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Abstract We propose a notion of interval object in a cat- such as suprema of bounded sets of points, whose geomet-
egory with finite products, providing a universal property ric meaning is unclear. In addition, the field axioms involve
for closed and bounded real line segments. The universaloperations, such as multiplication and reciprocation, which
property gives rise to an analogue of primitive recursion for one might rather see as derived from more primitive con-
defining computable functions on the interval. We use thisstructions.

to define basic arithmetic operations and to verify equations A further objection to the field axiomatization is its lack
between them. We test the notion in categories of interestof explicit computational content. To develop a theory
In the category of sets, any closed and bounded interval ofof computability in the sense of Turing [32], one has to
real numbers is an interval object. In the category of topo- start by effectively presenting a particular implementation
logical spaces, the interval objects are closed and boundedof the field of real numbers. For example, one can imple-
intervals with the Euclidean topology. We also prove that an ment real numbers as Cauchy sequences of rational num-
interval object exists in any elementary topos with natural bers with fixed rate of convergence [3]. Then one has to ar-
numbers object. gue that the basic field operations are computable and that
various methods of defining new functions from old pre-
serve computability—see e.g. Weihrauch [34]. With this
approach, computability arguments involve heavy manipu-

| h ol h | b . lation of Gddel numberings, which are detached from the
n set theory, one can implement the real numbers in o - practice of real analysis.

many ways. For example, one can use Dedekind ;ections Of The above contrasts with the natural numbers, where
equivalence clgss_;es of Cauqhy sequences of ratlonal_ numi)rimitive recursion, the basic computational mechanism, is
bers._ Butwh_at IS It the.lt one 1s lmplementmg? Assuming not only embodied in their usual Peano axiomatization but
clasglcal |_OgIC,. either implementation produces a _completecan also be taken as their defining property. An elegant for-
Archlmed]an field and, moreover, any two suph fields ar€ mulation of such an axiomatization was given by Lawvere
isomorphic. In fact, f9r the purposes .,Of classical f’:\naIySIS, in his definition of a natural numbers object [22]. This style

one never uses a particular mathemaiiegilementatiorof of axiomatization has been adopted for other inductively de-

the rsals. One relies mstea:d onAﬂpf_uﬂc(;a_tlor?f Itge rzal- K fined data types, such as lists and trees, which admit canon-
nhumber system as a complete Archimedian tield and wor Sical forms of recursion that reflect their characterization as

axiomatically. The only purpose of particular implementa- initial algebras. Dually, infinite data types, such as streams,

tions is to be reassured that there is at least one such field. are characterized as final coalgebras, with corresponding

Unfortunately, when one tries to carry out such a pro- ¢,s of corecursion. This formulation of data types has
gramme in other foundational settings, difficulties arise. been convincingly exploited by Bird and de Moor in their
One obstacle is that the categoricity of this axiomatization algebraic approach to programming [2]

relies on t.he principlg of exc_Iuded .middle, which is not al- To place the real numbers into the above framework, one
ways available, partlcu!arly in settings that are r.e.le.vant to requires a notion of real number data type whose defining
the_ theqry 9f computation. Further, one may (_:”_t'c'z_e Fhe property embodies primitive mechanisms for recursion over
axiomatization on the grounds that, although it is aiming ¢ veqis. In this paper, we present such an axiomatization
to characterize the real line, which is fundamentally a geo- ¢, j0sed and bounded line segmentsjraerval objects

metric structure, it makes essential use of abstract coNceptSiy, short. We characterize interval objects by a universal
*Research supported by EPSRC grant GR/K06109 property that captures a basic geometrical notion and si-

1 Introduction




multaneously provides a computational notion of recursion. Related work This paper has its origins in the first au-
Thus, remarkably, our axiomatization reconciles geometri- thor's work on exact real number computation [10, 11]. In
cal and computational conceptions of the line. this approach, real numbers are represented by concrete
In brief, our axiomatization: computational structures such as streams, allowing com-
putations to be performed to any desired degree of accu-

(i) is based on elementary geometrical considerations, racy [35, 6, 4, 5, 33]. Of particular relevance to our work

(ii) has direct computational content, is the issue of obtaining an abstract data type of real num-
L . . . bers, in which the underlying computational representation
(iii) applies in a wide variety of settings, is hidden [5, 8, 10, 11].

(iv) gives what one would expect in specific examples. In the programming language Real PCF [10], the ab-

stract data type is based on simple real nundmerstruc-

tors anddestructors Mathematically, the constructors are

unary midpoint operations — 0 ® z andz — x @© 1 on

the unit interval(0, 1], wherez &y = (z + y)/2 is the

binary midpoint operation. These primitives are used by

Escard and Streicher [11] to characterize the interval data

type by a universal property, from which structural recur-

sion mechanisms for real numbers are obtained. Thus, this

fact that any two points of a convex body are connected byWork aCh'eV.e s many of the aims of the pr.esent paper. How-
ever, it crucially relies on general recursion and the conse-

a unique line segment. L .
R(ggarding (ii)gthe free property gives rise to an analogue.quent presence of partiality. Indeed, the interval data type

SO ) L : includespartial real numbers as essential ingredients of its
of primitive recursion for defining computable functions on characterization, and the characterization only works in a
the interval. In particular, we use this to define basic arith- ' y

metic operations and to verify equations between them. domain-theoretic setting. ] ] )
Regarding (iii), we make as few ontological commit- The goal of the present work is to obtain a_lcharacterlza-
ments as possible by formulating our definitions in the gen- tion of the real numbers that applies to a variety of compu-
eral setting of a category with finite products. Nevertheless, tational settings, including those, such as intuitionistic type
to make the paper accessible to readers who are uncomfortth€0ry [25], in which only total functions are available. Al-
able with category theory, we use, as far as possible, stanthough such a programme has not been undertaken previ-
dard algebraic notation, so that everything we say can beously, alge_bralc and coalgebraic technqu_Jes, sw_mlar to_the
easily understood in familiar mathematical terms. Indeed, ©N€s used in the present paper, do occur in previous axiom-
when specialized to categories such as sets and topologicattizations of the reals.
spaces, our definitions assume rather concrete meanings.  Higgs [14] definesnagnitude algebrasnd proves that
Regarding (iv), we have: (1) In the category of sets, any the interval[0, oc] endowed with the functiom +— x/2 and
closed and bounded interval of real numbers is an inter-the summation operation; : [0, oc]* — [0, oo] is the mag-
val object (Theorem 1). (2) In the category of topologi- nitude algebra freely generated hyHis definition is purely
cal spaces, any closed and bounded interval under the usua&@guational and is based on binary expansions of numbers.
Euclidean topology is an interval object (Theorem 2). Thus, Although our work has some connections with Higgs’, es-
our axiomatization of line segments exhibits the Euclidean pecially regarding the idea of using an infinitary operation,
topology as intrinsic rather than imposed structure, becausdhere are some important differences. Firstly, in the cate-
it is this topology that gives rise to an interval object. This gory of topological spaces, the free magnitude algebra over
is interesting in connection with the often cited fact that the ©ne generator is the intervé), oo] with the topology of
computable functions on the reals are continuous. (3) Inlower semicontinuity rather than the Euclidean topology.
any e|ementary topos with natural numbers Object’ an inter-mdeed, the infinitary summation Operation is not continu-
val object is given by the Cauchy completion of the inter- ous with respect to the Euclidean topology. Secondly, in
val of Cauchy reals within the Dedekind reals (Theorem 3). general, the Dedekind or Caucfty, oc] intervals in an el-
In many cases this coincides with the Cauchy or Dedekind ementary topos are not magnitude algebras, let alone free
intervals; but, in general, we seem to be identifying an in- Ones, as there are toposes, such as Johnstone’s topological
triguing new intuitionistic notion of real number. For details topos [17], in which these objects do not support the sum-
see Section 9. Some other possible settings are discusse@ation operation.
briefly in Section 10. Motivated by the stream implementations of real num-
For lack of space, all proofs are omitted from this ex- bers, Pavlowi and Pratt [29] consideroalgebraicdefini-
tended abstract. tions of the reals. However, they do not make connections

Regarding (i), we take anidpointoperation as the ba-
sic structure of line segments, with four axioms that corre-
spond to intuitive geometric properties. We defirmavex
bodyas a midpoint algebra in which the midpoint operation
can benfinitely iterated in a precise sense discussed in the
technical development that follows. Theniaterval object
is defined to be a free convex body over two generators, its
endpoints. Geometrically, the free property amounts to the



with the computational and geometrical requirements dis- the work of Kermit [20]. They have also recently been pop-
cussed above. Peter Freyd [12] considers a more geometularized by Peter Freyd in his investigations of (co)algebraic
rical coalgebraic approach. In fact, he also places empha-properties of the interval [12].

sis on midpoint algebras, although the midpoint operation

is derived rather than primitive. His approach does appearExample 2.2 The seR" is a cancellative midpoint algebra

Sar;)aclj\?ztzzme computational content, but this has yet to beunder the functiom : R” x R" — R™ defined by

XDy (x+y)/2

2 Convex bodies and interval objects

This yields a whole range of cancellative midpoint algebras
This section presents the main definitions of this paper, given by subsetst C R” closed unders. We call such
the notions ofibstract convex bodgndinterval object midpoint algebrasstandard midpoint subalgebras @&".
As discussed in the introduction, we define the interval Examples are: the set of dyadic rational points; the set of

as the free convex body over two generators. To do this,rational points; the set of algebraic points; any convex set.
we require an abstract notion of convex body that makes

no reference to real numbers. We achieve this by viewing

convex bodies as algebraic structures.

The algebraic structure we identify is that associated
with the basic ruler-and-compass construction of bisecting a

line. Given two points in a convex body, this construction

finds the point midway between them. It thus corresponds

to a binarymidpointoperationm : A x A — A. We begin
by axiomatizing the equational properties of such midpoint
operations.

LetC be a category with finite products.

Definition 2.1 (Midpoint algebra) A midpoint algebra
in C is a pair(4,m), whereA x A —"+ A is any mor-
phism, satisfying:

1. m(z,z) == (idempotency

2. m(z,y) = m(y, ) (commutativity

3. m(m(x’ y)v m('z7 w)) = m(m(a:, 2)7 m(y’ w))
(transposition

A midpoint algebra is said to beancellativef it satisfies:

4. m(z,z) = m(y, z) impliesz =y (cancellatior)

A homomorphisnirom (A, m) to (A’,m/) is a morphism
A—L+ A" such thatf (m(x,y)) = m/(f(z), f(y)). We
write MidAlg(C) for the category of midpoints algebras and
their homomorphisms.

These examples show that the midpoint axioms are still

far from capturing the full power of convexity, which re-

quires one to be able to fill in an entire connected line be-
tween any two points. Intuitively, we need to express some-
thing like a notion of Cauchy completeness for midpoint al-
gebras. However, Cauchy completeness itself cannot be the
appropriate notion, as midpoint algebras do not necessarily
carry a metric structure. More fundamentally, we cannot
use the notion of metric space to define the interval, be-
cause axiomatizing metric spaces already begs the question
of what the real numbers are. Instead, we need a method
of axiomatizing the completeness of midpoint algebras in
terms of their algebraic structure alone.

Consider an arbitrary sequence of poip§szy, ... inan
ordinary Euclidean convex bod¥. Let z be any point of4
and consider the derived sequence

m(x072)7 m(x07m($1=z))7 m(xo,m(th(;vz,z))), s

If A is bounded then this is a Cauchy sequence whose
unique limit point lies in A and is independent of.
Thus, any sequence), z1, ..., determines a unigue point
m(xg, m(x1, m(ze,...))) obtained by infinitely iterating
the binary operatiomn over the sequence. Our notion of
completeness for a midpoint algeh#ais to ask that such
infinite iterations always exist.

In the category of sets, such a requirement can be ex-
pressed directly, albeit clumsily—see Proposition 3.1. Re-

In order to understand such ordinary algebraic notation in anmarkably, there is a very concise formulation in purely cat-

arbitrary category with finite products, the variables must

egorical terms. Infinite sequences of elementd afre nat-

be interpreted as generalized elements. Thus, for examurally expressed using coalgebras for the fun¢tox (—)),

ple, the homomorphism equation states: for all general-

ized elements:,y : Z —— A (whereZ is any object),
fomo(z,y) = m'o(fox, foy). Inthis case, the condition
simplifies to the (unquantified) equatigam = mo(f x f).

The equations of midpoint algebras are not new. For ex-

ample, they have appeared as the axionmedial means

i.e. morphisms of the forni, t) : X —— A x X. Indeed,
any such coalgebra determines an obj&cbf sequences
of elements of4, as specified by thbeadandtail maps
h:X —— Aandt : X —— X respectively. We can
now state the property of being able to iterate the midpoint
operationm over any sequence so specified.



Definition 2.3 (Iterative algebra) A midpoint algebra  Example 2.6 Let A be any bounded convex subsetRjf
(A, m) is iterative if it satisfies theiteration axiom for endowed with the Euclidean topology. Thenalso ex-

such that the diagram below commutes. logical spaces. Indeed, given any continugusx (—))-
coalgebra(h,t) : X — A x X (whereX is any space),
id x u the functionu defined in (1) is again the unique map re-
Ax X - Ax A

quired by the iteration axiom. The interesting fact here is
thatw is continuous. This example will be expanded upon
c m in Section 8.

Y A As motivated in the introduction, the interval will be de-
U ’ fined as the free abstract convex body over two generators.
This amounts to being an initial object in a suitable category
In other words,(A,m) is iterative if, for any coalgebra of bipointed convex bodies.
c=(h,t) : X — A x X, there exists a unique satis- A bipointed convex body is a structur¢A,m,a,b)
fying u(z) = m(h(z), u(t(x))). where (A, m) is a convex body and,b : 1 —— A are
The above definition states that a midpoint algebra global points. Homomorphismbetween bipointed convex
(A,m) is iterative if it is final as an(A x (—))-algebra  bodies are required to preserve the points as well as the bi-
with respect to coalgebra-to-algebra homomorphisms fromnary algebra structure; i.¢.: A —— A’ is a homomor-
(A x (—))-coalgebras. Interestingly, the dual notion of a phism from(A4,m,a,b) to (A’,m’,a’, ") if and only if it is
coalgebra being initial with respect to arbitrary algebras hasa homomorphism froni4, m) to (A’,m’) anda’ = foa
arisen in recent work of Taylor [31, Section 6.3] and Eppen- andb’ = f o b. We write BiConv(C) for the category of
dahl [9]. bipointed convex bodies and their homomorphisms.
We are now in a position to formulate our abstract notion  \We can now give the main definition of the paper.
of convex body.

o Definition 2.7 (Interval object) An interval objectin C is
Definition 2.4 (Abstract convex body) An abstract con- an initial object inBiConv (C).

vex bodyis a cancellative iterative midpoint algebra.

We henceforth omit the word abstract, except when re- Example 2.8 In Set, any closed intervala, b] C R, with

quired to avoid confusion due to alternative notions of @ < b, gives an interval objed{a, b], &, a,b). Of course
convex body being available (for example, in Euclidean the choice ofs andb makes no difference. For future con-

space, where ordinary convex bodies are convex sets with/enience, we take the interval= [—1,1] as our standard
nonempty interior). We writ€onv(C) for the full subcate- ~ closed intervalandl, ®, —1, 1) as our standard interval ob-
gory of MidAlg(C) whose objects are convex bodies. ject. This example is discussed in more detail in Section 3.

Example 2.5 Continuing from Example 2.2, any bounded Example 2.9 In Top, (I, ®, —1,1) is again an interval ob-
convex subset oR”, considered as a standard midpoint ject whenl is equipped with the Euclidean topology. This
subalgebra oR", is an abstract convex body. Indeed, given is discussed further in Section 8.

functionsh : X — A andt : X — X, whereX is any

set, the unique function : X — A determined from the 3

coalgebrah,t) : A — A x X by the iteration axiom is Interval objects in the category of sets

u(z) = 22_(i+1)h(ti(x)). (1) In this section we study abstract convex bodies in the
categorySet of sets, and we show that the interval object
in Set is indeed(I, ®, —1, 1), as claimed in Example 2.8.
An important point is that the boundedness/fs crucial The least familiar aspect of the definition of convex body
for u to be well-defined. In fact, a standard midpoint subal- is the notion of iterative algebra. We begin by showing that,
gebra ofR™ is an abstract convex body if and only if itis a in Set, iterative algebras are exactly algebras supporting an
bounded convex subset®&f'; and, given a bounded convex additional operation of countably-infinite arity that satisfies
subsetB of R™, a functionf : A — B is a homomorphism  certain characterising properties relating it to the binary op-
of abstract convex bodies (i.e. a homomorphism wntif eration. In general, this reformulation provides the most
and only if it is affine. See Section 3 for details. straightforward method of showing that an algebra is itera-
tive.

i>0



Proposition 3.1 Let (A4, m) be a midpoint algebra iSet. This is far from immediate and is used crucially in the proof
of Theorem 1.

Having obtained a good understanding of what the dif-
ferent aspects of the definition of convex body meafen,

1. (A, m) is iterative if and only if there exists a function
M : A¥ — A satisfying:

(@) M(zo,z1,72,...) = m(xo, M (1,22, %3,...)) we return to Examples 2.5 and 2.8.
) If yo = m(zo,y1), y1 = mz1,y2), Yy = Proposition 3.4 If A is a standard midpoint subalgebra
m(za,ys), ...thenyy = M (zo, x1, 22, . . .). of R™, then A is an abstract convex body if and only if it

is a bounded convex subsetRjf.
Moreover if (4, m) is iterative then there is a

n !/ m
uniqueM satisfying (a). Supposed C R™ andA’ C R™ are convex sets. Recall

that a functionf : A — A’ is said to beaffineif it preserves
2. If (A,m) and(A’,m’) are iterative midpoint algebras  so-called convex combinations, i.e., of, ..., A\; € [0,1]
then any homomorphisifi: A — A’ is also a homo-  with Zle A =1,
morphism with respect to the associated infinitady .

and M’; i.e. for every sequence,, z1, . . ., b
ysed o f(z Aix;) = ZAif(Xi)'
f(M (o, 1,...)) = M'(f(0), f(21),...). = =
The next proposition demonstrates the naturalness of homo-
With an appropriate reformulation, the above proposition morphisms between abstract convex bodies.

generalizes from the category of sets to any category WithProposition 3.5 For bounded convex setd C R"™ and
finite products and a parameterized natural numbers objects;; ~ pm 4 functionf : A — A’ is affine if and only if

I_t i_s useful to identify .additi(_)ngllequational_properties itis a homomorphism with respect ta
satisfied by the the associated infinitary operations. We use

M;(z;) as a shorthand fa¥/ (zo, x1, 22, . . .). An example due to Peter Freyd [12], which uses the ax-
- _ _ o iom of choice, can be used to show that the boundedness
Proposition 3.2 For any iterative midpoint algebr@A, m) assumption is essential for Proposition 3.5 to hold.

in Set, with infinitary M : AY — A, ) ] o
Theorem 1 (I, @, —1, 1) is an interval object irSet.
1. o=M(z,z,z,...),

2. m(z,y) = M(z,,9, 9, ..) 4 Parameterized interval objects

3. M;(Mj(xij)) = M;(M;(x5:)), It is well known that Lawvere’s elegant definition of a
natural numbers object, which works very well in cartesian

4. Mi(mi(xs, yi)) = m(Ms(z:), Mi(y:)). closed categories, is not powerful enough in categories with

must also be cancellative. We have yet to see any techniion is needed [21, 7]. In a category with finite products, the

cal consequence of this property. In fact, for iterative mid- notion of parameterized natural numbers object supports the

approximation property. To formulate this, we write, a cartesian closed category, any ordinary natural numbers
for the (n + 1)-ary operation defined by (z) = 2 and objects is automatically parameterized. Much the same sit-
Mn(20, - - . xn) = m(To, Mp—1(z1,...,2,)) for n > 1. uation arises for interval objects.

Thusm is justm itself. Definition 4.1 (Parameterized interval object) A param-

eterized interval objectis a bipointed convex body
(I,®,—1,1) such that, for any convex body4, m) and

morphismsX —~ A andX —%+ A in C, there exists

a unique morphisnX x I ba) A satisfying

Proposition 3.3 For an iterative midpoint algebréA, m)
in Set, the following are equivalent.

1. (A, m) is cancellative.

2. The associated! : A~ — A satisfies the following (F, )@ y®z) = m((f,9)(xy), (f )z, 2)),
approximation property. o)z, ~1) = f(z)
If, for all n > 0, there existz,,w, € A such that .([f D@1) = 'g(x)

mn(x07 o, Tn—1, Zn) = mn(y07 . 7yn717wn) then
i.e. there is a uniqueght-homomaorphisnof bipointed con-
M(zo,21,...) = M(yo, Y1, ). vex bodies fromX x [ to A.



By instantiatingX to the terminal object, it is easily seen

combination of these two styles. We investigate the power

that any parameterized interval object is indeed an intervalof such combinations for the purpose of defining functions

object. The converse holds whéris cartesian closed:

Proposition 4.2 If C is cartesian closed then any interval
object is parameterized.

Henceforth in this section, I€t be a category with finite
products and parameterized interval objett®, —1,1).
The basic arithmetic operations értan be defined by

127 = (-,
I—1 = (1,-1),
IxI 2T = (-,id).

More explicitly, the above defines multiplication as the
unique morphisni x I S satisfying

rx(ydz) = (zxy)d(zx2),
rx(-1) = —=x
rx1l = =

Importantly, the universal property df stated in Defi-

onlin Set.

Definition 5.1 (Primitive interval functions) The primi-
tive interval function®n I are the functions in the smallest
family {F, C I" — I},,>( satisfying:

(I) —-1,1 € Fo.
(i) If f € F,, andgy,...,g9m € F, then the composite
fo<glv---7gm> efn-

(iii) If f,g € F, then the functiom: defined below is in
.FnJrl:

hxy) = 5= 5)f00+ 50+ )g().

2
(iv) If f1,..., fn,g € F, then the unique functioh satis-
fying the equation below is itF,,:

M) = 3900+ (0, Sal))

59()()
Here (iii) corresponds to the parameterized initiality Iof

with respect td™ as the object of parameters, afid) cor-

nition 41, suffices to establish the basic equations betWeer"espondS to the iteration axiom, as induced by the Coa|ge_

the above operations.

Proposition 4.3 — — x =z,
TXY=Y X,
X (yxz)=(rxy)Xz,
-0=0,
r®—z =0,
—(z®y) = (-z) & (-y),
xx0=0,
xx —y=—(zxy).

The most entertaining proof is that of the commutativity of

multiplication.

5 Primitive interval functions

In this section we give some preliminary results on the

power of the notion of interval object with respect to defin-

ing functions on the interval. As mentioned above, any pa-
rameterized natural numbers object supports definition by

primitive recursion. Here we investigate the definitional
mechanisms supported by parameterized interval objects.

bra(g, fi,..., fn) : I — I x I"". Note that propertyii)
means that tuples of primitive interval functions between fi-
nite powers ofl form a category. This category has finite
products because the projections are definable, ({gihg

The function defined byiv) is given explicitly by

hx) = Y 27 g((fr,. ., fa) (%)),

i>0

A natural generalization is to replace the sequence
(go (f1,---,fa)?): of composite functions with an arbi-
trary sequence of (already definedary functions.

Definition 5.2 (Countably-primitive functions) The
countably-primitive interval functionsn I are the func-
tions in the smallest familyF,, C I" — I},,> satisfying
(i)—(iii) of Definition 5.1 and also

(iv)’ Given fy, fi1,..
isinF,:

. € F,, the functionh defined below

h(x) = Y 270 fi(x).

i>0

In fact, a parameterized interval object supports two Clearly every primitive interval function is a countably-

complementary styles of definition.

On the one hand,

primitive interval function. The converse does not hold

the universal property of parameterized initiality gives one as there are continuum many countably-primitive inter-
mechanism for defining functions, used above to defineval functions, but only countably many primitive interval
negation and multiplication. On the other, the couniver- functions. Indeed, every element bfgives a countably-
sal property of the iteration axiom supports another type of primitive interval function of arity0 (i.e. a constant). Al-
definition, needed, for example, to define non dyadic ra- though this cannot hold for the primitive interval functions,
tional numbers. Parameterized interval objects allow anywe do at least have the following.



Proposition 5.3 Every rational inl gives a primitive inter- ~ However, in the next section, we outline a direct proof, by
val constant. showing that the computable functions are closed under the

] defining properties of thé-primitive interval functions.
The proof makes crucial use of propefty).

As in Section 4, we have, —, x as primitive interval
functions. Thus every-variable ®-polynomial (i.e. poly-
nomial whered replaces the usuat) with rational coeffi-
cients is am-ary primitive interval function.

We are not sure how much further definability can be
pushed with the primitive interval functions, as we now
show that even the countably-primitive interval functions
are very limited.

6 Aninterval data type

In Proposition 3.1, we have seen that, in the category of
sets, the iteration axiom is captured by the existence of an
infinitary versionM of the midpoint operatiomn. More-
over, a function of convex bodies is a homomorphism with
respect tomn if and only if it is a homomorphism with re-
spect to)M . Additionally, Proposition 3.2 shows that is
Proposition 5.4 If f is an n-ary countably-primitive in-  easily defined fromV/. This suggests that one might con-

terval function, andxg,...,zn_1,¥0,...,Yn_1 € I are sider thew-ary operationM as the primitive algebraic op-

such thaty; = x; wheneverz; € {-1,1}, then erator on convex bodies, rather than In this section, we

flzo,...,xn_1) € {—=1,1} implies f(yo,-.-,Yn-1) = exploit this idea to base a data type for the inteiivah the

flzoy. .. xpo1). term algebra of aw-ary operationV/ and two constants 1
andl.

This is proved by induction over the defining properties of  \we outline an implementation using a functional pro-

the countably-primitive interval functions. gramming notation similar to ML [28] and Haskell [1] (it

Thus if f is a unary countably-primitive interval function s not important whether an eager or lazy language is used).

andf(z) € {—1,1} for somez in the interior(—1, 1) then Our data type is defined as follows.
f is a constant function. Clearly then, the followitrgn-

cated doublgunction is not a countably-primitive interval ~ datatype I = -1 | 1| M of Nat -> |
function. Within the interval typd , we single out thev-branching
1 if1/2<u, well-founded trees as those data elements representing
d(z) = 20 if —1/2<2<1/2, points of the interval. Such trees are precisely the elements
-1 ifz<-1/2. of the term algebra mentioned above. To interpret a tree as
representing an element df the infinitary operato\/ is
Accordingly, define thel-primitive interval functiondo be interpreted as the iterated midpoint operation

the smallest class of functions containit#igind closed un-

der(i)—(iv). Define thecountablyd-primitive interval func- O —(i+1)

tionsanalogously. The reason for selectid@mongst the M (xo, z1, 22, ...) = ;2 Tis

non-countably-primitive interval functions is: =

using which anyw-branching well-founded tree evaluates to

a unique pointirl. Thus, by this interpretatiofi,is given as

a quotient of the set of alh-branching well-founded trees.

The proof uses the Stone-Weierstrass approximation theo- The iteration axiom of Definition 2.3, in the concrete

rem [30]. form given in Example 2.5, corresponds to the following
Thus includingd as a basic function enormously in- Ccorecursion combinator

creases definability. It is our hqu_tha_t this increasg iNde- corec : (X > 1) > (X > X) > (X -> )

finability also means that thé primitive interval functions

form a useful class, somewhat analogous to the primitive corec h t x = M (i -> h(ti(x)))

recursive functions ofN. Although we have yet to under-

take any systematic investigation of this class, we do have

one important result. Recall the standard notion of.aary

computable functioon I [34].

Proposition 5.5 The n-ary countablyd-primitive interval
functions are exactly the continuous functidfis— 1.

In this definition,\i->t  is typewriter notation for the
lambda expressioii.t and we use the evident notation for
function iteration.

The initiality of I, as in Definition 2.7, is exhibited by the
Proposition 5.6 Everyn-ary d-primitive interval function  following recursion combinator

is ann-ary computable function oh fec i (Nat > A) > A) > A > A > (I > A)

This result follows from Theorem 3 of Section 9 below,

. L . - . . ec Nab -1=a
by interpreting it in a realizability topos in which the mor- :ec Nab 1=b
phisms on the interval are exactly the computable functions. rec N ab (M s) = N (i -> rec N a b (s i)



In this definition, the first argumet¥ is the infinitary mid-
point operation of a given bipointed convex badlyand the
second and third argumenisand b are the distinguished
points. We have not built any explicit type of parameters
into the type ofrec , because parameterization is induced
automatically by the functional language. For example,

these notions are preserved by various categorical construc-
tions and functors. In this section, we state basic results of
this nature. The proofs are all routine.

As in Section 2, let be a category with finite products.

Proposition 7.1 The forgetful functorgonv(C) — C and

negation and multiplication are defined as in Section 4, us- BiConv(C) — C create limits.

ing the recursion combinator.

neg : 1 ->1
neg =recM 1-1

mul : | ->1->1
mul x = rec M (neg x) X

In particular, if(A, m) and(A’, m’) are convex bodies then
so isA x A’ endowed with

= mxm/’

(AxAYx(AxA) —> (AxA)x(A'xA") —— Ax A’

and an analogous statement holds for bipointed convex bod-

The recursion and corecursion combinators correspond tdes. One simple consequence of this result is that, for any

conditions(iii) and(iv) of Definition 5.1 respectively. The

interval object(I, ®, a, b), the n-dimensional cubd™ has

truncated double function can also be implemented usingan induced convex body structure.

the datatype , but this is surprisingly tricky. However, cu-

riously, an algorithm for doing this occurs fairly explicitly

in our (omitted) proof of Theorem 3 below. It follows that
the d-primitive interval functions are definable on our inter-
val data typd .

Because we are using a non-standard representation of

the interval, based on the infinitary midpoint operation, it is

important to show that our representation is interconvertible

As well as being closed under limits, convex bodies are
also closed under internal powers.

Proposition 7.2 If (A, m) is a convex body then so is
(a3 mB
(AB) AB x AP —+ (Ax A)P & AB)

for any exponentiable objed.

with the standard representations used in exact real numbeAgain, the analogous result holds for bipointed convex bod-

arithmetic. One such representati@igned binary uses

a data typd’ of infinite sequences of the three digits -1,
0 and 1—see [35]. It is trivial to convert from signed bi-
nary sequences to our representatiomnising the facts that
0=M(-1,1,1,1,...) and that a signed binary expansion
0.dpd1ds . .. is the same ad/ (dy, d;,ds, .. .). To translate

ies.

It is also straightforward to establish conditions under
which (bipointed) convex bodies are preserved by functors.
SupposeD is a category with finite products, and the func-
tor F : C — D preserves finite products. Then there is a
functor F : MidAlg(C) — MidAlg(D) whose action on

in the other direction, one first defines the iterated midpoint objects is:

operationM’:(Nat->1")->I’

ming exercise), and then the conversion functici’

simplyrec M* (\i -> -1) (\i > 1) .
Although we have written this section using a functional

(an interesting program-
is

F(A,m) = (FA, FAx FA ——+ F(Ax A) 7% F4)

and whose action on morphisms is inherited fréim

language with general recursion, we remark that our rep'Proposition 7.3 Suppose thak” has a left adjoint
resentation of the interval can be implemented even more ' '

directly using intuitionistic type theory [25]. Indeed, by for-
mulating the recursive definition of the data tylpas a W-
type, one obtains precisely the well-foundeebranching
trees over—1 and1, and our recursion combinator is sim-
ply the recursor for this type.

7 Basic categorical properties

In this section, we turn our attention to general proper-
ties of convex bodies and interval objects arising from their
categorical definitions. This general investigation will be
useful in Sections 8 and 9, in which we study examples in
categories other thaet.

One benefit of having simple abstract definitions of con-
vex body and interval object is that it is easy to prove that

1. The functo : MidAlg(C) — MidAlg(D) cuts down
to a functor ' : Conv(C) — Conwv(D). Similarly,
by extending the action of to bipointed objects, a
functor F : BiConv(C) — BiConv(D) is obtained.

. If I : C — D also has a right adjointz : D — C
then G : Conv(D) — Conv(C) is right adjoint
to the functor F : Conv(C) — Conv(D), and
G : BiConv(D) — BiConuv(C) is right adjoint to
F : BiConv(C) — BiConv(D). Thus, in particular,
F : C — D preserves interval objects.

It follows from 1 above that ifC is a full reflective sub-
category ofD and if D has an interval objedt/, , —1,1)
wherel is an object of’ then(7,®, —1,1) is also an inter-
val object inC.



A special case of statement 2 is that interval objects are

By Proposition 7.3.1(I, @, —1,1) with the Euclidean

preserved by the inverse image functors of essential ge-topology is a parameterized interval object in any full reflec-
ometric morphisms between elementary toposes. Thus iftive subcategory oTop that contains the closed Euclidean

f: € — &'is an essential geometric morphism afichas

an interval object then its image undgr gives an interval
object in&. In particular, by Theorem 1, every presheaf
toposSet®” has an interval object obtained A$I) — re-

call that the constant presheaf functdr; Set — Set®,

is the inverse image functor of an essential geometric mor-
phism [24]. More generally, in Section 9, we show that any
elementary topos with natural numbers object has an inter-
val object.

8 Interval objects in the category of

topological spaces

In this section we return to the claims made earlier in Ex-

interval. Thus, for example, it is a parameterized interval
object in the category of compact Hausdorff spaces.

9 Interval objects in an elementary topos

In this section we prove that an interval object exists in
any elementary topos with natural numbers object. There
are at least two reasons to be interested in such a result.
Firstly, elementary toposes include all Grothendieck and re-
alizability toposes, of which there are numerous examples
with direct geometrical and/or computational significance.
Indeed, we have already mentioned that the results of this
section can be used to prove Proposition 5.6.

Our second motivation is to study the notion of interval

amples 2.6 and 2.9, investigating abstract convex bodies an@bject using an intuitionistic background logic. It is well

interval objects in the categoffop of topological spaces.

Proposition 3.1 generalizes Top with the requirement
thatM : A“ — A be continuous with respect to the product
topology. It follows that, for a bounded convexC R™, the
midpoint algebrd A, @) with the discrete topology isotan
abstract convex body ifTop , because this topology does
not make the iterated midpoint operation into a continuous
function. Thus the notion of abstract convex body forces
one to consider more reasonable topologie$.rm).

Proposition 8.1 For any bounded convex subsétC R™
endowed with the Euclidean topologyl, @) is an abstract
convex body ifTop.

This result is derived from Proposition 3.4, by proving that
the infinitary midpoint operation is continuous. Certain
other basic information about convex bodiesTibp can

be inferred using Proposition 7.3. The forgetful functor
U : Top — Set has both a left adjoini\ (giving the
discrete topology) and a right adjoiRt (giving the indis-
crete topology). Thus, botli andV preserve convex bod-
ies. AsU does, we see that, by Proposition 3.4, under any
topology whatsoever, for a standard midpoint subalgebra
of R™ to be a convex body iTop, A must be a bounded
convex set. Also, for any bounded convex get, @) with

the indiscrete topology is a convex bodylop.

Also, by Proposition 3.4, if an interval object exists in
Top thenU preservesit. In fact, we have already claimed in
Example 2.9 thatl, &, —1, 1) is an interval object irfTop
when given the Euclidean topology. A®p is not cartesian
closed, it is appropriate to show that this is a parameterized
interval object in the sense of Section 4.

Theorem 2 (I, ¢, —1, 1) with the Euclidean topology is a
parameterized interval object ilop.

known that intuitionistic logic draws sharp distinctions be-
tween different, though classically equivalent, definitions of
real number. To better understand our notion of interval ob-
ject, we compare it to the competing intuitionistic accounts
of the interval. Somewhat surprisingly, rather than obtain-
ing one of the established notions, interval objects give rise
to an apparently new intuitionistic notion of real number,
albeit one that coincides with extant notions under the mild
assumption of number-number choice.

Let £ be an elementary topos with natural numbers ob-
jectN. Among the alternative notions of real number avail-
able, two are considered as being the most natural, the
DedekindrealsR , and theCauchy(or Canton realsR¢.
Both are defined using the object of ration@<and its as-
sociated ordering. The reader is referred to [16] for detalils.

A basic fact is that one has inclusions

QC R¢e CRp.

We say that a subobjecX C Rp is Cauchy complete

if every Cauchy sequence iXN (with modulus) has a
limit in X. It is easy to see that the Dedekind reals
are Cauchy complete. Obviously, the rationals are not
Cauchy complete. The Cauchy reals partially rectify the
non-completeness @ by adding all limits of Cauchy se-
guences of rationals. GiveN-N-choice, this suffices to
makeR ¢ itself Cauchy complete. However, it seems that,
in generalR¢ is not Cauchy complete, as, given a Cauchy
sequence of Cauchy reals, there is no mechanism for se-
lecting representative rational sequences from which the re-
quired limiting sequence of rationals can be extracted.

The possible failure of Cauchy completeness Ry
makes it natural to introduce another object of reals, namely,
theCauchy completion df) within R . This object, which
we call the object oEuclideanrealsR g, is defined as the



intersection of all Cauchy complete subobject®agf con- left adjoint to the forgetful functor from topological convex

taining the rational numbers. bodies to topological spaces, which exists by Freyd’s Ad-
We have identified three objects of reals joint Functor Theorem [23].
There are intriguing connections between midpoint alge-
Rc CRp CRp. bras and the probabilistic algebras that arise in the study of

AN N i . . probabilistic powerdomains—see the axiomatizations dis-
In the case thaf satisfiedN-N-choice, both inclusions are cussed by Heckmann [13]. It is plausible that the free

equalities. The Grothendieck topos of sheaves over the Eu- - . :
: o . . : . convex body over a sufficiently nice domain may be noth-
clidean line is a simple example in which the second inclu-

sion is strict. To our embarrassment, we do not know an ing but the probabilistic powerdomain of normalized valua-

example in which the first inclusion is strict. Thus we do tions [19].
not know if the envisaged failure of the Cauchy complete-
ness ofR¢ is actually possible—although we are sure that References
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