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Abstract We propose a notion of interval object in a cat-
egory with finite products, providing a universal property
for closed and bounded real line segments. The universal
property gives rise to an analogue of primitive recursion for
defining computable functions on the interval. We use this
to define basic arithmetic operations and to verify equations
between them. We test the notion in categories of interest.
In the category of sets, any closed and bounded interval of
real numbers is an interval object. In the category of topo-
logical spaces, the interval objects are closed and bounded
intervals with the Euclidean topology. We also prove that an
interval object exists in any elementary topos with natural
numbers object.

1 Introduction

In set theory, one can implement the real numbers in
many ways. For example, one can use Dedekind sections or
equivalence classes of Cauchy sequences of rational num-
bers. Butwhat is it that one is implementing? Assuming
classical logic, either implementation produces a complete
Archimedian field and, moreover, any two such fields are
isomorphic. In fact, for the purposes of classical analysis,
one never uses a particular mathematicalimplementationof
the reals. One relies instead on thespecificationof the real-
number system as a complete Archimedian field and works
axiomatically. The only purpose of particular implementa-
tions is to be reassured that there is at least one such field.

Unfortunately, when one tries to carry out such a pro-
gramme in other foundational settings, difficulties arise.
One obstacle is that the categoricity of this axiomatization
relies on the principle of excluded middle, which is not al-
ways available, particularly in settings that are relevant to
the theory of computation. Further, one may criticize the
axiomatization on the grounds that, although it is aiming
to characterize the real line, which is fundamentally a geo-
metric structure, it makes essential use of abstract concepts,
∗Research supported by EPSRC grant GR/K06109

such as suprema of bounded sets of points, whose geomet-
ric meaning is unclear. In addition, the field axioms involve
operations, such as multiplication and reciprocation, which
one might rather see as derived from more primitive con-
structions.

A further objection to the field axiomatization is its lack
of explicit computational content. To develop a theory
of computability in the sense of Turing [32], one has to
start by effectively presenting a particular implementation
of the field of real numbers. For example, one can imple-
ment real numbers as Cauchy sequences of rational num-
bers with fixed rate of convergence [3]. Then one has to ar-
gue that the basic field operations are computable and that
various methods of defining new functions from old pre-
serve computability—see e.g. Weihrauch [34]. With this
approach, computability arguments involve heavy manipu-
lation of Gödel numberings, which are detached from the
usual practice of real analysis.

The above contrasts with the natural numbers, where
primitive recursion, the basic computational mechanism, is
not only embodied in their usual Peano axiomatization but
can also be taken as their defining property. An elegant for-
mulation of such an axiomatization was given by Lawvere
in his definition of a natural numbers object [22]. This style
of axiomatization has been adopted for other inductively de-
fined data types, such as lists and trees, which admit canon-
ical forms of recursion that reflect their characterization as
initial algebras. Dually, infinite data types, such as streams,
are characterized as final coalgebras, with corresponding
forms of corecursion. This formulation of data types has
been convincingly exploited by Bird and de Moor in their
algebraic approach to programming [2].

To place the real numbers into the above framework, one
requires a notion of real number data type whose defining
property embodies primitive mechanisms for recursion over
the reals. In this paper, we present such an axiomatization
for closed and bounded line segments, orinterval objects
for short. We characterize interval objects by a universal
property that captures a basic geometrical notion and si-



multaneously provides a computational notion of recursion.
Thus, remarkably, our axiomatization reconciles geometri-
cal and computational conceptions of the line.

In brief, our axiomatization:

(i) is based on elementary geometrical considerations,

(ii) has direct computational content,

(iii) applies in a wide variety of settings,

(iv) gives what one would expect in specific examples.

Regarding (i), we take amidpoint operation as the ba-
sic structure of line segments, with four axioms that corre-
spond to intuitive geometric properties. We define aconvex
bodyas a midpoint algebra in which the midpoint operation
can beinfinitely iterated, in a precise sense discussed in the
technical development that follows. Then aninterval object
is defined to be a free convex body over two generators, its
endpoints. Geometrically, the free property amounts to the
fact that any two points of a convex body are connected by
a unique line segment.

Regarding (ii), the free property gives rise to an analogue
of primitive recursion for defining computable functions on
the interval. In particular, we use this to define basic arith-
metic operations and to verify equations between them.

Regarding (iii), we make as few ontological commit-
ments as possible by formulating our definitions in the gen-
eral setting of a category with finite products. Nevertheless,
to make the paper accessible to readers who are uncomfort-
able with category theory, we use, as far as possible, stan-
dard algebraic notation, so that everything we say can be
easily understood in familiar mathematical terms. Indeed,
when specialized to categories such as sets and topological
spaces, our definitions assume rather concrete meanings.

Regarding (iv), we have: (1) In the category of sets, any
closed and bounded interval of real numbers is an inter-
val object (Theorem 1). (2) In the category of topologi-
cal spaces, any closed and bounded interval under the usual
Euclidean topology is an interval object (Theorem 2). Thus,
our axiomatization of line segments exhibits the Euclidean
topology as intrinsic rather than imposed structure, because
it is this topology that gives rise to an interval object. This
is interesting in connection with the often cited fact that the
computable functions on the reals are continuous. (3) In
any elementary topos with natural numbers object, an inter-
val object is given by the Cauchy completion of the inter-
val of Cauchy reals within the Dedekind reals (Theorem 3).
In many cases this coincides with the Cauchy or Dedekind
intervals; but, in general, we seem to be identifying an in-
triguing new intuitionistic notion of real number. For details
see Section 9. Some other possible settings are discussed
briefly in Section 10.

For lack of space, all proofs are omitted from this ex-
tended abstract.

Related work This paper has its origins in the first au-
thor’s work on exact real number computation [10, 11]. In
this approach, real numbers are represented by concrete
computational structures such as streams, allowing com-
putations to be performed to any desired degree of accu-
racy [35, 6, 4, 5, 33]. Of particular relevance to our work
is the issue of obtaining an abstract data type of real num-
bers, in which the underlying computational representation
is hidden [5, 8, 10, 11].

In the programming language Real PCF [10], the ab-
stract data type is based on simple real numberconstruc-
tors anddestructors. Mathematically, the constructors are
unary midpoint operationsx 7→ 0 ⊕ x andx 7→ x ⊕ 1 on
the unit interval[0, 1], wherex ⊕ y = (x + y)/2 is the
binary midpoint operation. These primitives are used by
Escard́o and Streicher [11] to characterize the interval data
type by a universal property, from which structural recur-
sion mechanisms for real numbers are obtained. Thus, this
work achieves many of the aims of the present paper. How-
ever, it crucially relies on general recursion and the conse-
quent presence of partiality. Indeed, the interval data type
includespartial real numbers as essential ingredients of its
characterization, and the characterization only works in a
domain-theoretic setting.

The goal of the present work is to obtain a characteriza-
tion of the real numbers that applies to a variety of compu-
tational settings, including those, such as intuitionistic type
theory [25], in which only total functions are available. Al-
though such a programme has not been undertaken previ-
ously, algebraic and coalgebraic techniques, similar to the
ones used in the present paper, do occur in previous axiom-
atizations of the reals.

Higgs [14] definesmagnitude algebrasand proves that
the interval[0,∞] endowed with the functionx 7→ x/2 and
the summation operation

∑
: [0,∞]ω → [0,∞] is the mag-

nitude algebra freely generated by1. His definition is purely
equational and is based on binary expansions of numbers.
Although our work has some connections with Higgs’, es-
pecially regarding the idea of using an infinitary operation,
there are some important differences. Firstly, in the cate-
gory of topological spaces, the free magnitude algebra over
one generator is the interval[0,∞] with the topology of
lower semicontinuity rather than the Euclidean topology.
Indeed, the infinitary summation operation is not continu-
ous with respect to the Euclidean topology. Secondly, in
general, the Dedekind or Cauchy[0,∞] intervals in an el-
ementary topos are not magnitude algebras, let alone free
ones, as there are toposes, such as Johnstone’s topological
topos [17], in which these objects do not support the sum-
mation operation.

Motivated by the stream implementations of real num-
bers, Pavlovíc and Pratt [29] considercoalgebraicdefini-
tions of the reals. However, they do not make connections



with the computational and geometrical requirements dis-
cussed above. Peter Freyd [12] considers a more geomet-
rical coalgebraic approach. In fact, he also places empha-
sis on midpoint algebras, although the midpoint operation
is derived rather than primitive. His approach does appear
to have some computational content, but this has yet to be
elaborated.

2 Convex bodies and interval objects

This section presents the main definitions of this paper,
the notions ofabstract convex bodyandinterval object.

As discussed in the introduction, we define the interval
as the free convex body over two generators. To do this,
we require an abstract notion of convex body that makes
no reference to real numbers. We achieve this by viewing
convex bodies as algebraic structures.

The algebraic structure we identify is that associated
with the basic ruler-and-compass construction of bisecting a
line. Given two points in a convex bodyA, this construction
finds the point midway between them. It thus corresponds
to a binarymidpointoperationm : A × A → A. We begin
by axiomatizing the equational properties of such midpoint
operations.

Let C be a category with finite products.

Definition 2.1 (Midpoint algebra) A midpoint algebra

in C is a pair(A,m), whereA × A
m- A is any mor-

phism, satisfying:

1. m(x, x) = x (idempotency)

2. m(x, y) = m(y, x) (commutativity)

3. m(m(x, y),m(z, w)) = m(m(x, z),m(y, w))
(transposition)

A midpoint algebra is said to becancellativeif it satisfies:

4. m(x, z) = m(y, z) impliesx = y (cancellation)

A homomorphismfrom (A,m) to (A′,m′) is a morphism

A
f- A′ such thatf(m(x, y)) = m′(f(x), f(y)). We

writeMidAlg(C) for the category of midpoints algebras and
their homomorphisms.

In order to understand such ordinary algebraic notation in an
arbitrary category with finite products, the variables must
be interpreted as generalized elements. Thus, for exam-
ple, the homomorphism equation states: for all general-
ized elementsx, y : Z - A (whereZ is any object),
f ◦m◦〈x, y〉 = m′◦〈f ◦x, f ◦y〉. In this case, the condition
simplifies to the (unquantified) equationf◦m = m◦(f×f).

The equations of midpoint algebras are not new. For ex-
ample, they have appeared as the axioms ofmedial meansin

the work of Kermit [20]. They have also recently been pop-
ularized by Peter Freyd in his investigations of (co)algebraic
properties of the interval [12].

Example 2.2 The setRn is a cancellative midpoint algebra
under the function⊕ : Rn × Rn → Rn defined by

x⊕ y = (x + y)/2.

This yields a whole range of cancellative midpoint algebras
given by subsetsA ⊆ Rn closed under⊕. We call such
midpoint algebrasstandard midpoint subalgebras ofRn.
Examples are: the set of dyadic rational points; the set of
rational points; the set of algebraic points; any convex set.

These examples show that the midpoint axioms are still
far from capturing the full power of convexity, which re-
quires one to be able to fill in an entire connected line be-
tween any two points. Intuitively, we need to express some-
thing like a notion of Cauchy completeness for midpoint al-
gebras. However, Cauchy completeness itself cannot be the
appropriate notion, as midpoint algebras do not necessarily
carry a metric structure. More fundamentally, we cannot
use the notion of metric space to define the interval, be-
cause axiomatizing metric spaces already begs the question
of what the real numbers are. Instead, we need a method
of axiomatizing the completeness of midpoint algebras in
terms of their algebraic structure alone.

Consider an arbitrary sequence of pointsx0, x1, . . . in an
ordinary Euclidean convex bodyA. Let z be any point ofA
and consider the derived sequence

m(x0, z), m(x0,m(x1, z)), m(x0,m(x1,m(x2, z))), . . .

If A is bounded then this is a Cauchy sequence whose
unique limit point lies in A and is independent ofz.
Thus, any sequencex0, x1, . . ., determines a unique point
m(x0, m(x1,m(x2, . . .))) obtained by infinitely iterating
the binary operationm over the sequence. Our notion of
completeness for a midpoint algebraA is to ask that such
infinite iterations always exist.

In the category of sets, such a requirement can be ex-
pressed directly, albeit clumsily—see Proposition 3.1. Re-
markably, there is a very concise formulation in purely cat-
egorical terms. Infinite sequences of elements ofA are nat-
urally expressed using coalgebras for the functor(A×(−)),
i.e. morphisms of the form〈h, t〉 : X - A×X. Indeed,
any such coalgebra determines an objectX of sequences
of elements ofA, as specified by theheadand tail maps
h : X - A andt : X - X respectively. We can
now state the property of being able to iterate the midpoint
operationm over any sequence so specified.



Definition 2.3 (Iterative algebra) A midpoint algebra
(A,m) is iterative if it satisfies theiteration axiom: for

every mapX
c- A×X, there exists a uniqueX

u- A
such that the diagram below commutes.

A×X
id× u - A×A

X

c

6

u
- A.

m

?

In other words,(A,m) is iterative if, for any coalgebra
c = 〈h, t〉 : X - A ×X, there exists a uniqueu satis-
fying u(x) = m(h(x), u(t(x))).

The above definition states that a midpoint algebra
(A,m) is iterative if it is final as an(A × (−))-algebra
with respect to coalgebra-to-algebra homomorphisms from
(A × (−))-coalgebras. Interestingly, the dual notion of a
coalgebra being initial with respect to arbitrary algebras has
arisen in recent work of Taylor [31, Section 6.3] and Eppen-
dahl [9].

We are now in a position to formulate our abstract notion
of convex body.

Definition 2.4 (Abstract convex body) An abstract con-
vex bodyis a cancellative iterative midpoint algebra.

We henceforth omit the word abstract, except when re-
quired to avoid confusion due to alternative notions of
convex body being available (for example, in Euclidean
space, where ordinary convex bodies are convex sets with
nonempty interior). We writeConv(C) for the full subcate-
gory ofMidAlg(C) whose objects are convex bodies.

Example 2.5 Continuing from Example 2.2, any bounded
convex subset ofRn, considered as a standard midpoint
subalgebra ofRn, is an abstract convex body. Indeed, given
functionsh : X → A and t : X → X, whereX is any
set, the unique functionu : X → A determined from the
coalgebra〈h, t〉 : A → A×X by the iteration axiom is

u(x) =
∑

i≥0

2−(i+1)h(ti(x)). (1)

An important point is that the boundedness ofA is crucial
for u to be well-defined. In fact, a standard midpoint subal-
gebra ofRn is an abstract convex body if and only if it is a
bounded convex subset ofRn; and, given a bounded convex
subsetB of Rm, a functionf : A → B is a homomorphism
of abstract convex bodies (i.e. a homomorphism w.r.t.⊕) if
and only if it is affine. See Section 3 for details.

Example 2.6 Let A be any bounded convex subset ofRn

endowed with the Euclidean topology. Then⊕ also ex-
hibits A as a convex body in the categoryTop of topo-
logical spaces. Indeed, given any continuous(A × (−))-
coalgebra〈h, t〉 : X → A × X (whereX is any space),
the functionu defined in (1) is again the unique map re-
quired by the iteration axiom. The interesting fact here is
thatu is continuous. This example will be expanded upon
in Section 8.

As motivated in the introduction, the interval will be de-
fined as the free abstract convex body over two generators.
This amounts to being an initial object in a suitable category
of bipointed convex bodies.

A bipointed convex body is a structure(A, m, a, b)
where(A,m) is a convex body anda, b : 1 - A are
global points.Homomorphismsbetween bipointed convex
bodies are required to preserve the points as well as the bi-
nary algebra structure; i.e.f : A - A′ is a homomor-
phism from(A,m, a, b) to (A′, m′, a′, b′) if and only if it is
a homomorphism from(A,m) to (A′,m′) anda′ = f ◦ a
andb′ = f ◦ b. We writeBiConv(C) for the category of
bipointed convex bodies and their homomorphisms.

We can now give the main definition of the paper.

Definition 2.7 (Interval object) An interval objectin C is
an initial object inBiConv(C).

Example 2.8 In Set, any closed interval[a, b] ⊆ R, with
a < b, gives an interval object([a, b],⊕, a, b). Of course
the choice ofa andb makes no difference. For future con-
venience, we take the intervalI = [−1, 1] as our standard
closed interval and(I,⊕,−1, 1) as our standard interval ob-
ject. This example is discussed in more detail in Section 3.

Example 2.9 In Top, (I,⊕,−1, 1) is again an interval ob-
ject whenI is equipped with the Euclidean topology. This
is discussed further in Section 8.

3 Interval objects in the category of sets

In this section we study abstract convex bodies in the
categorySet of sets, and we show that the interval object
in Set is indeed(I,⊕,−1, 1), as claimed in Example 2.8.

The least familiar aspect of the definition of convex body
is the notion of iterative algebra. We begin by showing that,
in Set, iterative algebras are exactly algebras supporting an
additional operation of countably-infinite arity that satisfies
certain characterising properties relating it to the binary op-
eration. In general, this reformulation provides the most
straightforward method of showing that an algebra is itera-
tive.



Proposition 3.1 Let (A,m) be a midpoint algebra inSet.

1. (A,m) is iterative if and only if there exists a function
M : Aω → A satisfying:

(a) M(x0, x1, x2, . . .) = m(x0, M(x1, x2, x3, . . .))

(b) If y0 = m(x0, y1), y1 = m(x1, y2), y2 =
m(x2, y3), . . . theny0 = M(x0, x1, x2, . . .).

Moreover if (A,m) is iterative then there is a
uniqueM satisfying (a).

2. If (A,m) and(A′,m′) are iterative midpoint algebras
then any homomorphismf : A → A′ is also a homo-
morphism with respect to the associated infinitaryM
andM ′; i.e. for every sequencex0, x1, . . .,

f(M(x0, x1, . . .)) = M ′(f(x0), f(x1), . . .).

With an appropriate reformulation, the above proposition
generalizes from the category of sets to any category with
finite products and a parameterized natural numbers objects.

It is useful to identify additional equational properties
satisfied by the the associated infinitary operations. We use
Mi(xi) as a shorthand forM(x0, x1, x2, . . .).

Proposition 3.2 For any iterative midpoint algebra(A,m)
in Set, with infinitaryM : Aω → A,

1. x = M(x, x, x, . . .),

2. m(x, y) = M(x, y, y, y, . . .),

3. Mi(Mj(xij)) = Mj(Mi(xji)),

4. Mi(m(xi, yi)) = m(Mi(xi),Mi(yi)).

For an iterative midpoint algebra to be a convex body it
must also be cancellative. We have yet to see any techni-
cal consequence of this property. In fact, for iterative mid-
point algebras, cancellation is equivalent to an important
approximation property. To formulate this, we writemn

for the (n + 1)-ary operation defined bym0(x) = x and
mn(x0, . . . , xn) = m(x0,mn−1(x1, . . . , xn)) for n ≥ 1.
Thusm1 is justm itself.

Proposition 3.3 For an iterative midpoint algebra(A,m)
in Set, the following are equivalent.

1. (A,m) is cancellative.

2. The associatedM : Aω → A satisfies the following
approximation property.

If, for all n ≥ 0, there existzn, wn ∈ A such that
mn(x0, . . . , xn−1, zn) = mn(y0, . . . , yn−1, wn) then

M(x0, x1, . . .) = M(y0, y1, . . .).

This is far from immediate and is used crucially in the proof
of Theorem 1.

Having obtained a good understanding of what the dif-
ferent aspects of the definition of convex body mean inSet,
we return to Examples 2.5 and 2.8.

Proposition 3.4 If A is a standard midpoint subalgebra
of Rn, thenA is an abstract convex body if and only if it
is a bounded convex subset ofRn.

SupposeA ⊆ Rn andA′ ⊆ Rm are convex sets. Recall
that a functionf : A → A′ is said to beaffineif it preserves
so-called convex combinations, i.e., forλ1, . . . , λk ∈ [0, 1]
with

∑k
i=1 λi = 1,

f(
k∑

i=1

λixi) =
k∑

i=1

λif(xi).

The next proposition demonstrates the naturalness of homo-
morphisms between abstract convex bodies.

Proposition 3.5 For bounded convex setsA ⊆ Rn and
A′ ⊆ Rm, a functionf : A → A′ is affine if and only if
it is a homomorphism with respect to⊕.

An example due to Peter Freyd [12], which uses the ax-
iom of choice, can be used to show that the boundedness
assumption is essential for Proposition 3.5 to hold.

Theorem 1 (I,⊕,−1, 1) is an interval object inSet.

4 Parameterized interval objects

It is well known that Lawvere’s elegant definition of a
natural numbers object, which works very well in cartesian
closed categories, is not powerful enough in categories with
weaker structure. Instead, a modified parameterized defini-
tion is needed [21, 7]. In a category with finite products, the
notion of parameterized natural numbers object supports the
definition of functions by primitive recursion. Moreover, in
a cartesian closed category, any ordinary natural numbers
objects is automatically parameterized. Much the same sit-
uation arises for interval objects.

Definition 4.1 (Parameterized interval object) A param-
eterized interval objectis a bipointed convex body
(I,⊕,−1, 1) such that, for any convex body(A,m) and

morphismsX
f- A andX

g- A in C, there exists

a unique morphismX × I
([f,g])- A satisfying

([f, g])(x, y ⊕ z) = m(([f, g])(x, y), ([f, g])(x, z)),
([f, g])(x,−1) = f(x),

([f, g])(x, 1) = g(x),

i.e. there is a uniqueright-homomorphismof bipointed con-
vex bodies fromX × I to A.



By instantiatingX to the terminal object, it is easily seen
that any parameterized interval object is indeed an interval
object. The converse holds whenC is cartesian closed:

Proposition 4.2 If C is cartesian closed then any interval
object is parameterized.

Henceforth in this section, letC be a category with finite
products and parameterized interval object(I,⊕,−1, 1).
The basic arithmetic operations onI can be defined by

1
0- I = (−1)⊕ (1),

I
−- I = ([1,−1]),

I × I
×- I = ([−, idI ]).

More explicitly, the above defines multiplication as the

unique morphismI × I
×- I satisfying

x× (y ⊕ z) = (x× y)⊕ (x× z),
x× (−1) = −x,

x× 1 = x.

Importantly, the universal property ofI, stated in Defi-
nition 4.1, suffices to establish the basic equations between
the above operations.

Proposition 4.3 −− x = x,
x× y = y × x,
x× (y × z) = (x× y)× z,
−0 = 0,
x⊕−x = 0,
−(x⊕ y) = (−x)⊕ (−y),
x× 0 = 0,
x×−y = −(x× y).

The most entertaining proof is that of the commutativity of
multiplication.

5 Primitive interval functions

In this section we give some preliminary results on the
power of the notion of interval object with respect to defin-
ing functions on the interval. As mentioned above, any pa-
rameterized natural numbers object supports definition by
primitive recursion. Here we investigate the definitional
mechanisms supported by parameterized interval objects.

In fact, a parameterized interval object supports two
complementary styles of definition. On the one hand,
the universal property of parameterized initiality gives one
mechanism for defining functions, used above to define
negation and multiplication. On the other, the couniver-
sal property of the iteration axiom supports another type of
definition, needed, for example, to define non dyadic ra-
tional numbers. Parameterized interval objects allow any

combination of these two styles. We investigate the power
of such combinations for the purpose of defining functions
on I in Set.

Definition 5.1 (Primitive interval functions) The primi-
tive interval functionson I are the functions in the smallest
family {Fn ⊆ In → I}n≥0 satisfying:

(i) −1, 1 ∈ F0.

(ii) If f ∈ Fm andg1, . . . , gm ∈ Fn then the composite
f ◦ 〈g1, . . . , gm〉 ∈ Fn.

(iii) If f, g ∈ Fn then the functionh defined below is in
Fn+1:

h(x, y) =
1
2
(1− y)f(x) +

1
2
(1 + y)g(x).

(iv) If f1, . . . , fn, g ∈ Fn then the unique functionh satis-
fying the equation below is inFn:

h(x) =
1
2
g(x) +

1
2
h(f1(x), . . . , fn(x)).

Here (iii) corresponds to the parameterized initiality ofI,
with respect toIn as the object of parameters, and(iv) cor-
responds to the iteration axiom, as induced by the coalge-
bra 〈g, f1, . . . , fn〉 : In → I × In. Note that property(ii)
means that tuples of primitive interval functions between fi-
nite powers ofI form a category. This category has finite
products because the projections are definable, using(iii).

The function defined by(iv) is given explicitly by

h(x) =
∑

i≥0

2−(i+1)g(〈f1, . . . , fn〉i(x)).

A natural generalization is to replace the sequence
(g ◦ 〈f1, . . . , fn〉i)i of composite functions with an arbi-
trary sequence of (already defined)n-ary functions.

Definition 5.2 (Countably-primitive functions) The
countably-primitive interval functionson I are the func-
tions in the smallest family{Fn ⊆ In → I}n≥0 satisfying
(i)–(iii) of Definition 5.1 and also

(iv)′ Givenf0, f1, . . . ∈ Fn, the functionh defined below
is inFn:

h(x) =
∑

i≥0

2−(i+1)fi(x).

Clearly every primitive interval function is a countably-
primitive interval function. The converse does not hold
as there are continuum many countably-primitive inter-
val functions, but only countably many primitive interval
functions. Indeed, every element ofI gives a countably-
primitive interval function of arity0 (i.e. a constant). Al-
though this cannot hold for the primitive interval functions,
we do at least have the following.



Proposition 5.3 Every rational inI gives a primitive inter-
val constant.

The proof makes crucial use of property(iv).
As in Section 4, we have⊕,−,× as primitive interval

functions. Thus everyn-variable⊕-polynomial (i.e. poly-
nomial where⊕ replaces the usual+) with rational coeffi-
cients is ann-ary primitive interval function.

We are not sure how much further definability can be
pushed with the primitive interval functions, as we now
show that even the countably-primitive interval functions
are very limited.

Proposition 5.4 If f is an n-ary countably-primitive in-
terval function, andx0, . . . , xn−1, y0, . . . , yn−1 ∈ I are
such that yi = xi wheneverxi ∈ {−1, 1}, then
f(x0, . . . , xn−1) ∈ {−1, 1} implies f(y0, . . . , yn−1) =
f(x0, . . . , xn−1).

This is proved by induction over the defining properties of
the countably-primitive interval functions.

Thus iff is a unary countably-primitive interval function
andf(x) ∈ {−1, 1} for somex in the interior(−1, 1) then
f is a constant function. Clearly then, the followingtrun-
cated doublefunction is not a countably-primitive interval
function.

d(x) =





1 if 1/2 ≤ x,
2x if −1/2 ≤ x ≤ 1/2,
−1 if x ≤ −1/2.

Accordingly, define thed-primitive interval functionsto be
the smallest class of functions containingd and closed un-
der(i)–(iv). Define thecountably-d-primitive interval func-
tions analogously. The reason for selectingd amongst the
non-countably-primitive interval functions is:

Proposition 5.5 The n-ary countably-d-primitive interval
functions are exactly the continuous functionsIn → I.

The proof uses the Stone-Weierstrass approximation theo-
rem [30].

Thus includingd as a basic function enormously in-
creases definability. It is our hope that this increase in de-
finability also means that thed-primitive interval functions
form a useful class, somewhat analogous to the primitive
recursive functions onN. Although we have yet to under-
take any systematic investigation of this class, we do have
one important result. Recall the standard notion of ann-ary
computable functionon I [34].

Proposition 5.6 Everyn-ary d-primitive interval function
is ann-ary computable function onI.

This result follows from Theorem 3 of Section 9 below,
by interpreting it in a realizability topos in which the mor-
phisms on the interval are exactly the computable functions.

However, in the next section, we outline a direct proof, by
showing that the computable functions are closed under the
defining properties of thed-primitive interval functions.

6 An interval data type

In Proposition 3.1, we have seen that, in the category of
sets, the iteration axiom is captured by the existence of an
infinitary versionM of the midpoint operationm. More-
over, a function of convex bodies is a homomorphism with
respect tom if and only if it is a homomorphism with re-
spect toM . Additionally, Proposition 3.2 shows thatm is
easily defined fromM . This suggests that one might con-
sider theω-ary operationM as the primitive algebraic op-
erator on convex bodies, rather thanm. In this section, we
exploit this idea to base a data type for the intervalI on the
term algebra of anω-ary operationM and two constants−1
and1.

We outline an implementation using a functional pro-
gramming notation similar to ML [28] and Haskell [1] (it
is not important whether an eager or lazy language is used).
Our data typeI is defined as follows.

datatype I = -1 | 1 | M of Nat -> I

Within the interval typeI , we single out theω-branching
well-founded trees as those data elements representing
points of the interval. Such trees are precisely the elements
of the term algebra mentioned above. To interpret a tree as
representing an element ofI, the infinitary operatorM is
interpreted as the iterated midpoint operation

M(x0, x1, x2, . . .) =
∞∑

i=0

2−(i+1)xi,

using which anyω-branching well-founded tree evaluates to
a unique point inI. Thus, by this interpretation,I is given as
a quotient of the set of allω-branching well-founded trees.

The iteration axiom of Definition 2.3, in the concrete
form given in Example 2.5, corresponds to the following
corecursion combinator.

corec : (X -> I) -> (X -> X) -> (X -> I)

corec h t x = M (\i -> h(tˆi(x)))

In this definition, \i->t is typewriter notation for the
lambda expressionλi.t and we use the evident notation for
function iteration.

The initiality of I, as in Definition 2.7, is exhibited by the
following recursion combinator.

rec : ((Nat -> A) -> A) -> A -> A -> (I -> A)

rec N a b -1 = a
rec N a b 1 = b
rec N a b (M s) = N (\i -> rec N a b (s i))



In this definition, the first argumentN is the infinitary mid-
point operation of a given bipointed convex bodyA, and the
second and third argumentsa and b are the distinguished
points. We have not built any explicit type of parameters
into the type ofrec , because parameterization is induced
automatically by the functional language. For example,
negation and multiplication are defined as in Section 4, us-
ing the recursion combinator.

neg : I -> I
neg = rec M 1 -1

mul : I -> I -> I
mul x = rec M (neg x) x

The recursion and corecursion combinators correspond to
conditions(iii) and(iv) of Definition 5.1 respectively. The
truncated double function can also be implemented using
the datatypeI , but this is surprisingly tricky. However, cu-
riously, an algorithm for doing this occurs fairly explicitly
in our (omitted) proof of Theorem 3 below. It follows that
thed-primitive interval functions are definable on our inter-
val data typeI .

Because we are using a non-standard representation of
the interval, based on the infinitary midpoint operation, it is
important to show that our representation is interconvertible
with the standard representations used in exact real number
arithmetic. One such representation,signed binary, uses
a data typeI’ of infinite sequences of the three digits -1,
0 and 1—see [35]. It is trivial to convert from signed bi-
nary sequences to our representationI , using the facts that
0 = M(−1, 1, 1, 1, . . .) and that a signed binary expansion
0.d0d1d2 . . . is the same asM(d0, d1, d2, . . .). To translate
in the other direction, one first defines the iterated midpoint
operationM’:(Nat->I’)->I’ (an interesting program-
ming exercise), and then the conversion functionI->I’ is
simply rec M’ (\i -> -1) (\i -> 1) .

Although we have written this section using a functional
language with general recursion, we remark that our rep-
resentation of the interval can be implemented even more
directly using intuitionistic type theory [25]. Indeed, by for-
mulating the recursive definition of the data typeI as a W-
type, one obtains precisely the well-foundedω-branching
trees over−1 and1, and our recursion combinator is sim-
ply the recursor for this type.

7 Basic categorical properties

In this section, we turn our attention to general proper-
ties of convex bodies and interval objects arising from their
categorical definitions. This general investigation will be
useful in Sections 8 and 9, in which we study examples in
categories other thanSet.

One benefit of having simple abstract definitions of con-
vex body and interval object is that it is easy to prove that

these notions are preserved by various categorical construc-
tions and functors. In this section, we state basic results of
this nature. The proofs are all routine.

As in Section 2, letC be a category with finite products.

Proposition 7.1 The forgetful functorsConv(C) → C and
BiConv(C) → C create limits.

In particular, if(A,m) and(A′,m′) are convex bodies then
so isA×A′ endowed with

(A×A′)×(A×A′)
∼=- (A×A)×(A′×A′)

m×m′
- A×A′

and an analogous statement holds for bipointed convex bod-
ies. One simple consequence of this result is that, for any
interval object(I,⊕, a, b), then-dimensional cubeIn has
an induced convex body structure.

As well as being closed under limits, convex bodies are
also closed under internal powers.

Proposition 7.2 If (A,m) is a convex body then so is

(AB , AB ×AB
∼=- (A×A)B mB

- AB)

for any exponentiable objectB.

Again, the analogous result holds for bipointed convex bod-
ies.

It is also straightforward to establish conditions under
which (bipointed) convex bodies are preserved by functors.
SupposeD is a category with finite products, and the func-
tor F : C → D preserves finite products. Then there is a
functor F : MidAlg(C) → MidAlg(D) whose action on
objects is:

F (A,m) = (FA, FA× FA
∼=- F (A×A)

Fm- FA)

and whose action on morphisms is inherited fromF .

Proposition 7.3 Suppose thatF has a left adjoint.

1. The functorF : MidAlg(C) → MidAlg(D) cuts down
to a functorF : Conv(C) → Conv(D). Similarly,
by extending the action ofF to bipointed objects, a
functorF : BiConv(C) → BiConv(D) is obtained.

2. If F : C → D also has a right adjointG : D → C
then G : Conv(D) → Conv(C) is right adjoint
to the functorF : Conv(C) → Conv(D), and
G : BiConv(D) → BiConv(C) is right adjoint to
F : BiConv(C) → BiConv(D). Thus, in particular,
F : C → D preserves interval objects.

It follows from 1 above that ifC is a full reflective sub-
category ofD and ifD has an interval object(I,⊕,−1, 1)
whereI is an object ofC then(I,⊕,−1, 1) is also an inter-
val object inC.



A special case of statement 2 is that interval objects are
preserved by the inverse image functors of essential ge-
ometric morphisms between elementary toposes. Thus if
f : E → E ′ is an essential geometric morphism andE ′ has
an interval object then its image underf∗ gives an interval
object inE . In particular, by Theorem 1, every presheaf
toposSetC

op
has an interval object obtained as∆(I) — re-

call that the constant presheaf functor,∆ : Set → SetC
op

,
is the inverse image functor of an essential geometric mor-
phism [24]. More generally, in Section 9, we show that any
elementary topos with natural numbers object has an inter-
val object.

8 Interval objects in the category of
topological spaces

In this section we return to the claims made earlier in Ex-
amples 2.6 and 2.9, investigating abstract convex bodies and
interval objects in the categoryTop of topological spaces.

Proposition 3.1 generalizes toTop with the requirement
thatM : Aω → A be continuous with respect to the product
topology. It follows that, for a bounded convexA ⊆ Rn, the
midpoint algebra(A,⊕) with the discrete topology isnotan
abstract convex body inTop , because this topology does
not make the iterated midpoint operation into a continuous
function. Thus the notion of abstract convex body forces
one to consider more reasonable topologies on(A,⊕).

Proposition 8.1 For any bounded convex subsetA ⊆ Rn

endowed with the Euclidean topology,(A,⊕) is an abstract
convex body inTop.

This result is derived from Proposition 3.4, by proving that
the infinitary midpoint operation is continuous. Certain
other basic information about convex bodies inTop can
be inferred using Proposition 7.3. The forgetful functor
U : Top → Set has both a left adjoint∆ (giving the
discrete topology) and a right adjoint∇ (giving the indis-
crete topology). Thus, bothU and∇ preserve convex bod-
ies. AsU does, we see that, by Proposition 3.4, under any
topology whatsoever, for a standard midpoint subalgebraA
of Rn to be a convex body inTop, A must be a bounded
convex set. Also, for any bounded convex set,(A,⊕) with
the indiscrete topology is a convex body inTop.

Also, by Proposition 3.4, if an interval object exists in
Top thenU preserves it. In fact, we have already claimed in
Example 2.9 that(I,⊕,−1, 1) is an interval object inTop
when given the Euclidean topology. AsTop is not cartesian
closed, it is appropriate to show that this is a parameterized
interval object in the sense of Section 4.

Theorem 2 (I,⊕,−1, 1) with the Euclidean topology is a
parameterized interval object inTop.

By Proposition 7.3.1,(I,⊕,−1, 1) with the Euclidean
topology is a parameterized interval object in any full reflec-
tive subcategory ofTop that contains the closed Euclidean
interval. Thus, for example, it is a parameterized interval
object in the category of compact Hausdorff spaces.

9 Interval objects in an elementary topos

In this section we prove that an interval object exists in
any elementary topos with natural numbers object. There
are at least two reasons to be interested in such a result.
Firstly, elementary toposes include all Grothendieck and re-
alizability toposes, of which there are numerous examples
with direct geometrical and/or computational significance.
Indeed, we have already mentioned that the results of this
section can be used to prove Proposition 5.6.

Our second motivation is to study the notion of interval
object using an intuitionistic background logic. It is well
known that intuitionistic logic draws sharp distinctions be-
tween different, though classically equivalent, definitions of
real number. To better understand our notion of interval ob-
ject, we compare it to the competing intuitionistic accounts
of the interval. Somewhat surprisingly, rather than obtain-
ing one of the established notions, interval objects give rise
to an apparently new intuitionistic notion of real number,
albeit one that coincides with extant notions under the mild
assumption of number-number choice.

Let E be an elementary topos with natural numbers ob-
jectN. Among the alternative notions of real number avail-
able, two are considered as being the most natural, the
DedekindrealsRD and theCauchy(or Cantor) realsRC .
Both are defined using the object of rationalsQ and its as-
sociated ordering. The reader is referred to [16] for details.

A basic fact is that one has inclusions

Q ⊆ RC ⊆ RD.

We say that a subobjectX ⊆ RD is Cauchy complete
if every Cauchy sequence inXN (with modulus) has a
limit in X. It is easy to see that the Dedekind reals
are Cauchy complete. Obviously, the rationals are not
Cauchy complete. The Cauchy reals partially rectify the
non-completeness ofQ by adding all limits of Cauchy se-
quences of rationals. GivenN-N-choice, this suffices to
makeRC itself Cauchy complete. However, it seems that,
in general,RC is not Cauchy complete, as, given a Cauchy
sequence of Cauchy reals, there is no mechanism for se-
lecting representative rational sequences from which the re-
quired limiting sequence of rationals can be extracted.

The possible failure of Cauchy completeness forRC

makes it natural to introduce another object of reals, namely,
theCauchy completion ofQ within RD. This object, which
we call the object ofEuclideanrealsRE , is defined as the



intersection of all Cauchy complete subobjects ofRD con-
taining the rational numbers.

We have identified three objects of reals

RC ⊆ RE ⊆ RD.

In the case thatE satisfiesN-N-choice, both inclusions are
equalities. The Grothendieck topos of sheaves over the Eu-
clidean line is a simple example in which the second inclu-
sion is strict. To our embarrassment, we do not know an
example in which the first inclusion is strict. Thus we do
not know if the envisaged failure of the Cauchy complete-
ness ofRC is actually possible—although we are sure that
it must be.

Each notion of real number object determines a corre-
sponding notion of interval object; for example,

ID = {x ∈ RD | −1 ≤ x ≤ 1}
IE = {x ∈ RE | −1 ≤ x ≤ 1} = RE ∩ ID.

The reason for introducing the Euclidean reals in the first
place is the following.

Theorem 3 (IE ,⊕,−1, 1) is an interval object inE .

Our proof is very long and makes crucial use of Pataraia’s
intuitionistic fixed-point theorem for monotonic endomaps
of directed complete partial orders [27].

10 Concluding remarks

We have provided an axiomatization of the interval, by
means of a geometrically motivated universal property that
supports the definition of computable functions. Moreover,
we have investigated this axiomatization in a number of set-
tings.

Many other settings remain to be investigated. In the cat-
egory of setoids over intuitionistic type theory [15, 26], it
can be shown that any of the usual constructions of a closed
real interval gives an interval object. In the category of lo-
cales over any topos, we conjecture that the standard localic
interval [18] is an interval object.

By definition, an interval object is a free convex body
over two generators. Freely generated convex bodies over
different generating objects coincide with other familiar
mathematical structures. Interesting examples occur in the
category of topological spaces: (1) The free convex body
over Sierpinski space is the interval with the topology of
lower semicontinuity. (2) The free convex body over the flat
domain of booleans under the Scott topology is the interval
domain studied in [11] with its pointwise midpoint struc-
ture. (3) The free convex body over a finite discrete space of
cardinalityn is ann-simplex. In particular, the free convex
body over three and four generators are the triangle and the
tetrahedron. All the above examples are applications of the

left adjoint to the forgetful functor from topological convex
bodies to topological spaces, which exists by Freyd’s Ad-
joint Functor Theorem [23].

There are intriguing connections between midpoint alge-
bras and the probabilistic algebras that arise in the study of
probabilistic powerdomains—see the axiomatizations dis-
cussed by Heckmann [13]. It is plausible that the free
convex body over a sufficiently nice domain may be noth-
ing but the probabilistic powerdomain of normalized valua-
tions [19].
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