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Abstract

The lexicographical and numerical orders on infinite signed-digit numerals are un-
related. However, we show that there is a computable normalization operation on
pairs of signed-digit numerals such that for normal pairs the two orderings coin-
cide. In particular, one can always assume without loss of generality that any two
numerals that denote the same number are themselves the same. We apply the
order-normalization operator to easily obtain an effective and sequential definition-
by-cases scheme in which the cases consist of inequalities between real numbers.
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1 Introduction

It is a surprising fact, discovered by the constructive mathematician Brouwer [5]
in 1920, that potentially infinite decimal numerals are not suitable for effective
(exact) real number computation—see Section 2.1 below. After this discov-
ery, he and other mathematicians, logicians and computer scientists proposed
many essentially equivalent concrete representations of real numbers that are
suitable for constructive or mechanical computation—see Weihrauch [26] for
some classical examples.

In this paper we consider a variation of Brouwer’s solution, proposed by
Wiedmer [29] in 1980 and further investigated by Boehm et al. [4], Di Gianan-
tonio [8,10] and Weihrauch [26], among others, which consists of the use of
signed-digit numerals. One learns from Di Gianantonio [9] that Leslie [14] con-
sidered signed-digit numerals in 1817 from a philosophical point of view, and
from Siinderhauf [23] that Cauchy [6] observed in 1840 that signed-digit nu-
merals simplify computations by hand. Avizienis [2] proposed in 1964 signed-
digit numerals as an efficient internal representation of finite-precision numbers
for hardware implementation of arithmetic.
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Elegant algorithms for exact Riemann integration and global maximum de-
termination via signed-digit numerals were recently developed by Alex Simp-
son [21].

1.1  Effective case analysis on the reals

In all effective approaches to exact real number computation via concrete
representations, the (in)equality relations are undecidable. In particular, this
means that it is not possible to obtain exact algorithms from finite-precision
algorithms by simply changing the underlying representation of numbers. The
reason is that (in)equality tests are the basic ingredient for branching and
looping.

Nevertheless, many definitions by cases consisting of inequalities, such as

x ifx <y,

min(z,y) = {

y otherwise,

do produce computable functions. The point is that such functions cannot
be computed by first evaluating the condition and then computing the corre-
sponding branch.

But some general case-analysis schemes do exist. For example, if f,g :

R — R are computable functions that agree at a computable number x, then
the function ~ : R — R defined by

) fle) it w < @,
he) = {g(w) if x > x

is also computable [26, Lemma 3.8]. In fact, as observed by Alex Simpson
(personal communication), kA can be implemented simply by

h(x) = f(min(z, zo)) + g(max(z,z0)) — f(o).

Here we consider a slightly more general computable case-analysis operator
specified by

y ifx<tory=z,
cases(z,t,y,2) = z ifx>tory=-=z

with domain of definition {(x,t,y, z) | * = t implies y = z}. Given this domain

of definition, an equivalent specification is

cases(z,t,y,2) = {y "
z i
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In order to see that this scheme is more general than the previous one, notice
that

min(ma y) = C&SQS({E, Y, T, y)? max(w, y) = C&SGS(Q?, Y. Y, :C)
and that A can be implemented by

h(z) = cases(z, xq, f(z), g(x)).

In order to see that it is strictly more general, notice that the case-analysis op-
erator cannot be implemented from the previous case-analysis scheme because
it is a partial function and the functions used in the first implementation of h
are all total. In fact, computable partial functions such as

-1 ifx <0,
)= a0

can be implemented by
sgn(z) = cases(z,0,—1,1).

The previous scheme with f(z) = —1, g(z) = 1, and any choice of z, would
produce an incorrect implementation, because

h(z) = f(min(z, z9)) + g(max(zg,z)) — f(zg) = —1+1—-1=—1

and hence h # sgn.

Finally, notice that the case-analysis operator is a continuous map, defined
on a subset of R*, which cannot be extended to a continuous map on any larger
subset. In other words, the points (z,t,y, z) with z = ¢ but y # z are singu-
larities of the case-analysis operator. This means that the partial character of
the case-analysis operator is due to topological rather than recursion-theoretic
reasons.

1.2 Lexicographical order versus numerical order

In order to implement the above case-analysis operator (Section 4), we first
investigate the connections between the lexicographical and numerical orders
of infinite signed-digit numerals (Section 3). The main result is that there
is a computable normalization operation on pairs of numerals such that for
normal pairs the two orderings coincide. In particular, one can always assume
without loss of generality that any two numerals that denote the same number
are themselves the same. This is surprising because single numerals cannot
have effectively determinable canonical forms—see Section 2.4.
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1.3 Sequential case analysis on the reals

Sequentiality issues arise when one considers partial elements. For this part
of the paper we assume some familiarity with domain theory [1,18] and the
programming language PCF [16,11]. As opposed to other case-analysis oper-
ators considered in the literature [3,7], the above operator admits a sequential
implementation.

One of the simplest examples of a “parallel” operation is the so-called
parallel-or [20,16], defined by the following table:

1 |false|true

1 1 | L |true

false|| L |false|true

true |[true|true |true

Notice that this is part of Kleene’s three-valued logic [12]. Since the computa-
tional interpretation of L is non-termination, this function requires some form
of parallel evaluation. In fact, if the first argument is always evaluated first
and it happens to be L, then the value of parallel-or at (L, true), namely true,
cannot be correctly evaluated, because one never gets the chance of evaluating
the second argument. If, on the other hand, the second argument is always
evaluated first, the same problem arises with the evaluation of parallel-or at
(true, L). The only way out is to evaluate both arguments in a parallel fashion.
In recursion theory, this kind of evaluation is referred to as dovetailing [19]
and is usually achieved via Kleene’s T-predicate [12].

Parallel-or is not definable in sequential languages such as PCF [16, conse-
quence of Activity Lemma 4.2, pages 235-236]. The (extremely hard) problem
of characterizing sequentiality in semantic terms is outside the scope of this
paper. An operational formulation is given by the Activity Lemma. Roughly,
it says that every unevaluated PCF expression has a unique “active subex-
pression”, which is the one that has to be evaluated first. This property fails
when one extends PCF with parallel-or or related constructions.

The case-analysis operator defined above is related to the so-called parallel
conditional. For the flat domain of natural numbers, it is defined by

x if p=true or x =y,
pif p then x else y =4qy if p=false or z =y,

1 otherwise.

As for parallel-or, no argument of the parallel conditional can be safely eval-
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uated first, because

pif true then z else 1 = x,
pif false then | else y =y,

pif L then x else x = .

The parallel conditional has a pseudo-parallel conditional as a relative,
defined by

x ifp=trueorz =1y, but y # L,
ppif p then z else y =<qy if p=falseor z =y, but = # L,

1 otherwise.

This construction is sequential, because one can first evaluate one of the
branches, then the other, and finally, if necessary, the condition. In fact,
it can be implemented from the usual sequential conditional by

ppif p then x else y = if (x = y) then x else if p then x else y.

The author doesn’t know whether this has already been observed.

The parallel conditional generalizes from the flat domain of natural num-
bers to any cpo with binary meets such that the binary-meet operation is
continuous (e.g. (algebraic and) continuous Scott domains) [17]:

x if p = true,
pif p then x else y =<y if p = false,
xMy ifp=_1.

It is not clear to the author whether the pseudo-parallel conditional can also
be generalized to a large class of domains. In this paper we consider a gener-
alization to a domain of signed-digit numerals (Section 4).

Boehm and Cartwright [3] observed that the parallel conditional is useful
in connection with a computable partial inequality test

true if z <y,
(x <y y) =< false if z >y,
1 otherwise.

For instance, one can implement min by
min(z,y) = pif x <, y then z else v,

because when the test diverges the parallel conditional still converges as the
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two branches are equal:
min(z,z) = pif L then x else z =x Mz = z.

This was explored in detail by the author in the context of the interval do-
main [7].

Notice that the above observation makes sense only for extensional do-
mains of real numbers. By “extensional” here we mean that each real number
has a unique representation. An example is the interval domain. For inten-
sional domains, the meet of two different representations of a number is not
a third representation of the number in general. A counter-example is given
by the domain of signed-digit numerals considered in this paper. It consists
of finite and infinite sequences of signed-digits endowed with the prefix order.
Hence meets are greatest common prefixes. However, if one takes meets after
performing order-normalization, correct results are obtained.

In summary, our sequential implementation of the case-analysis operator
(Section 4) relies on (1) order-normalization, (2) the partial inequality rela-
tion, (3) a pseudo-parallel conditional for the domain of numerals. This ex-
plicit factorization via the partial inequality relation and the pseudo-parallel
conditional doesn’t make sense when partial truth values and numerals are
not available, so a direct construction is also given.

One has to be careful about what is meant by “evaluate first” when infinite
objects (such that infinite sequences or functions) are involved. It is surely not
meant that the object is completely evaluated, because this doesn’t even make
sense. Rather, it is meant that a canonical “part” of the object is evaluated
first. For infinite sequences, this part will usually be the first term of the
sequence (the “head”).

1.4 Organization

For the reader’s convenience, we begin by recalling the basic facts about real
number computation via infinite signed-digit numerals in Section 2. We then
investigate the connections between the lexicographical and numerical orders
in Section 3. This is applied to obtain extremely simple constructions of the
case-analysis operator for total and partial numerals in Section 4.

2 Computation via signed-digit numerals

For simplicity, in this paper we consider binary numerals. We first consider
standard binary numerals and recall their main drawback from the point of
view of computability (Section 2.1). We then briefly show how signed-digit bi-
nary numerals overcome the difficulties (Section 2.2) and define computability
(Section 2.3). Finally, we discuss the issue of canonical forms (Section 2.4).
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2.1 Standard numerals

A numeral is an infinite sequence over the digit alphabet 2 = {0,1}. A
numeral o € 2¢ denotes the number

[a] = Zai 27D e 10, 1).

i>0

If one wants to extend binary notation to the whole real line, one can use a
mantissa-exponent representation—see e.g. [9]. Since this adds little to our
considerations, we restrict ourselves to numerals over a closed and bounded
interval.

The map a — [a] is a surjection ¢ : 2 — [0,1]. It is not an injection
because the dyadic rationals m/2" € (0,1) have two binary notations. We
say that a function ¢ : 2 — 2% realizes a function f : [0,1] — [0, 1] if the
following diagram commutes:

¢

¢ — 2

ql lq
0,1] T) [0, 1].

Of course, here we are interested in computable realizers. A necessary condi-
tion for a function ¢ : 2* — 2% being computable is that finite subsequences
of ¢(a) depend only on finite subsequences of a. In this case we say that ¢ is
of finite character.

Proposition 2.1 A function ¢ : 2° — 2% is of finite character iff it is con-
tinuous.

Here 2 is endowed with the discrete topology and 2“ with the product
topology, so that 2¢ is Cantor space—see e.g. [22].

Proposition 2.2 The surjection q : 2 — [0, 1] is a topological quotient map.

Simply because it is continuous, and a continuous surjection of compact
Hausdorff spaces is always a quotient map.

Corollary 2.3 A function with a realizer of finite character is necessarily
continuous.

Unfortunately, the converse is not true.

Proposition 2.4 There are continuous functions with no realizer of finite
character, for example f(x) = 3x/4.

See e.g. [29,10]. Corollary 2.3, Proposition 2.4 and Corollary 2.5 are essen-
tially due to Brouwer [5].
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Corollary 2.5 Simple functions such as f(x) = 3x/4 fail to be computable
in standard digital notation.

This is of course independent of the choice of a base—but different counter-
examples are needed for different bases. However, Brouwer showed that the
use of the non-standard base 2/3 with digits 0 and 1 solves this problem.
Turing [25] didn’t notice the problem when he defined computable numbers.
He corrected his definition in [24], adopting Brouwer’s solution. Here we
consider a variation of this solution, consisting of the use of the standard
base 2 with negative digits.

2.2 Signed-digit numerals

A signed-digit numeral is an infinite sequence over the signed-digit alphabet
3 ={1,0,1}, where 1 stands for —1. A numeral o € 3* denotes the number

[o] =) a;-2700 e [—-1,1).

>0

As before, the surjection v +— [« is a quotient map ¢ : 3* — [—1,1]. The
above definitions and facts for standard numerals apply to signed-digit nu-
merals, except that now one has that, in contrast to Proposition 2.4,

Proposition 2.6 FEvery continuous function f: [—1,1] — [—1,1] has a real-
wzer ¢ : 3¥ — 3 of finite character.

The same holds for functions of several arguments, with realizers defined
in the obvious way.

Proof. Miiller [15], and Weihrauch and Kreitz [28], showed that the quotient
map ¢ : 3 — [—1,1] is admissible (or maximal) in the following sense. For
every quotient map ¢’ : 3 — [—1, 1], there is a (far from unique) continuous
map ¢ : 3 — 3“ which translates from ¢’-notation to ¢-notation, meaning
that ¢ = q ot. The same argument shows that, more generally, for every
continuous map ¢ : 3 — [—1, 1] there is a continuous map ¢ : 3“ — 3“ such
that g = g o ¢. (In other words, the space 3“ is projective over the quotient
map ¢.) Then the result follows by taking g = f oq. O O

2.3 Computability

For the purposes of this paper, a function f : [—1,1] — [—1, 1] is computable if
it has a computable realizer ¢ : 3* — 3“. Computability on 3“ can be defined
e.g. via Turing machines with oracles [13,27,26]. In practice, an intuitive
understanding of computability on 3 is enough for most purposes.

2.4 The lexicographical order and canonical forms

We order numerals by the lexicographical order
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a < [ iff there is an integer k such that ay < O and a; = ; for each ¢ < k.
Each number has two canonically associated signed-digit numerals:

Proposition 2.7 Fvery number is denoted by a smallest and by a largest
signed-digit numeral.

Proof. The preimage of a point by the quotient map ¢ : 3 — [-1,1] is a
closed set because ¢ is continuous. But topologically closed subsets of 3“ are
closed under non-empty infima and suprema in the lexicographical order (in
fact, this characterizes topologically closed subsets). O O

However, there are no effectively determinable canonical forms:

Proposition 2.8 There is no continuous, denotation-preserving idempotent
map ¢ : 3% — 3% such that c(q ' ({x})) is a singleton for each x € [—1,1].

Proof. If there were, [—1,1] would be a retract of 3“. But 3 is a totally
disconnected space, and such spaces are closed under retracts. On the other
hand, [—1, 1] is connected. O

3 Lexicographical order versus numerical order

If a, § € 2% are standard numerals then

a < 3 implies [of < [A].
This property fails for signed-digit numerals (for example, for a = 11% and
B = 01¥ one has a < 8 but [a] =0 £ —1/2 = []). Moreover, its converse
fails for both standard and signed-digit numerals (for example, for o = 10
and § = 01¢ one has that [a]] = [#] = 1/2 but o £ ). However, it turns out

that signed-digit numerals admit a very strong order-normalization property
that standard numerals don’t.

3.1  Order-normalization

Definition 3.1 A pair («, 5) of numerals is order-normal iff
(i) a < B and [of < [A], or
(i) o« =p, or
(i) > p and [a] > [5]. O
Thus, for order-normal pairs («a, 3), the condition [a] = [3] implies o = (.
In order to emphasize that order-normality is a property of pairs of numerals

and not of single numerals, we observe that the pair (o, «) is always order-
normal.

Theorem 3.2 There is a computable, denotation-preserving idempotent map
onorm : 3¥ x 3% — 3“ x 3“ whose fixed-points are order-normal pairs.

That is, onorm(a, 3) = (¢/, ') implies that
9
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(1) ([a], 181) = (Ie'T, 18D,
(ii) (o, ) is order-normal, and
(iii) onorm(o/, ") = (o/, ).
We don’t make use of the idempotency condition (iii) in our applications.

In order to prove Theorem 3.2, it is convenient to introduce a weak version
of order-normality. A pair («, 3) of numerals is head-normal if

(i) a < and [o] < [4], or
(i) oo = B, or
(i) > f and [a] > [A].
Lemma 3.3 There is a computable, denotation-preserving idempotent map
hnorm : 3* x 3¥ — 3¥ x 3“ whose fixed points are head-normal pairs.

With this we can easily prove the order-normalization theorem.

Proof of Theorem 3.2. A recursive algorithm is given by

onorm(c, 3) = onorm’ (hnorm(«, 3)),

onorm’(«, 8) = («, B) if ag # B,
onorm’(da, df) = (da/,df") where (o, 3') = onorm’(hnorm(a, 3)).

The idea is that the input of onorm’, when onorm’ is called from onorm or
itself, is always head-normal. If [a] = [3] then the last equation is always
applied. Otherwise we eventually reach the previous equation and the process
comes to an end. O O

In order to prove the head-normalization lemma, let = be the equivalence
relation on numerals induced by the denotation function:

a =g iff [o] = [5].
We state the following two easily established facts as lemmas:
Lemma 3.4 The following identities hold for all « € 3* and 3 € 3%:
a01p = allp, a018 = allp.

Here 3* is the set of finite sequences over 3. Notice that these identities
are symmetric, in that each one arises from the other by multiplying digits
by —1.

Lemma 3.5 For allz € [-1,1], d € 3 and a € 3%,
(i) = < [o] implies (d+ x)/2 < [da],
(ii) [of] < x implies [da] < (d+ x)/2.

In practice, we successively apply these entailments to the inequality —1 <
[a] <1 after examining finitely many digits of «.

Proof of Lemma 3.3. In order to significantly cut down the number of cases

10
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in the definition of hnorm, given below, it is convenient to add the following
natural conditions to its specification: If hnorm(ca, 8) = (¢, 5') then

(i) hnorm(f, o) = (', ) (symmetry by twisting), and

/

(ii) hnorm(—a, —() = (—a/, =) (symmetry by reflection).

Here —a is the digit-wise complement (multiplication by —1) of the numeral «,
which of course realizes the complement function on numbers.
We let hnorm(c«, 3) be (¢/, '), where o and (' are defined by cases as
follows:
(i) ap = fFo:  Wecanlet (o/, ') be (a, 5) because the latter is head-normal.
(i) g =1 and By =0: Then [a] <0 and —1/2 < [F].
(a) a; =1: Then [o] < —1/2.
e ay € {1,0} or B, € {0,1}:  Then [a] < —1/2 or —1/2 < [f].
Hence [a] < [5]. Thus (o, ) is head-normal because o < 3. There-
fore we can let (¢/, 3') be («a, ).
e ap=1land B, =1: Inordertoget o and 3’ we apply the identities
of Lemma 3.4 to § so that o/ and 8’ share the first digit and hence

are head-normal: « =111-+-- =1’ and 3 =01---=11--- = 3.
(b) @y =0: Then Jo] < —1/4.
e /=1 a=10---=cd’and f=01---=11---=: 3.
caz=1(and fy #1): a=101---=111--- =011--- =: o/ and
B=0-= 3.

e ay € {1,0} and 3, € {0,1}: Then [a] < —1/4 < [3]. Hence we
can take (o, ') = («, ).
(c)ay=1: a=11---=01---=1d/and f=0--- = .
(iii) ap = I and By = 1:  Then [a] <0 < [A].

(a) ay € {1,0} or B, € {0,1}:  Then [a] < 0or 0 < [3]. Hence we can
take (o/, 3") = (o, ).

(b) g =1 and 3, = 1: We can take « = 11--- = 01--- =: o and
B=11---=01---= g

(iv) ap =0 and Sy =1:  Symmetric to case (ii) by twisting.
(v) ap =0 and fy =1: Symmetric to case (iv) by reflection.
(

(vi) ap =1 and By =1: Symmetric to case (iii) by twisting.
(vii) ap =1 and By =0: Symmetric to case (v) by twisting.
By construction, hnorm is denotation-preserving and its range consists of
head-normal pairs. A simple inspection shows that it is also idempotent.
(Notice that we need to look to at most three digits of each input of the
head-normalization operator in order to generate the whole output.) 0O O

This shows that denotational equivalence, for signed-digit numerals, is a
relation of finite character. Let ~ be the least equivalence relation such that

a0183 ~ allp, a0183 ~ allp.
11
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It follows from Lemma 3.4 that o ~  implies o = (3. Of course, the converse
is not true. However, a weak form of the converse follows from Lemma 3.3.

Corollary 3.6 If a = 3 then for every natural number k there are o/ ~ «
and 3" ~ B with of, = B} for each i < k.

3.2  Weak order-normalization

The following weak form of order-normalization is enough for many purposes.
We say that a pair (a, 3) of numerals is weakly order-normal iff

a < fBand [of < [F], or a > ( and [« = [5].

As above, in order to obtain a weak normalization operator, it is enough to
consider the following (further) weakening. A pair («, 3) of numerals is weakly
head-normal if

a < fBand [o] < [F], or ag = By, or a = 5 and [a] = [5].

A simplification of the construction given in Lemma 3.3 produces a more
efficient computable, denotation-preserving idempotent map whnorm : 3* x
3¥ — 3“ x 3“ whose fixed points are weakly head-normal pairs. We let
whnorm(a, 3) be (o/, 3'), where o’ and (3’ are defined by cases as follows:

(i) ap = fo:  Take (/,7) = (a, ).
(i) g =1 and By =0: Then [a] <0 and —1/2 < [F].
(a) a; = 1:  Then [a] < —1/2. Hence (a, ) is weakly head-normal
because o < § and [a] < [#]. We can thus take (o/, 7') = (o, ).
(b) @y =0: Then Jo] < —1/4.

e /=1 a=10---=d’and f=01---=11---=: 3.
e 51 €{0,1}: Then 1/4 < [A] and « < 3, and hence we can take
(o, 8') = (o, 3).

(ili) g = 1 and By = 1:  Then [a] < 0 < [A] and we can take (o, 3) =
(a, B).

The remaining cases are symmetric to the others by reflection or twisting as

in the proof of Lemma 3.3. From this construction we see that, for the weak

head-normalization operator, we only need to look to at most two digits of

each input in order to generate the whole output.

4 Definition by cases on the reals

As a first application of order-normalization, we obtain a simple proof of an
essentially well-known result.

Proposition 4.1 There is a computable partial function cases : [—1,1]* —

12
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[—1,1] such that

y ifr<tory=z,
cases(z,t,y,2) = z ifx>tory==z

with domain of definition {(z,t,y,2) | v =t implies y = z}.

Proof. We first consider an analogous lexicographical case-analysis operator
lexcases : (3*)" — 3% such that

ifa<Bory=4,
lexcases(a, 8,7, 0) = {g if > [ or z =0

with domain of definition {(«, 3,7, ) | @ = 3 implies v = ¢}. In order to com-
pute lexcases(a, 3,7, ), we can first output the greatest common prefix of ~y
and 0. If it is finite then v # 6 and hence we must have o <  or a > .
In the first case we output the remainder of v and in the second the re-
mainder of 4. Now, a realizer for the numerical case-analysis operator is
given by ¢(a, 3,7, 0) = lexcases(«/, 5,7/, d") where (¢, ') = onorm(a, 3) and
(+',0") = onorm(y,d). (Notice that the first occurrence of the the order-
normalization operator can be replaced by the more efficient weak order-
normalization operator, but that the second cannot.) O O

We now work with the domain 3*° = 3* U3 of finite and infinite numerals
ordered by prefix. The idea here is that finite numerals denote processes that
produce finitely many digits and then diverge. In order to emphasize this point
of view, finite numerals will be referred to as partial numerals. If one wishes
allow processes that produce finitely many digits and then terminate, one can
consider a termination symbol—but this possibility is outside the scope of the
present discussion. In this framework, partial functions are modelled by total
functions which map some total numerals to partial numerals.

If an index 7 is out of range in an expression such as «;, we adopt the
convention that the value of the expression is . This is in accordance with
the interpretation of finite numerals as partial numerals. We also adopt the
notation a™ defined by (™), = ;. In particular, oV is the “tail” of a.

Lemma 4.2 The order-normalization operator constructed in Theorem 3.2
has a sequentially computable extension 3> x 3% — 3> x 3%,

We are not particularly interested in the precise behaviour of the operator
at partial numerals. The same is true for the operators defined below. What
is important here is that it is extended in such a way that one obtains a
sequentially computable function.

Proof. The recursive definition of the order-normalization operator given in
the proof of Theorem 3.2 clearly applies to the case in which one admits partial
numerals, and it is manifestly sequential. The same applies to the construction
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of the auxiliary function hnorm defined in the proof of Lemma 3.3, as it consists
of a case analysis which examines digits of the first and second argument in
an alternated and hence sequential fashion. O O

Let B be the flat domain {true, false}, of truth values.

Lemma 4.3 There is a sequentially computable function (o, 3) — (o <, () :
3 x 3*° — B such that for all total numerals a and (3,

true if [a] < [6],

(a<s )= {false if [of > [4].

Proof. Since we can first apply the sequential order-normalization operator,
it is enough to define a sequential lexicographical inequality relation:

(a <y B) =if (ap = B) then o™ <; BV else ag < fy. O

O

Lemma 4.4 There is a sequentially computable map ppif : Bx 3> x3*° — 3
such that for all total numerals o and (3,

[e] if p = true or [o] =[],

[ppif(p, v, B)] = {[[ﬁ]] if p = false or [o] = [6].

Proof. Since we can first order-normalize («, 3), we can assume w.l.o.g. that
[o] = [A] iff « = 3, and hence define ppif by

ppif(p, a, B) = if(ag = (o) then ay - ppif (p, ™, B) elseif pthen acelse 5. O

O

Corollary 4.5 A sequentially computable extension of the the numerical case-
analysis operator to partial numerals can be defined by

cases(z,t,y,z) = ppif © <, t then y else z.

5 Concluding remarks

We developed a general effective and sequential cases-analysis operator for
which the cases consist of (in)equalities between real numbers. The con-
struction is based on order-normalization, a partial inequality relation, and a
pseudo-parallel conditional. We have to admit that the pseudo-parallel condi-
tional is probably as inefficient as the truly parallel conditional, because both
branches have to be evaluated and compared always. However, parallelism
(or dovetailing) is completely avoided, so that implementations in sequential
programming languages are possible.
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The approach to real number computation via signed-digit numerals is
highly intensional. The author conjectures that parallelism is unavoidable in
extensional domain-theoretic approaches to real number computation such as
the one investigated in [7].

The results on order-normalization used to obtain the case-analysis oper-
ator are interesting in their own right. In particular, they show that one can
always assume without loss of generality that any two numerals that denote
the same number are themselves the same.
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