theory is based on a domain-equation-like
presentation of the partial unit interval, which we refer
to as a biquotient of a bifree algebra.

1. Introduction

The partial real line is the continuous domain
of compact real intervals ordered by reverse inclu-
sion [20]. The idea is that singleton intervals represent
total real numbers, and that the remaining intervals
represent (properly) partial real numbers. This is jus-
tified by the fact that the singleton map x 7→ {x} is a
topological embedding of the Euclidean real line into
the partial real line endowed with its Scott topology.
Moreover, the Lawson topology on the partial real line
coincides with the Hausdorff topology considered in
interval analysis [15], as it is shown in [9].

The partial real line has been used to model exact
real number computation in the framework of the pro-
gramming language Real PCF [6, 8], including com-
putation of integrals [3].

We introduce induction principles and recursion

schemes for the partial unit interval (the domain of
closed subintervals of the unit interval with end-points
0 and 1), which allow us to verify that Real PCF pro-
grams meet their specification.

The induction principles and recursion schemes dis-
cussed in this paper resemble the so-called Peano ax-
ioms for natural numbers, and they abstractly char-
acterize the partial unit interval up to isomorphism,
without reference to real numbers or intervals. Essen-
tially, we replace zero and the successor function by
the linear maps x 7→ x/2 and x 7→ (x + 1)/2, which
play the rôle of partial real number constructors. This
is related to binary expansions.

Preliminary ideas on recursion and induction on
the real line appeared in [5], which considers uniform
spaces. Our axioms are formulated in the ambient
category of continuous Scott domains [1].

In domain theory one usually derives induction
principles and recursion schemes from canonical so-
lutions of domain equations [14, 24, 18]. Since the
partial real line is not algebraic, it is not the canon-
ical solution of any domain equation involving usual
functors.

We establish new results about the notion of in-
ductive retraction introduced in [8], which generalizes
canonical solutions of domain equations by means of
ideas similar to those of Freyd [11, 12]. In particular,
we introduce the notion of a biquotient of a bifree al-
gebra, and we show that the inductive retractions are
the biquotients of the bifree algebras.

An interesting observation is that the Peano-like
axioms discussed above consider only induction and
recursion, but the inductive retraction induced by
them gives rise to coinduction and corecursion.

The techniques discussed here in a more general



setting were also applied in conjunction with the tech-
nique introduced in [26] to establish universality of
Real PCF extended with a certain computable exis-
tential quantifier [8].

2. The partial unit interval

In this paper a domain is a bounded complete con-
tinuous dcpo with bottom [1]. The domain I = I[0, 1]
of closed subintervals of the unit interval I = [0, 1],
ordered by reverse inclusion, is referred to as the par-
tial unit interval. The elements of I are referred
to as partial real numbers, and a real number r is
notationally identified with the singleton interval {r}
and referred to as a total real number.

Any continuous function f : I → I has a Scott
continuous canonical extension If : I → I de-
fined by If(x) = {f(r)|r ∈ x}. If f is increas-
ing w.r.t. to the natural order of real numbers then
If(x) = [f(inf x), f(sup x)]. A function f : I → I
is notationally identified with its canonical extension
If : I → I, and we often define a function f : I → I
by first defining a function f : I→ I and then implic-
itly taking its canonical extension.

3. Peano-like axioms for the partial unit
interval

Full proofs of the result of this section can be found
in [7]. Define consL, consR : I → I by

consL(x) = x/2 consR(x) = (x + 1)/2.

That is, consL and consR are the unique increasing
affine maps such that

consL(⊥) = L consR(⊥) = R,

where L = [0, 1/2] and R = [1/2, 1].
In this section we consider consL and consR as par-

tial real number “constructors”, in a similar fashion as
zero and successor are considered as natural number
constructors. An important difference is that the nat-
ural numbers together with zero and successor form a
free algebra, whereas I together with consL and consR

will form a kind of quotient of a free algebra with re-
spect to some equations. The main such equation is

consL(1) = consR(0).

Another important difference is that natural numbers
are constructed from zero by finitely many applica-
tions of the successor function, whereas the elements

of I are constructed “from nothing” by infinitely many
applications of consL and consR. For example, every
total x ∈ I can be constructed as

x =
⊔↑

n

consa1 ◦ · · · ◦ consan(⊥)

for some sequence ai ∈ {L,R} corresponding to a bi-
nary expansion of x. Partial real numbers are con-
structed by iterating consL and consR in a more elab-
orate way, as it is shown in §5.2.

The predecessor function, undefined or arbitrarily
defined at zero, is a left inverse of the successor func-
tion. Similarly, consa has a left inverse taila defined
by

tailL(x) = min(2x, 1), tailR(x) = max(0, 2x− 1).

The fact that every number is either zero or a successor
can be expressed by the equation

n = if n = 0 then 0 else succ(pred(n)).

Let B be the flat domain of truth values, define head :
I → B by

head(x) =





tt if sup x < 1/2,

ff if inf x > 1/2,

⊥ otherwise

and the parallel conditional by

pif p then x else y =





x if p = tt,
y if p = ff,
x u y if p = ⊥.

Lemma 3.1 (Elementary axioms)

tailL(consL(x)) = x

tailL(consR(y)) = 1
tailL(consL(x) u consR(y)) = x u 1

tailR(consL(x)) = 0
tailR(consR(y)) = y

tailR(consL(x) u consR(y)) = 0 u y

head(consL(x)) v tt

head(consL(x)) = ⊥ iff x v 1

head(consR(y)) v ff

head(consR(y)) = ⊥ iff y v 0

x = pif head(x)
then consL(tailL(x)) else consR(tailR(x)).



Given a set X, an element x ∈ X and a function
g : N→ X, there is a unique function f : N→ X such
that f(0) = x and f(n+1) = g(n). A similar fact holds
for I equipped with consL and consR, but we have to
take into account the equation consL(1) = consR(0).

Lemma 3.2 (Definition by cases) Let D be a do-
main and gL, gR : I → D be continuous maps such
that

gL(1) = gR(0).

Then there is a unique continuous map f : I → D
such that

f(consL(x)) = gL(x)
f(consR(y)) = gR(y)

f(consL(x) u consR(y)) = gL(x) u gR(y)
if x v 1 and y v 0,

namely the function f defined by

f(x) = pif head(x)
then gL(tailL(x)) else gR(tailR(x)).

The natural numbers enjoy an induction principle,
which can be expressed by saying that if a set of nat-
ural numbers contains zero and is closed under the
successor operation, then it contains all natural num-
bers. A similar principle is enjoyed by the partial unit
interval endowed with the operations consL and consR.

A subset of a domain D is called inductive if it
closed under the formation of least upper bounds of
directed subsets.

Lemma 3.3 (Dyadic induction) Let A ⊆ I be in-
ductive, and assume that the following conditions hold:

1. (Base case) ⊥ ∈ A.

2. (Inductive step) x ∈ A and y ∈ A imply

(a) consL(x) ∈ A,

(b) consR(y) ∈ A,

(c) consL(x) u consR(y) ∈ A
if x v 1 and y v 0.

Then A = I.
We can define functions on natural numbers by itera-
tion. If X is a set, x is an element of X and g : X → X
is a function, then there is a unique function f : N→
X such that f(0) = x and f(n +1) = g(f(n)). A sim-
ilar fact holds for the partial unit interval equipped
with consL and consL. We first need a lemma:

Lemma 3.4 (Dyadic recursion) Let D be a do-
main, gL, gR : D → D be continuous maps, and
f : I → D be any continuous solution to the func-
tional equation

f(x) = pif head(x)
then gL(f(tailL(x))) else gR(f(tailR(x))).

Then the following statements hold:

1. f(0), f(1) and f(⊥) are fixed points of gL, gR

and gL u gR respectively.

2. f is uniquely determined by the values that it
assumes at 0, 1, and ⊥.

3. f is the least solution iff f(0) = fix gL, f(1) =
fix gL, and f(⊥) = fix (gL u gR).

In particular, if gL, gR, and gL u gR have unique fixed
points then f is the unique solution.

Lemma 3.5 (Dyadic iteration) Let D be a do-
main, and gL, gR : D → D be continuous maps such
that

gL(fix gR) = gR(fix gL).

Then there is a unique continuous map f : I → D
satisfying the equations

(Base case)

f(0) = fix gL

f(1) = fix gR

f(⊥) = fix (gL u gR)

(Iteration step)

f(consL(x)) = gL(f(x))
f(consR(y)) = gR(f(y))

f(consR(x) u consR(y)) = gL(f(x)) u gR(f(y))
if x v 1 and y v 0,

namely the least continuous solution to the equation of
Lemma 3.4.

Finally, the set of natural numbers is uniquely spec-
ified, up to isomorphism, by the so called Peano ax-
ioms, which are essentially the properties that we in-
formally considered above for the sake of motivation.
This idea is made formal in e.g. Stoll [25], where unary
systems are used as a tool (a unary system is a set
X together with an element x ∈ X and a function
s : X → X).



In the following definition, the domain D general-
izes the partial unit interval and the maps aL and aR

generalize the constructor maps consL and consR re-
spectively.

Definition 3.6 A binary system is a domain D
equipped with a pair of continuous maps aL, aR : D →
D such that

aL(1) = aR(0),

where 0 def= fix aL and 1 def= fix aR.
We also impose the technical condition fix (aL u

aR) = ⊥, which ensures that homomorphisms defined
below, as Lemma 3.5 suggests, make binary systems
into a category under ordinary function composition.

A homomorphism from a binary
system (D, aL, aR) to a binary system (E, bL, bR) is
a continuous map f : D → E such that

f(0) = 0
f(1) = 1
f(⊥) = ⊥

f(aL(x)) = bL(f(x))
f(aR(y)) = bR(f(y))

f(aL(x) u aR(y)) = bL(f(x)) u bR(f(y))
if x v 1 and y v 0. ¤

Binary systems were introduced and investigated in
the context of uniform spaces in the extended ab-
stract [5]. Lemma 3.5 can be formulated as

Theorem 3.7 (I, consL, consR) is an initial object
in the category of binary systems.

Compare the following lemma to Lemmas 3.1
and 3.2, where cL, cR, h, tL, tR play the rôle of consL,
consR, head, tailL, and tailR respectively:

Lemma 3.8 Let D = (D, cL, cR) be a binary system.
Then there is at most one triple of continuous maps
h : D → B and tL, tR : D → D such that

tL(cL(x)) = x

tL(cR(y)) = 1
tL(cL(x) u cR(y)) = x u 1

tR(cL(x)) = 0
tR(cR(y)) = y

tR(cL(x) u cR(y)) = 0 u y

h(cL(x)) v tt

h(cL(x)) = ⊥ iff x v 1

h(cR(y)) v ff

h(cR(y)) = ⊥ iff y v 0

x = pif h(x) then cL(tL(x)) else cR(tR(x)).

Definition 3.9 If such maps exist then they are
called the destructors of (D, cL, cR). ¤

Definition 3.10 A binary system (D, cL, cR) satis-
fies the dyadic induction principle if for any in-
ductive set A ⊆ D the conditions

1. (Base case) ⊥ ∈ A,

2. (Inductive step) x ∈ A and y ∈ A imply

(a) cL(x) ∈ A,

(b) cR(y) ∈ A,

(c) cL(x) u cR(y) ∈ A if x v 1 and y v 0

together entail that A = D. ¤

Definition 3.11 A binary system (D, cL, cR) is in-
ductive if

1. 0 and 1 are the unique fixed points of cL and cR.

2. 0 6= 1 and 0 u 1 = ⊥.

3. It has destructors.

4. It satisfies the dyadic induction principle. ¤

The following theorem axiomatically characterizes the
binary system (I, consL, consR) up to isomorphism,
without explicit reference to real numbers or intervals.

Theorem 3.12 A binary system is inductive iff it is
initial. In particular, any two inductive binary sys-
tems are isomorphic.

4. Bifree algebras generalized

In this section we introduce a new technique for
defining structural recursion schemes based on the the-
ory of domain equations. The basic idea is to consider
not a distinguished domain D such that D ∼= FD,
but instead a domain D such that D is a retract of
FD in a special way. We refer to such a domain D
as an F-inductive retract. It turns out that F-
inductive retracts generalize special F-invariant ob-
jects in the sense of Freyd [11, 12]. We therefore could
have adopted the (rather long) terminology special
semi-invariant object.



4.1. Inductive retractions

In the remaining of this section X is any category
and F is an endofunctor of X.

We first recall a concept due to Freyd [12]:

Definition 4.1 A bifree F-algebra is an initial al-
gebra i : FC → C such that its inverse i−1 : C → FC
is a final coalgebra. ¤

Definition 4.2 An F-inductive retraction is a
pair of arrows

X
α

¿
β

FX

such that f = α ◦ Ff ◦ β iff f = idX . ¤

The right-to-left implication shows that

α ◦ β = idX

and hence X is a retract of FX. Also, notice that if
〈α, β〉 is an F-inductive retraction in X, then 〈β, α〉 is
an F-inductive retraction in Xop.

The following proposition shows that inductive re-
tractions generalize bifree algebras:

Proposition 4.3 Let β : X ¿ FX : α be an F-
inductive isomorphism. If F has a bifree algebra then
it is isomorphic to α.

Proof Let i : FC → C be a bifree algebra, r : i → α
be the unique algebra homomorphism and s : β → i−1

be the unique coalgebra homomorphism. This means
that r ◦ i = α ◦ Fr and i−1 ◦ s = Fs ◦ β. Hence

r ◦ s = r ◦ i ◦ i−1 ◦ s = α ◦Fr ◦Fs ◦β = α ◦F(r ◦ s) ◦β.

By inductivity, r ◦ s = idX . Since s = i ◦ Fs ◦ β, we
have that

s ◦ r ◦ i = i ◦ Fs ◦ β ◦ α ◦ Fr = i ◦ F(s ◦ r).

Hence s ◦ r : i → i and therefore s ◦ r = idC . ¤
In the remaining of this section, i : FC → C is a

bifree algebra and β : X ¿ FX : α is an F-inductive
retraction.

The first part of the proof of Proposition 4.3 shows
that every inductive retract is a retract of the bifree
algebra, in a canonical way:

Lemma 4.4 If r : i → α and s : β → i−1

are the unique (co)algebra homomorphisms then
s : X ¿ C : r is a retraction with r ◦ s = idX .

4.2. Structural recursion

Proposition 4.5 Let r : i → α, s : β → i−1,
e = s ◦ r : C → C, h : i → a, and k : b → i−1.

1. For any algebra a : FA → A, there is a homo-
morphism f : α → a iff h = h ◦ e, and in this
case f = h ◦ s.

2. For any coalgebra b : B → FB, there is a homo-
morphism g : b → β iff k = e ◦ k, and in this
case g = r ◦ k.

Proof (1): If f : α → a then f ◦ r = h because
r : i → α. Therefore f = h ◦ s and h = h ◦ s ◦ r.
Conversely, if f ◦ r : i → a then f : α → a because

f ◦ α = f ◦ α ◦ F(r ◦ s) = f ◦ α ◦ Fr ◦ Fs

= f ◦ r ◦ i ◦ Fs = a ◦ F(f ◦ r) ◦ Fs

= a ◦ Ff ◦ F(r ◦ s) = a ◦ Ff.

If h◦s◦r = h then this holds in particular for f = h◦s.
(2): Dual to (1). ¤
Roughly, condition (1) means that h respects the con-
gruence on C induced by the idempotent e = s ◦ r,
and that f is the restriction of h to X via s. Dually,
condition (2) means that the image of k is contained
in image of e and that g is the corestriction of k to X
via r.

Corollary 4.6

1. For any algebra a : FA → A there is at most
one homomorphism f : α → a.

2. For any coalgebra b : B → FB there is at most
one homomorphism g : b → β.

Only for the last result of this subsection, we as-
sume that our base category X is the category SDom
of domains and strict continuous maps.

Proposition 4.7 Let F : SDom → SDom be lo-
cally continuous.

1. If there is a homomorphism f : α → a for a
given algebra a : FA → A then it is the least
f ′ : X → A such that f ′ = a ◦ Ff ′ ◦ β.

2. If there is a homomorphism g : b → β for a
given coalgebra b : B → FB then it is the least
g′ : B → X such that g′ = α ◦ Fg′ ◦ b.



Proof (1): The least solution of the above equa-
tion is f ′ =

⊔
n fn, where the sequence fn is induc-

tively defined by f0 = ⊥ and fn+1 = a ◦ Ffn ◦ β. De-
fine idn : X → X by id0 = ⊥ and idn+1 = α◦Fidn ◦β.
By local continuity of F,

⊔
n

idn =
⊔
n

idn+1 =
⊔
n

(α ◦ Fidn ◦ β)

= α ◦ F

(⊔
n

idn

)
◦ β.

Hence
⊔

n idn = idX by inductivity. Since f is strict,
we have that f0 = f ◦ id0. Assuming that fn = f ◦ idn

we deduce that

fn+1 = a ◦ Ffn ◦ β = a ◦ Ff ◦ Fidn ◦ β

= f ◦ α ◦ Fidn ◦ β = f ◦ idn+1.

Hence fn = f ◦ idn for every n. Therefore

f ′ =
⊔

fn =
⊔
n

(f ◦ idn) = f ◦
⊔
n

idn = f ◦ idX = f.

(2): Dual to (1). ¤
Thus, in order to find a recursive definition of a func-
tion f : X → A we can try to find an algebra a such
that f : α → a is a homomorphism, and in order to
find a recursive definition of a function g : B → X
we can try to find a coalgebra b such that g : b → β
is a homomorphism. If we succeed in finding such al-
gebra a and coalgebra b, then we obtain a definition
of f by structural recursion and a definition of g
by structural corecursion.

4.3. Biquotients of bifree algebras

We have seen that any F-inductive retraction
β : X ¿ FX : α appears as a retract of the bifree
F-algebra i : FC → C via r : i → α and s : β → i−1

with r ◦ s = idX . We now characterize for a bifree
algebra i : FC → C the idempotents e : C → C which
admit a splitting e = s ◦ r of the kind just described.
Recall that any idempotent in SDom splits through
its image [1]. But notice that we are still working in
an arbitrary category X.

Definition 4.8 Let e : C → C be an idempotent
and define

C
a

¿
b

FC

by
a = e ◦ i b = i−1 ◦ e.

We say that e is a biquotient of the bifree algebra
i : FC → C if the following conditions hold:

(i) e : i → a

(ii) e : b → i−1

(iii) h = a ◦ Fh ◦ b iff h = e. ¤

Theorem 4.9

1. If β : X À FX : α is an F-inductive retraction,
r : i → α and s : β → i−1, then e

def= s ◦ r
is a biquotient of i. Moreover, α and β can be
recovered from r and s as

α = r ◦ i ◦ Fs β = Fr ◦ i−1 ◦ s.

2. If e : C → C is a biquotient of i and e = s ◦ r
with r ◦ s = idX , then the maps

α
def= r ◦ i ◦ Fs : FX → X

β
def= Fr ◦ i−1 ◦ s : X → FX

constitute an F-inductive retraction. Moreover,
we have r : i → α and s : β → i−1.

Proof (1): Conditions (i) and (ii) hold by the fol-
lowing equational reasoning:

e ◦ i ◦ Fe = s ◦ r ◦ i ◦ Fs ◦ Fr

= s ◦ α ◦ Fr ◦ Fs ◦ Fr

= s ◦ α ◦ Fr = s ◦ r ◦ i = e ◦ i,

Fe ◦ i−1 ◦ e = Fs ◦ Fr ◦ i−1 ◦ s ◦ r

= Fs ◦ Fr ◦ Fs ◦ β ◦ r

= Fs ◦ β ◦ r = i−1 ◦ s ◦ r = i−1 ◦ e.

From this we get immediately that

e ◦ i ◦ Fe ◦ i−1 ◦ e = e ◦ i ◦ i−1 ◦ e = e ◦ e = e.

For the other implication of condition (iii), let
h : C → C with e ◦ i ◦ Fh ◦ i−1 ◦ e = h. It follows
that

r ◦ i ◦ Fh ◦ i−1 ◦ s = r ◦ h ◦ s.

Hence

r ◦ h ◦ s = r ◦ i ◦ Fh ◦ i−1 ◦ s

= α ◦ Fr ◦ Fh ◦ Fs ◦ β

= α ◦ F(r ◦ h ◦ s) ◦ β,

which entails r ◦ h ◦ s = idX as α and β form an F-
inductive retract. Thus we get

h = e ◦ h ◦ e = s ◦ r ◦ h ◦ s ◦ r = s ◦ r = e.



The proposed reconstruction of α and β from r and s
can be seen as follows:

r ◦ i ◦ Fs = α ◦ Fr ◦ Fs = α,

Fr ◦ i−1 ◦ s = Fr ◦ Fs ◦ β = β.

(2): We have that

(a) r ◦ i = r ◦ i ◦ F(s ◦ r),
(b) i−1 ◦ s = F(s ◦ r) ◦ i−1 ◦ s,

(c) s ◦ r ◦ i ◦ Fh ◦ i−1 ◦ s ◦ r = h iff h = e,

and hence that

α ◦ β = r ◦ i ◦ Fs ◦ Fr ◦ i−1 ◦ s

= r ◦ i ◦ F(s ◦ r) ◦ i−1 ◦ s

= r ◦ i ◦ i−1 ◦ s = r ◦ s = idX .

Let f : X → X with f = α ◦ Ff ◦ β. As

α ◦ Ff ◦ β = r ◦ i ◦ F(s ◦ f ◦ r) ◦ i−1 ◦ s,

for h
def= s ◦ f ◦ r we get

h = s ◦ r ◦ i ◦ Fh ◦ i−1 ◦ s ◦ r,

from which we get by (c) that h = e. But then

f = r ◦ s ◦ f ◦ s ◦ r = r ◦ h ◦ s = r ◦ e ◦ s = idX

as desired. Finally, r : i → α and s : β → i−1 because

α ◦ Fr = r ◦ i ◦ Fs ◦ Fr = r ◦ i by (a),
Fs ◦ β = Fs ◦ Fr ◦ i−1 ◦ s = i−1 ◦ s by (b). ¤

5. Structural recursion on the partial
unit interval

In order to obtain an inductive retraction for the
partial unit interval, we put the real number con-
structors (resp. destructors) together. Define T :
SDom → SDom by

TD = B ×D ×D,

and define I
cons

¿
destr

TI by

cons = pif ◦ (id× consL × consR),
destr = 〈head, tailL, tailR〉.

Theorem 5.1 cons and destr form a T-inductive re-
traction.

Proof The equation f = cons ◦Tf ◦ destr is equiv-
alent to the equation

f(x) = pif head(x)
then consL(f(tailL(x)))
else consR(f(tailR(x))).

By Lemma 3.1, f = id is a solution. But consL and
consR and consR u consL have unique fixed-points.
Therefore f = id is the unique solution by virtue of
Lemma 3.4. ¤

5.1. Binary T-algebras

We now relate the algebra cons : TI → I to the
binary system (I, consL, consR).

Definition 5.2 A binary T-algebra is a T-algebra
a : TD → D of the form

pif ◦ (id× aL × aR)

for (necessarily unique) aL, aR : D → D. ¤

Compare the following proposition to Lemma 3.5 and
Definition 3.6:

Proposition 5.3 Let a : TD → D be a binary T-
algebra. Then a strict continuous map f : I → D is a
homomorphism from cons to a iff

f(consL(x)) = aL(f(x))
f(consR(y)) = aR(f(y))

f(consR(x) u consR(y)) = aL(f(x)) u aR(f(y)).

Compare the following proposition to Lemmas 3.4
and 3.5:

Proposition 5.4 If there is a homomorphism from
cons to a binary T-algebra a : TD → D then it is the
least continuous map f : I → D such that

f(x) = pif head(x)
then aL(f(tailL(x)) else aR(f(tailR(x)).

Proof By Proposition 4.7 we know that if there is
a homomorphism from cons to a, then it is the least
continuous function f such that

f = a ◦Tf ◦ destr,

which is equivalent to the above equation. ¤



5.2. Bifurcated binary expansions

The canonical solution of the domain equation D ∼=
TD is the domain BTree of infinite binary trees with
nodes labeled by truth values, ordered nodewise, to-
gether with the bifree algebra

mktree : TBTree → BTree

which maps a list 〈p, s, t〉 to the tree with root labeled
by p and with left and right subtrees s and t respec-
tively [18]. Let

num : mktree → cons : BTree → I
bin : destr → mktree−1 : I → BTree

be the unique (co)algebra homomorphisms. By
Lemma 4.4, num ◦ bin = id, so that I is a retract
of BTree. The tree bin (x) is referred to as the bi-
furcated binary expansion of the partial number x
in [7].

5.3. Coinduction

Dana Scott suggested that we should also consider
a characterization of the partial unit interval via “co-
Peano axioms” based on coinduction and coiteration.
Although we don’t have such a characterization yet,
we have a coinduction principle related to the ideas of
Smyth [23] and Fiore [10].

Definition 5.5 A bisimulation on the partial unit
interval is a binary relation ∼⊆ I × I such that

x ∼ y implies that head(x) = head(y) and
taila(x) ∼ taila(y) for a ∈ {R, L}.

We say that x and y are bisimilar if they are related
by some bisimulation. ¤

Theorem 5.6 (Coinduction) If x, y ∈ I are
bisimilar then x = y.
Proof Let x and y be bisimilar partial numbers.
Then bin (x) and bin (y) are bisimilar trees. Hence
bin (x) = bin (y). Therefore x = y because bin is split
mono. ¤

5.4. Examples

Proposition 5.7 The complement map compl : I →
I defined by compl(x) = 1 − x can be recursively de-
fined by

compl(x) = pif head(x)
then consR(compl(tailL(x)))
else consL(compl(tailR(x))).

Proof This follows from Proposition 5.4, because
compl is an algebra homomorphism from cons to pif ◦
(id× consR × consL). ¤

Proposition 5.8 The map exp : I[0, 1] → I[1, 2] de-
fined by exp(x) = 2x can be recursively defined by

exp(x) = pif head(x)

then
√

exp(tailL(x))

else
√

2 exp(tailL(x)).
Proof Define aL, aR : I[1, 2] → I[1, 2] by aL(x) =√

x and aR(x) =
√

2x. Then exp is an algebra homo-
morphism from cons to pif ◦ (id × aL × aR), and the
result again follows from Proposition 5.4. ¤
More examples can be found in [6, 7], and a recursive
definition of Riemann integration can be found in [3].

6. Applications to Real PCF

Real PCF [6] is an extension of PCF [21, 16] with a
ground type for the partial real line and some primitive
functions, which include the real number constructors
and destructors discussed in Section 3. The remain-
ing primitives are necessary to obtain the operational
semantics of Real PCF, but they are not needed to ob-
tain the results discussed below, so that we don’t pause
to introduce them. For simplicity, we only discuss the
partial unit interval. A treatment of the partial real
line can be found in [7].

Definition 6.1 A programming language L is uni-
versal if every computable element of the universe of
discourse of L is definable in L. ¤

This depends on a notion of computability in the uni-
verse of discourse. In domain theory this is achieved
via the notion of effective presentation (see [4, 18] for
the algebraic case and [22] for the general continuous
case).

Before tackling Real PCF, we recall some basic facts
about PCF proved by Plotkin [16]. It is easy too see
that all partial recursive functions [19] are PCF defin-
able. However, simple computable functions such as
the parallel conditional and an existential quantifier
∃ : [N → B] → B fail to be PCF definable. Plotkin
showed that if we extend PCF with the parallel con-
ditional then all computable first order-functions be-
come definable, and that if we further extend PCF
with the existential quantifier then all computable
functions of all orders become definable.

Streicher [26] generalized this result to an extension
of PCF with recursive types, parallel-or and ∃ [18], and



Escardó [8] generalized it to Real PCF. We now briefly
consider Real PCF extended with recursive types.

It is straightforward to show that there exists an
effective presentation of the partial real line which
makes the primitive constructors and destructors com-
putable; for example, any standard enumeration of
the rational basis gives such an effective presentation.
Let’s fix any such effective presentation and call it the
standard effective presentation. One then may
wonder if a cleverer choice of an effective presenta-
tion would change the induced set of computable el-
ements and functions, and this is indeed the case in
general [13]. We show in Section 6.1 below that this
is not the case in our application.

6.1. Absoluteness of the standard effective presen-
tation

Definition 6.2 Two effective presentations b and b′

of a domain D are equivalent if idD : D → D is
computable both as a map (D, b) → (D, b′) and as
map (D, b′) → (D, b). ¤

Notice that this is the notion of equivalence of ob-
jects in concrete categories discussed in [2], specialized
to the category of effectively given domains and com-
putable maps considered as concrete over the category
of domains and continuous functions, via the forgetful
functor which forgets effective presentations.

Theorem 6.3 Any two effective presentations of I
which make cons : TI → I and destr : I → TI
computable are equivalent.
Proof Let b′ and b′′ be two such effective presen-
tations, and let I ′ and I ′′ denote I endowed with b′

and b′′. By Corollary 4.6, idI : I → I is the unique
algebra homomorphism cons → cons, and by Proposi-
tion 4.7, idI is the least fixed point of functional

F : [I → I] → [I → I]

defined by

F (f) = cons ◦Tf ◦ destr.

By hypothesis, cons is computable both as as map (1′)
TI ′ → I ′ and as a map (1′′) TI ′′ → I ′′, and destr
is computable both as a map (2′) I ′ → TI ′ and as a
map (2′′) TI ′′ → I ′′. By (1′′) and (2′) we conclude
that F is computable as a map [I ′ → I ′′] → [I ′ → I ′′],
which shows that idI is computable as a map I ′ → I ′′.
Similarly, by (1′) and (2′′) we conclude that it is also
computable as a map I ′′ → I ′. ¤

6.2. Universality of Real PCF

We prove that Real PCF extended recursive types
and ∃ is computationally complete by means of the
technique introduced in [26]. Here are the main steps
of the technique:

1. Take a universal domain U of PCF, for example
[N → B] (see [17]).

2. Show that for every domain D in the extended
language there is a definable retraction

D
rD

¿
sD

U

with rD ◦ sD = idD.

3. Given d ∈ D computable, sD(d) ∈ U is com-
putable because sD is computable.

4. Since PCF extended with parallel-or and ∃ is
universal and U is a PCF domain, sD(d) is de-
finable.

5. Hence d is definable as d = rD(sD(d)), and rD

and sD(d) are definable.

6. Therefore every computable element is defin-
able.

The crucial step consists in showing that D is a de-
finable retract of U , and this is not so simple in the
presence of recursive types. But by the general results
of [26], it suffices to show that every ground type is
a definable retract of U . This has been done for the
PCF ground types, so that we only need to do it for
our new ground type.

Theorem 6.4 Real PCF extended with recursive
types, the parallel conditional and ∃ is a universal pro-
gramming laguage.

Proof By Section 5.2, we know that

num : mktree → cons : BTree → I
bin : destr → mktree−1 : I → BTree

form a retraction with num ◦bin = idI . Since BTree is
a recursive type, and since num and bin are definable,
we see that I is a definable retract of BTree. But
we already know that BTree is a definable retract of
U . Since definable retracts compose, I is a definable
retract of U . ¤



This general result does not tell the full story about
definability of computable first order functions (over
the partial real interval I). By means of a more direct
method of proof similar to that of [16], in [7] it is
shown that the existential quantifier is not needed to
obtain the definability result at first-order types.

7. Conclusions

We have studied a notion of the most well-behaved
quotients of bifree algebras, namely the so-called
biquotients. We have applied this notion exclusively
to the study of the partial real line and its recursion
and induction principles.

It might be worthwhile to look at other applications
of this notion. Typically one would like to have a
characterisation of those equational theories E over a
signature Σ such that the quotient of T∞(Σ) by E is
a biquotient.

This might be interesting especially for the case of
stream domains extending the work on partially com-
mutative monoids in trace theory towards infinite be-
haviours.

8. Acknowledgements

The first author was supported by the Brazilian
agency CNPq, an EPSRC project “Programming Lan-
guages for Real Number Computation: Theory and
Implementation”, and an ARC project “A Computa-
tional Approach to Measure and Integration Theory”.

References

[1] S. Abramsky and A. Jung. Domain theory. In
S. Abramsky, D.M. Gabbay, and T.S.E Maibaum,
editors, Handbook of Logic in Computer Science,
volume 3, pages 1–168. Clarendon Press, Oxford,
1994.

[2] J Adamek, H Herrlich, and G.E. Strecker. Ab-
stract and Concrete Categories. John Wiley &
Sons, Inc., 1990.

[3] A. Edalat and M.H. Escardó. Integration in Real
PCF (extended abstract). In Proceedings of the
Eleventh Annual IEEE Symposium on Logic In
Computer Science, New Brunswick, New Jersey,
USA, July 1996.

[4] H. Egli and R.L. Constable. Computability con-
cepts for programming languages. Theoretical
Computer Science, 2:133–145, 1976.

[5] M.H. Escardó. Induction and recursion on the
real line. In C. Hankin, I. Mackie, and R. Na-
garajan, editors, Theory and Formal Methods
1994: Proceedings of the Second Imperial College
Department of Computing Workshop on Theory
and Formal Methods, pages 259–282, Møller Cen-
tre, Cambridge, 11–14 September 1994. IC Press.
1995.

[6] M.H. Escardó. PCF extended with real num-
bers. Theoretical Computer Science, 162(1):79–
115, August 1996.

[7] M.H. Escardó. PCF extended with real numbers:
A domain-theoretic approach to higher-order ex-
act real number computation. PhD thesis, Impe-
rial College, Department of Computing, Novem-
ber 1996.

[8] M.H. Escardó. Real PCF extended with ∃ is uni-
versal. In A. Edalat, S. Jourdan, and G. Mc-
Cusker, editors, Advances in Theory and Formal
Methods of Computing: Proceedings of the Third
Imperial College Workshop, April 1996, pages
13–24, Christ Church, Oxford, 1996. IC Press.

[9] M.H. Escardó and D.M. Claudio. Scott do-
main theory as a foundation for interval analysis.
Technical Report 218, UFRGS/II, Porto Alegre,
Brazil, 1993.

[10] M.P. Fiore. A coinduction principle for recursive
data types based on bisimulation. Information
and Computation, 127(2):186–198, 1996.

[11] P. J. Freyd. Algebraically complete categories. In
A. Carboni et al., editors, Proc. 1990 Como Cat-
egory Theory Conference, pages 95–104, Berlin,
1991. Springer-Verlag. Lecture Notes in Mathe-
matics Vol. 1488.

[12] P. J. Freyd. Remarks on algebraically com-
pact categories. In M. P. Fourman, P. T. John-
stone, and A. M. Pitts, editors, Applications of
Categories in Computer Science: Proceedings of
the LMS Symposium, Durham, 1991. Cambridge
University Press, 1992. LMS Lecture Notes Se-
ries, 177.

[13] A. Kanda and D. Park. When are two effectively
given domains identical? In K. Weihrauch, ed-
itor, Theoretical Computer Science 4th GI Con-
ference, LNCS, 1979.



[14] D.J. Lehmann and M.B. Smyth. Algebraic spec-
ification of data types: a synthetic approach.
Math. Syst. Theory, 14:97–139, 1981.

[15] R.E. Moore. Interval Analysis. Prentice-Hall, En-
glewood Cliffs, 1966.

[16] G. Plotkin. LCF considered as a program-
ming language. Theoretical Computer Science,
5(1):223–255, 1977.

[17] G. Plotkin. Bω as a universal domain. Journal
of Computer and System Sciences, 17:209–236,
1978.

[18] G. Plotkin. Domains. Post-graduate Lec-
tures in advanced domain theory, University
of Edinburgh, Department of Computer Sci-
ence. http:// ida.dcs.qmw.ac.uk/ sites/ other/
domain.notes.other, 1980.

[19] H. Rogers. Theory of Recursive Functions and
Effective Computability. McGraw-Hill, New York,
1967.

[20] D. S. Scott. Lattice theory, data types and se-
mantics. In Formal semantics of programming
languages, pages 66–106, Englewood Cliffs, 1972.
Prentice-Hall.

[21] D. S. Scott. A type-theoretical alternative to
CUCH, ISWIM and OWHY. Theoretical Com-
puter Science, 121:411–440, 1993. Reprint of a
manuscript produced in 1969.

[22] M.B. Smyth. Effectively given domains. Theoret-
ical Computer Science, 5(1):256–274, 1977.

[23] M.B. Smyth. I-categories and duality. In M.P.
Fourman, P.T. Johnstone, and Pitts A.M., edi-
tors, Applications of Categories in Computer Sci-
ence, pages 270–287, Cambridge, 1992. Cam-
bridge University Press. London Mathematical
Society Lecture Notes Series 177.

[24] M.B. Smyth and G. Plotkin. The category-
theoretic solution of recursive domain equa-
tions. SIAM Journal of Computing, 11(4):761–
783, 1982.

[25] R. Stoll. Set Theory and Logic. W.H. Freeman
and Company, San Fransisco, 1966.

[26] T. Streicher. A universality theorem for PCF with
recursive types, parallel-or and ∃. Mathematical
Structures for Computing Science, 4(1):111 – 115,
1994.


