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Abstract

If X and Y are Hausdorff spaces with X locally compact, then the compact-open topology
on the set C(X, Y ) of continuous maps from X to Y is known to produce the right function-
space topology. But it is also known to fail badly to be locally compact, even when Y is
locally compact. We show that for any Tychonoff space Y , there is a densely injective space Z
containing Y as a densely embedded subspace such that, for every locally compact space X,
the set C(X, Z) has a compact Hausdorff topology whose relative topology on C(X, Y ) is
the compact-open topology. The following are derived as corollaries: (1) If X and Y are
compact Hausdorff spaces then C(X, Y ) under the compact-open topology is embedded into
the Vietoris hyperspace V(X × Y ). (2) The space of real-valued continuous functions on
a locally compact Hausdorff space under the compact-open topology is embedded into a
compact Hausdorff space whose points are pairs of extended real-valued functions, one lower
and the other upper semicontinuous. The first application is generalized in two ways.

Keywords: Compactification of function spaces, semicontinuous function, continuous lattice, Scott
domain, Scott topology, densely injective space, dual topology, Lawson topology, Vietoris hyperspace,
patch topology, locally compact space, compact-open topology, core-compact space, Isbell topology.
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1 Introduction

In the Compendium of Continuous Lattices [6], the set C(X) of real-valued continuous functions
on a locally compact Hausdorff space X is considered as an application of the theory (page XIV).
Under the pointwise operations, this is a sublattice of the complete lattice LSC(X) of lower semi-
continuous functions with values on the extended real line, which is an example of a continuous
lattice. As any continuous lattice, it admits two canonical topologies, known as the Scott and
the Lawson topologies. The Scott topology is compact and locally compact, but highly non-
Hausdorff. Lower semicontinuous functions can be regarded as genuinely continuous functions
by considering the topology of lower semicontinuity on the line; under this view, the Scott topol-
ogy of LSC(X) coincides with the compact-open topology. The Lawson topology is a refinement
of the Scott topology, which is characterized as the unique compact Hausdorff topology making
the formation of binary meets into a continuous operation. In the light of the fact that C(X)
with the compact-open topology is not even locally compact in general, as the example X = [0, 1]
shows, this is somewhat surprising. It is natural to wonder whether the subspace topology on
C(X) induced by the Lawson topology of LSC(X) is the compact-open topology. Unfortunately,
it turns out to be strictly weaker [14]. But a related construction does produce a Hausdorff
compactification of C(X) and of more general function spaces.
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We show that for any Tychonoff space Y there is a space Z containing Y as a densely
embedded subspace such that, for every locally compact space X, the compact-open topology of
the set C(X,Z) of continuous functions from X to Z has a compact-Hausdorff refinement whose
relative topology on C(X, Y ) is still the compact-open topology. Such a space Z is necessarily
non-Hausdorff. We construct it as a continuous Scott domain endowed with the Scott topology.
Then the set C(X,Z) is also a continuous Scott domain under the pointwise ordering, with Scott
topology coinciding with the compact-open topology. The compact-Hausdorff refinement is taken
as the Lawson topology.

When Y is compact Hausdorff, its closed sets form a continuous lattice under the reverse-
inclusion order, with the Lawson topology coinciding with the Vietoris topology. In this case,
the space Z can be taken as the closed sets under the Scott topology. From this and general
properties of the compact-open topology, we derive as a corollary that if X and Y are compact
Hausdorff spaces then C(X,Y ) under the compact-open topology is embedded into the Vietoris
hyperspace V(X × Y ) by the graph map. Generalizations of this situation are considered.

When Y is the Euclidean line, the space Z can be taken as the topological product of two
copies of the extended real line, one endowed with the topology of lower semicontinuity and the
other with the topology of upper semicontinuity. Thus, as a corollary, we obtain a Hausdorff
compactification of a space of continuous real-valued maps by a space of pairs of semicontinuous
maps.

Although the theory of continuously ordered sets is our fundamental tool, this paper is specifi-
cally written in such a way that the topologist or functional analyst who is not necessarily familiar
with the theory should be able to follow the formulations of the propositions and the proposed
proofs. The survey Section 2 is based on three lectures that I gave in the Informal Analysis
Seminar series of the School of Mathematics of the University of St Andrews in February and
March 2000. But only the material that is needed for the development that follows has been
included—for more applications of continuously ordered sets to analysis see [1]. I am grateful to
the organizers and to the audience for valuable feedback. Discussions on a previous version of this
paper with Roy Dyckhoff were enjoyable and profitable. This version contains some reactions to
his constructive criticism. Many thanks to Reinhold Heckmann for a careful and critical reading
of a previous version.

2 Continuous lattices in analysis and topology

In this survey section we present the background material on continuous lattices that is needed
for the purposes of this paper. Examples are given to illustrate the defined notions and their
theory. Proofs can be found in the references [6, 7, 9, 10, 11, 12, 16]. Occasionally, however,
we offer different routes to well-known facts, in which case we include proofs. For detailed
historical notes, see the references [6, 10, 11]. The following topics are covered in this survey:
(1) Continuously ordered sets. (2) The Scott, dual and Lawson topologies of a continuously
ordered set. (3) Densely injective topological spaces. (4) The dual and patch topologies of a
topological space. (5) Core-compact topological spaces. (6) Topological function spaces.

2.1 Continuously ordered sets

We are interested in continuous Scott domains, and in continuous lattices in particular, but it is
convenient to start from the more general notion of a continuous poset.
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The way-below relation A subset D of a partially ordered set is called directed if it is non-
empty and any two members of D have an upper bound in D. For elements x and y of a partially
ordered set, one defines

x ¿ y iff every directed set with join above y has a member above x,

and in this case one says that x is way below y. The very basic properties of the way-below
relation are the following.

2.1 In any partially ordered set,

1. x ¿ y implies x ≤ y,

2. x′ ≤ x ¿ y ≤ y′ implies x′ ¿ y′, and

3. if ⊥ is a least element then ⊥ ¿ x.

Continuous posets A partially ordered set is continuous if for every element x, the set

↓↓x
def= {u | u ¿ x}

is directed and has x as its join. Notice that we don’t assume that the partially ordered set is
closed under the formation of arbitrary directed joins—see e.g. Example 2.2 below—but this will
be the case in our applications. A basis of a continuous partially ordered set is a subset B such
that for every member x of the partially ordered set, the set {b ∈ B | b ¿ x} is directed and
has x as its join. Clearly, the set of all elements of a continuous partially ordered set is a basis.
Our first example plays a major rôle, both in the theory and in the applications.

2.2 Example (The line) The real line is a continuous poset under its natural order, with way-
below relation given by x ¿ y iff x < y, which shows that the rational points form a basis.
Notice that, because the order is linear, a subset is directed iff it is non-empty.

2.3 Example (The plane) The plane is a continuous poset under its coordinatewise order,
with way-below relation given by x ¿ y iff x1 < y1 and x2 < y2.

2.4 Example (Finite posets) Any finite partially ordered set is continuous, with way-below
relation coinciding with the partial order.

Other examples of continuous posets are the following. (1) The open sets of a locally compact
Hausdorff space under the inclusion order; in this example, U ¿ V iff the closure of U is a compact
subset of V —see Section 2.5 below. (2) The set of extended real-valued lower semicontinuous
functions on a locally compact Hausdorff space under the pointwise order—see Section 2.6 below.
(3) The power set of the natural numbers under the inclusion order; in this example, X ¿ Y iff X
is a finite subset of Y . (4) The subgroups of a group under the subgroup order; in this example,
G ¿ H iff G is a finitely generated subgroup of H. These last two examples are irrelevant for
the purposes of this paper.

Naturally occurring counterexamples are not so easy to find. By virtue of Section 2.5 below,
the lattice of open sets of the topological product of countably many copies of the discrete space of
natural numbers is one. An artificial counterexample is obtained by adding a top element∞ to the
natural numbers under their natural order, and an element a with 0 ≤ a ≤ ∞ but incomparable
with other elements. This complete lattice is not a continuous poset because ↓↓ a = {0}.

By (2.1), in a continuous partially ordered set, the sets ↓↓x are ideals (directed lower sets). A
non-trivial property of the way-below relation of a continuously ordered set is the following.
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2.5 If x ¿ y holds in a continuous partially ordered set, then every directed set with join above y
has a member way above x.
Proof Let D be a directed set with join above y, and let I be

⋃{↓↓ d | d ∈ D}. By continuity,
I has the same join as D, and, being a directed union of ideals, it is an ideal. Hence if x ¿ y
then x ∈ I, which means that x ¿ d for some d ∈ D. ¤

Since y is the directed join of the (basis) elements b ¿ y, we have the following order-density
property, which is known as the interpolation property and is a fundamental tool of the theory.

2.6 Corollary If x ¿ y holds for elements of a continuous partially ordered set, then there is
a (basis) element b with x ¿ b ¿ y.

Usually, this is proved first and the above is derived as a consequence.

Continuous lattices A continuous complete lattice is referred to as a continuous lattice.

2.7 Example (The extended line) The real line under its natural order fails to be a contin-
uous lattice only by lacking bottom and top elements (the infima and suprema of the whole line).
Thus, the extended line [−∞, +∞] is a continuous lattice under its natural order. Its way-below
relation is given by x ¿ y iff x < y or x = y = −∞, which shows that the set {−∞} ∪ Q is a
basis.

Continuous Scott domains By a continuous Scott domain we mean a continuous partially
ordered set with joins of directed subsets and meets of non-empty subsets. Notice that, in
any poset, existence of meets of non-empty subsets is equivalent to existence of joins of upper-
bounded subsets. A continuous lattice is clearly a continuous Scott domain, and if a continuous
Scott domain fails to be a continuous lattice, it does so only by lacking a top element, which can
be artificially added if desired. This is sometimes expressed by saying that a continuous Scott
domain is a continuous lattice modulo top element. Notice, however, that if one starts from
a continuous lattice, a continuous Scott domain is obtained by removing the top element > iff
> ¿ >. In particular, [0,∞) is not a continuous Scott domain under its natural order.

2.8 Example (The interval domain) The closed intervals of the extended Euclidean line
form a continuous lattice under the reverse-inclusion order, with x ¿ y iff the interior of the
interval x contains the interval y. If the empty interval (a top element) is removed, a continuous
Scott domain is obtained.

2.2 The Scott, dual and Lawson topologies

We have seen that continuously ordered sets generalize the real line under its natural order. We
now discuss three topologies on continuously ordered sets that generalize the topologies of lower
and upper semicontinuity and the Euclidean topology.

The Scott topology An upper subset U of a partially ordered set L is Scott open iff every
directed subset of L with join in U intersects U . It is an easy exercise to show that the Scott
open sets form a topology. Its closed sets are the lower sets that are closed under the formation
of existing directed joins. The proof of the following proposition is based on the interpolation
property, but it can be proved more directly from (2.5).
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2.9 In a continuous partially ordered set with a basis B, the sets

↑↑ b
def= {x | b ¿ x}, b ∈ B,

form a base of the Scott topology.

The Scott topology is highly non-Hausdorff. The following example is extremal, to the extent
that no two distinct points can be separated by disjoint neighbourhoods. But, as we shall see in
Proposition 3.6, the Scott topology has plenty of Hausdorff subspaces in other examples.

2.10 Example (The topology of lower semicontinuity) In the real line, ↑↑ a = (a,∞)
for any a ∈ R. Thus, in this case, the Scott topology is the topology of lower semicontinuity.

In fact, when L is the real line, the following coincides with the usual notion of lower semi-
continuity that occurs in real analysis.

2.11 Corollary A function f : X → L from a topological space to a continuous partially
ordered set is continuous with respect to the Scott topology of L iff whenever v ¿ f(x) for v ∈ L,
there is a neighbourhood U of x with v ¿ f(u) for all u ∈ U .

The dual topology Similarly, one considers a generalization of the notion of upper semicon-
tinuous function in real analysis. But this is not done by considering a symmetric definition as in
real analysis, because the notion of continuity for ordered sets is not symmetric in general. The
dual topology of a partially ordered set is generated by the complements of the principal filters

↑ v
def= {x | v ≤ x}.

For simplicity, we denote the subbasic open sets in the dual topology by

6↑ v
def= {x | v 6≤ x}.

2.12 Example (The topology of upper semicontinuity) In the real line, 6↑ a = (−∞, a)
for any a ∈ R. Hence, in this case, the dual topology is the topology of upper semicontinuity.

Thus, in this example the dual topology is the Scott topology of the dual order. But, for
other examples, such as the interval domain discussed in Example 2.8, this is not the case.

The following is immediate from the definition of continuity for partially ordered sets. It is
used to prove that the Lawson topology, defined below, is Hausdorff.

2.13 If x 6≤ y holds for elements of a continuous partially ordered set, then there is a (basis)
element b ¿ x such that already b 6≤ y.

Here we use it to obtain a subbase of the dual topology.

2.14 In a continuous partially ordered set with a basis B, the sets 6↑ b with b ∈ B form a subbase
of the dual topology.
Proof Let x ∈ 6↑ v. Then v 6≤ x, and by continuity of the partially ordered set, there is b ¿ v
in B such that already b 6≤ x and hence x ∈ 6↑ b. If y ∈ 6↑ b then b 6≤ y and hence v 6≤ y, because if
one had v ≤ y then one would have b ≤ y by transitivity, which shows that y ∈ 6↑ v, and therefore
that 6↑ b ⊆ 6↑ v. ¤
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The Lawson topology The Lawson topology is the join of the Scott and the dual topologies.
The following is an immediate consequence of the above development.

2.15 In a continuous partially ordered set with a basis B, the sets ↑↑ b and 6↑ b with b ∈ B form
a subbase of the Lawson topology.

2.16 Example (The Euclidean topology) For the real line, we know from the above ex-
amples that the Lawson topology is the join of the topologies of lower and upper semicontinuity.
Therefore it is the Euclidean topology.

We have seen that continuously ordered sets generalize the real line, that the Scott and dual
topologies generalize the topologies of lower and upper semicontinuity, and that the Lawson
topology generalizes the Euclidean topology. We shall see in Example 3.4 that the Lawson
topology generalizes the Vietoris topology on the closed subsets of a compact Hausdorff space,
where the following is used to establish the link.

2.17 The Lawson topology of a continuous Scott domain is the unique compact Hausdorff topol-
ogy making the formation of binary meets into a continuous operation.

2.3 Densely injective topological spaces

By an embedding of topological spaces we mean a homeomorphism onto a subspace. A topological
space Z is called injective over an embedding j : X ↪→ Y if any continuous map f : X → Z
extends to a continuous map f̂ : Y → Z along j. A space is densely injective if it is injective
over dense embeddings.

2.18 The elements of a continuous Scott domain form a densely injective topological space under
the Scott topology.

If Z is a continuous Scott domain under the Scott topology, an explicit construction of a
continuous extension f/j : Y → Z of a continuous map f : X → Z along a dense embedding
j : X → Y is given by

f/j(y) = sup
y∈V ∈O Y

inf f(j−1(V )),

where O Y denotes the lattice of open sets of Y . Among all continuous extensions, f/j is
characterized as the largest in the pointwise order.

2.19 Example (The topologist’s sine curve) The function f : R \ {0} → R that maps x
to sin(1/x) is continuous, but cannot be extended to a continuous function defined on the whole
real line. However, if (1) the topology of R is weakened to a densely injective topology or (2) its
topology is kept unmodified but more points are added to R in such a way that a densely injective
space is obtained, this becomes possible:

1. Let R be the extended real line with the topology of lower semicontinuity. Since the topology
of R is weaker than the topology of R, we have a continuous map f : R \ {0} → R. Being a
continuous lattice under the Scott topology, R is densely injective and hence f has a (lower
semi)continuous extension f/j : R → R along the dense embedding j : R \ {0} → R. A
simple calculation shows that f/j(0) = −1.
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2. The domain of non-empty closed intervals discussed in Example 2.8 is a densely injective
space IR under the Scott topology. The map x 7→ {x} is an embedding k : R → IR. The
function f coextends to a continuous function g : R\{0} → IR by composition with k; that
is, g(x) = {sin(1/x)}. By dense injectivity of IR, the function g extends to a continuous
function g/j : R → IR along the dense embedding j : R \ {0} → R. A simple calculation
shows that g/j(0) = [−1, 1].

The second situation is discussed in more detail and related to the first in Section 3.4 below.

The specialization order The specialization order on the points of a topological space is
defined by

x ≤ y iff every neighbourhood of x is a neighbourhood of y.

Since this means that x belongs to the closure of {y}, continuous functions preserve the special-
ization order. The specialization order is always reflexive and transitive, and, remembering that
a space is T0 iff no two distinct points share the same system of neighbourhoods, it is immediate
that the specialization order is antisymmetric iff the space is T0. The specialization order plays
no rôle in the theory of Hausdorff spaces. In fact, a topological space is T1 iff its specialization
order is the identity.

2.20 Example (The specialization order of the topology of lower semicontinuity)
In the real line with the topology of lower semicontinuity, the relation x ≤ y holds in the spe-
cialization order iff x ∈ (a,∞) implies y ∈ (a,∞) iff a < x implies a < y iff x ≤ y holds in the
natural order.

All implicit or explicit references to order in a topological space are to be interpreted with
respect to the specialization order. From now on, we assume that all our topological spaces
are T0 (this assumption could be avoided by considering continuous preordered sets).

2.21 The points of a densely injective space form a continuous Scott domain under the special-
ization order. Moreover, the topology of a densely injective space coincides with the Scott topology
of its specialization order.

We thus have, as corollaries, a topological characterization of the continuous Scott domains
and an order-theoretic characterization of the densely injective spaces.

2.22 The continuous Scott domains are precisely the specialization orders of the densely injective
spaces.

2.23 The densely injective spaces are precisely continuous Scott domains under the Scott topol-
ogy.

Injective spaces and continuous lattices The injective spaces over arbitrary (not just
dense) embeddings, known simply as injective spaces, are precisely the continuous lattices en-
dowed with the Scott topology, via the same constructions. Of course, there are more densely
injective spaces than injective spaces, because the defining extension property is harder to be met
in the latter case. Since there are continuous Scott domains which are not continuous lattices,
there are strictly more densely injective spaces than injective spaces.
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2.4 The dual and patch topologies of a topological space

For the purposes of this paper, compactness is understood in the sense of the Heine-Borel covering
property—the Hausdorff separation axiom is not considered as part of the notion. Two basic
facts of general topology are that a closed set of a compact space is compact, and that a compact
set of a Hausdorff space is closed; in particular, the compact sets of a compact Hausdorff space
coincide with the closed sets. However, a compact set of a non-Hausdorff space is hardly ever
closed.

2.24 Example (Compact, non-closed sets) In the extended real line with the topology of
lower semicontinuity, singletons are compact but not closed. In fact, the closure of {x} is [−∞, x].

The above observations suggest that a compact non-Hausdorff space could be made into a
compact Hausdorff space by taking the least refinement of its topology for which the compact
sets become closed. A little reflection on the above example shows that this idea doesn’t work,
as a set is compact iff it has a least element, so that far too many new closed sets get added. To
make it work, one considers a special class of compact spaces, which includes the example, and
a special type of compact set. We begin by discussing the latter. As a motivation, we remark
that, from the point of view of the Heine-Borel property, what matters of a compact set are its
neighbourhoods and not its points.

Saturated sets A set of points of a topological space is called saturated if it is the intersection
of its neighbourhoods, which is equivalent to saying that it is an upper set in the specialization
order. The saturation of a set is the intersection of its neighbourhoods, or, equivalently, its
upper set in the specialization order. Any set has the same neighbourhoods as its saturation. In
particular, a set is compact iff its saturation is compact.

2.25 Example (Saturation) In the extended real line with the topology of lower semiconti-
nuity, the saturation of a singleton {x} is [x,∞], because the non-trivial open neighbourhoods of
both sets are those of the form (a,∞] with a < x.

In a T1 space (and hence in a Hausdorff space), all sets are saturated, and hence the notion of
saturation, as that of specialization order, plays no rôle. The special class of spaces referred above
consists of the stably compact spaces (the sober locally compact spaces for which the compact
saturated sets are closed under the formation of finite intersections). But stably compact spaces
are not needed for the purposes of this paper. It suffices to say that they include the densely
injective spaces.

The dual topology The dual topology of a continuous Scott domain can be seen as derived
from a topology rather than from an order.

2.26 The dual topology of a continuous Scott domain has as closed sets precisely the compact
saturated sets in the Scott topology.

The dual topology of a topological space is generated by the complements of its compact
saturated sets (for a stably compact space, the dual closed sets are precisely the compact saturated
sets). The dual of a densely injective space is hardly ever a densely injective space. But it is still
a stably compact space, whose dual is the original densely injective space. More generally, any
stably compact space coincides with its second dual. Hence the terminology.
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The patch topology The patch topology of a topological space is the join of its topology
and its dual topology. A topological space X with its topology refined to the patch topology is
denoted by

PatchX.

For a stably compact space, this is a compact Hausdorff topology. In particular, the patch
topology of a densely injective space is the Lawson topology of its specialization order.

2.27 The Lawson topology of a continuous Scott domain is the patch of the Scott topology.

Hence, as the dual topology, the Lawson topology can be seen as derived from a topology
rather than from an order. Under this view, it is a compact-Hausdorff coreflection [5]. Thus, the
main concepts and constructions of continuous-lattice theory have purely topological formula-
tions. But the order-theoretic formulations remain important and useful. In fact, the results of
this paper, which are developed in the next section, constitute an application of continuous-order
theory to topology.

The Scott topology can be recovered from the Lawson topology and the order as follows, which
is one manifestation of the many connections of the theory of ordered topological spaces [15] with
the theory of continuous lattices.

2.28 The Scott open sets of a continuous Scott domain are precisely the Lawson open upper
sets.

More generally, the topology of a stably compact space can be recovered from its patch
topology and its specialization order in the same way. Although the following example could
have been presented much earlier, we have deliberately saved it to concretely illustrate some
aspects of the above discussion.

2.29 Example (The Scott and Lawson topologies of the interval domain) The Law-
son topology of the interval domain IR discussed in Examples 2.8 and 2.19 coincides with the
topology induced by the Hausdorff metric. Hence the Scott open sets of IR are the open sets U
of the Hausdorff metric such that x ∈ U and y ⊆ x together imply y ∈ U . Since continuous
functions preserve the specialization order, Scott continuous maps IR→ IR preserve the inclu-
sion order. Moreover, Lawson continuous maps IR → IR that preserve the inclusion order are
Scott continuous—but not all Scott continuous maps IR → IR arise in this way, as illustrated
by the Scott continuous function f : IR→ IR defined by f(x) = {−1} if supx < 0, f(x) = {1}
if inf x > 0, and f(x) = [−1, 1] otherwise (that is, if 0 ∈ x).

2.5 Core-compact topological spaces

We have seen that there are topological spaces whose points form continuously ordered sets.
Here we consider topological spaces whose open sets form continuously ordered sets. Such spaces
arise, for instance, in the theory of topological function spaces, which is the topic of the next
subsection. The lattice of open sets of a topological space X is denoted by

OX.

In this lattice, the way-below relation captures a relative notion of compactness for pairs of opens.
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2.30 The relation U ¿ V holds in the lattice of open sets of a topological space iff every open
cover of V has a finite subcover of U .

A space is called locally compact iff each neighbourhood of a point contains a compact (not
necessarily open) neighbourhood of the point. A Hausdorff space, as it is well-known, is locally
compact iff each point has a compact neighbourhood; in particular, compact Hausdorff spaces
are locally compact.

2.31 Example The relation U ¿ V holds in the lattice of open sets of a locally compact space
iff there is a compact subset Q of the space with U ⊆ Q ⊆ V .

A space X is called core-compact if OX is a continuous lattice. The following is a purely
topological formulation of the notion.

2.32 A topological space is core-compact iff each neighbourhood V of a point x contains a neigh-
bourhood U of x with the property that every open cover of V has a finite subcover of U .

2.33 Example Locally compact spaces are core-compact.

But core-compactness is a rather mild generalization of the notion of local compactness. In
fact, for Hausdorff spaces (and more generally for sober spaces) core-compactness is the same
as local compactness (and a space is core-compact iff its sobrification is locally compact). We
finish our brief exposition of the subject of core-compactness by remarking that every distributive
continuous lattice is isomorphic to the lattice of open sets of a core-compact topological space,
via a Stone-type duality—but this is not exploited in this paper.

2.6 Topological function spaces

Exponential topologies A topology on the set

C(X, Y )

of continuous maps from a topological space X to a topological space Y is exponential if for
all spaces A, continuity of a function f : A × X → Y is equivalent to that of its transpose
f : A → C(X, Y ) defined by f̄(a)(x) = f(a, x). Thus, a topology on C(X,Y ) is exponential iff
for all spaces A, transposition is a well-defined bijection from continuous maps A ×X → Y to
continuous maps A → C(X, Y ).

2.34 An exponential topology, when it exists, is unique.

Exponential spaces A topological space X is called exponential if for each space Y there is
an exponential topology on the set C(X, Y ). If X is an exponential space and Y is an arbitrary
space, then the set C(X, Y ) endowed with the exponential topology is denoted by

Y X .

Thus, according to our convention, it doesn’t make sense to write Y X if X is not exponential. To
refer to the set of continuous functions, we use the notation C(X, Y ), as above. As an important
property of exponential topologies, one has that for any exponential space X and any space Y , the
evaluation map (f, x) 7→ f(x) : Y X ×X → Y , having the identity as its transpose, is continuous.
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The compact-open topology It is well-known that locally compact spaces are exponential.
Moreover, among Hausdorff spaces (and, more generally, sober spaces), the exponential spaces
are precisely the locally compact spaces. If X is locally compact then the topology of the function
space Y X , for any space Y , is the compact-open topology, which, by definition, is generated by
the subbasic open sets

{f ∈ C(X, Y ) | Q ⊆ f−1(V )},

where Q ranges over compact sets of X, and V over open sets of Y .

The Isbell topology For an exponential space that is not locally compact, a refinement of
the compact-open topology is needed in order to obtain the exponential topology.

2.35 A topological space is exponential iff it is core-compact. Moreover, for any exponential
space X and any space Y , the topology of the function space Y X is generated by the subbasic
open sets

N(H,V ) def= {f ∈ C(X, Y ) | f−1(V ) ∈ H},

where H ranges over Scott open subsets of OX, and V over O Y .

This construction of the exponential topology is known as the Isbell topology. Notice that
here one is considering the Scott topology of the lattice of open sets of a topological space. For
example, for Q ⊆ X compact, the set {O ∈ OX | Q ⊆ O} is Scott open, which shows that
every subbasic open set in the compact-open topology is open in the Isbell topology, and hence
that the Isbell topology is indeed finer than the compact-open topology. Also, notice that, by
core-compactness of X and (2.9), for U open, the set ↑↑U = {O ∈ OX | U ¿ O} is Scott open,
and any Scott open subset H of OX is the union of the sets ↑↑U with U ∈ H. This shows that
the sets of the form

{f ∈ C(X, Y ) | U ¿ f−1(V )},

where U and V range over OX and O Y , also generate the exponential topology. It follows from
Example 2.31 that the Isbell topology coincides with the compact-open topology if X is locally
compact.

Some fundamental properties of function spaces

2.36 A topological product of two exponential spaces is exponential.

We have seen that a space X is exponential iff for each space Y there is a topology on C(X,Y )
such that, for all spaces A, transposition is a well-defined bijection from the set C(A × X,Y )
to the set C(A,C(X, Y )). If these two sets also admit exponential topologies, then the bijection
becomes a homeomorphism.

2.37 If X, Y and A are topological spaces with X and A exponential, then the function space
Y A×X is homeomorphic to the iterated function space (Y X)A.

By embedding the codomain of a function space into a larger space, the function space gets
embedded into a larger function space.
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2.38 If X is an exponential topological space and k : Y → Z is an embedding of topological
spaces, then the functional K(f) = k ◦ f is an embedding of the function space Y X into the
function space ZX .

(It is sometimes possible to embed a function space into a larger function space by embedding
its domain into a larger space [4, 3]. If Z is densely injective and X is densely embedded into Y
via a proper map j, then ZX is embedded into ZY via the extension process f 7→ f/j discussed in
Section 2.3; properness of the embedding j is a necessary and sufficient condition for continuity
of the extension process.)

Injective spaces and function spaces From the definitions, without knowing any explicit
construction of exponential topologies or any explicit characterization of the densely injective
spaces, one can easily prove the following.

2.39 If X is exponential and Z is densely injective then the function space ZX is densely
injective.
Proof (Attributed to Joyal by Johnstone.) Let j : I → J be a dense embedding of a space I
into a space J , and let f : I → ZX be a continuous map. Then f is the transpose of a continuous
function g : I ×X → Z. Since Z is densely injective and j × idX : I ×X → J ×X is a dense
embedding, where idX : X → X is the identity map, the map g : I ×X → Z has a continuous
extension ĝ : J × X → Z along j × idX : I × X → J × X, which has a continuous transpose
f̂ : J → ZX . It is immediate that f̂ : J → ZX is an extension of f : I → ZX along j : I → J ,
which shows that ZX is densely injective. ¤

The patch topology of a function space over a densely injective space An explicit
construction of the patch topology of a function space ZX from the Isbell or the compact-open
topologies can be quite complicated. But the topology of the function space has a simpler
alternative construction when Z is a densely injective space. We begin with a lemma on the
unrestricted case, using the Isbell topology in the proof.

2.40 If X is exponential and Z is arbitrary, then the specialization order of the function space ZX

coincides with the pointwise specialization order of the function set C(X, Z).

Proof Assume that f ≤ g holds in the pointwise specialization order of C(X, Y ). A simple
unfolding of definitions shows that this is equivalent to saying that f−1(V ) ⊆ g−1(V ) for every
V ∈ OZ. Let N(H,V ) be a subbasic neighbourhood of f in the Isbell topology. Then f−1(V ) ∈
H by definition, and g−1(V ) ∈ H by the assumption, because H, being Scott open, is an upper
set. This means that g ∈ N(H, V ) and shows that f ≤ g in the specialization order of ZX .
Conversely, if f ≤ g holds in the specialization order of ZX then f(x) ≤ g(x) for any x ∈ X
because evaluation at x is a continuous map and continuous maps preserve the specialization
order. ¤

Combining this with the characterization of the densely injective spaces as the continuous
Scott domains endowed with the Scott topology, one gets the following.

2.41 Corollary If X is exponential and Z is densely injective, then the topology of the densely
injective function space ZX is the Scott topology of the pointwise specialization order of the
function set C(X,Z).

12



With this, the patch topology of ZX is the Lawson topology of its specialization order. The
complication now is that one needs an explicit description of the way-below relation of the
specialization order of ZX—but we shall not give the details [2]. What we need is the following.
For U ∈ OX and z ∈ Z, denote by

(U ↘ z)

the single-step function X → Z that maps u ∈ U to z, and x 6∈ U to the bottom point of Z. A
step function is a join of finitely many single-step functions.

2.42 If X is exponential and Z is densely injective, then the step functions X → Z form a basis
of ZX qua continuous Scott domain.

This and (2.14) entail the following.

2.43 Corollary The sets ↑(U ↘ z) with U ∈ OX and z ∈ Z form a closed subbase of the dual
topology of the function space ZX .

A simple calculation gives the following explicit description of the subbasic closed sets.

2.44 ↑(U ↘ z) = {h ∈ ZX | U ⊆ h−1(↑ z)}.

3 Function-space compactifications of function spaces

We have seen that if X is an exponential space and Z is a densely injective space, then the
function space ZX is also densely injective, and that if a space Y is embedded into Z then Y X

is embedded into ZX . Being densely injective, the function space ZX is compact and locally
compact, but highly non-Hausdorff. We consider the situation in which its compact-Hausdorff
refinement PatchZX still contains Y X as an embedded subspace. In this case, the closure of Y X

in PatchZX is a Hausdorff compactification of Y X .

3.1 Strong embeddings

We begin by solving the problem for the special case in which X is the one-point space. The
first of the conditions below is thus obtained.

3.1 Proposition The following are equivalent for any embedding k : Y → Z of topological
spaces.

1. k is also an embedding with respect to the patch topology of Z.

2. k is continuous with respect to the patch topology of Z.

3. k is continuous with respect to the dual topology of Z.
Proof This follows from the fact that if the topology of Z is refined in such a way that k
remains continuous, then k is still an embedding, and, conversely, if the topology of Z is refined
in such a way that k is still an embedding, then k remains continuous, by definition of embedding,
and from the fact that the patch topology of a space Z is defined to be the join of the topology
of Z and of the dual topology of Z. ¤
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By a strong embedding we mean an embedding satisfying the above equivalent conditions.
Such embeddings, albeit not under this (or any other) name, occur in the work of Lawson on
subspaces of maximal points, with Z a continuous poset under the Scott topology, and with k
restricted to be onto the maximal points of Z, where the last two of the conditions below are
taken as equivalent defining properties [13].

3.2 Proposition The following are equivalent for any embedding k : Y → Z of a topological
space Y into a densely injective space Z.

1. k is a strong embedding.

2. k−1(↑ z) is closed for every point z ∈ Z.

3. On the image of k, the relative Scott and Lawson topologies of the specialization order of Z
coincide.

Proof Here ↑ z is the upper set of z in the specialization order of Z. We have seen that sets
of this form constitute a closed subbase of the dual topology when Z is densely injective, and
that the topology and the patch topology of a densely injective space Z coincide with the Scott
and Lawson topologies of the specialization order of Z respectively. ¤

The above special case actually gives a full solution to the problem posed in the opening
paragraph of the section.

3.3 Theorem The following conditions are equivalent for an embedding k : Y → Z of a topo-
logical space Y into a densely injective space Z.

1. The induced embedding K : Y X → ZX is strong for every exponential space X.

2. The embedding k : Y → Z is strong.
Proof (⇓): As above, choose X to be the one-point space. (⇑): We have seen in (2.38) that
k induces the embedding K(f) = k ◦ f . By (2.43), a subbase of the dual topology of ZX is given
by sets of the form 6↑(U ↘ z). Let F = K−1(6↑(U ↘ z)). Then f ∈ F iff k ◦ f ∈ 6↑(U ↘ z)
iff U 6⊆ f−1(k−1(↑ z)) by (2.44). Hence F = {f ∈ Y X | U 6⊆ f−1(C)}, where C = k−1(↑ z).
Since ↑ z is a closed set in the dual topology of Z and k is a strong embedding, C is closed. Let
f ∈ F . Then there is some u ∈ U with f(u) 6∈ C. Hence G = {g ∈ Y X | g(u) ∈ Y \ C} is a
neighbourhood of f . If g ∈ G then g(u) 6∈ C, which shows that U 6⊆ g−1(C) and hence that
G ⊆ F . Therefore F is open and K is continuous with respect to the dual topology of ZX . ¤

3.2 Strongly densely embedded subspaces of densely injective spaces

We begin by considering a well-known special case.

3.4 Example (The Vietoris hyperspace) Let Y be a compact Hausdorff space. By local
compactness, its open sets form a continuous lattice under inclusion. Via complementation, the
closed sets form an isomorphic continuous lattice under reverse inclusion. If the empty closed
set is removed, a continuous Scott domain is obtained. The Lawson topology, being the unique
compact Hausdorff topology making the formation of binary meets (in this case, set-theoretical
unions) into a continuous operation, coincides with the Vietoris topology. Let V Y and U Y denote
the collection of non-empty closed sets under the Lawson and Scott topologies respectively. It
is well-known that the singleton map y 7→ {y} is a dense embedding of Y into U Y , and that it
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is also a (closed and hence non-dense) embedding of Y into V Y . Therefore it is a strong dense
embedding of Y into the space U Y , which, being a continuous Scott domain under the Scott
topology, is densely injective. If the empty closed set is allowed as a point of the hyperspace
construction, we still have a strong embedding, but it isn’t dense anymore. Moreover, for both
topologies, the empty closed set is an isolated point of the hyperspace, and this is one reason for
omitting it. Occasionally, however, it is technically convenient to admit the empty closed set as
a point of the hyperspace—see for example the observation after Proposition 3.6 and Section 3.3.
We denote the collection of all closed sets under the Scott and Lawson topologies by U0 Y and
V0 Y respectively.

The following observation is immediate.

3.5 Lemma If Y ↪→ Y ′ is an embedding and Y ′ ↪→ Z is a strong embedding then the composite
Y ↪→ Y ′ ↪→ Z is also a strong embedding.

3.6 Proposition The strongly densely embedded subspaces of the densely injective spaces are
precisely the Tychonoff spaces.
Proof If Y is strongly densely embedded into Z, then it is embedded into PatchZ by definition
of strong embedding. Hence, being a subspace of a compact Hausdorff space, it is Tychonoff.
Conversely, if Y is Tychonoff, then it is densely embedded into a compact Hausdorff space Y ′,
for example its Stone-Čech compactification. Therefore the result follows by Lemma 3.5, because
we know by Example 3.4 that a compact Hausdorff space Y ′ is strongly densely embedded into
the densely injective space U Y ′. ¤

This also holds for strongly embedded subspaces of injective spaces, by considering the empty
closed set as a point of the hyperspace construction in the proof, and removing all references to
density.

3.7 Corollary For any Tychonoff space Y there is a densely injective space Z containing Y
as a densely embedded subspace such that, for every exponential space X, the function space ZX

has a compact-Hausdorff refinement still containing Y X as an embedded subspace.

The space Z, being densely injective, is non-Hausdorff. Let Y be a compact Hausdorff
space and, for the sake of contradiction, assume that there is a Hausdorff space Z satisfying the
conclusion of the corollary. As Z contains Y as a densely embedded subspace, Z is homeomorphic
to Y because Z is Hausdorff and Y is compact and hence closed in Z. Then, by the assumption,
for each exponential space X, the function space ZX ∼= Y X has a compact-Hausdorff refinement.
But any topology coarser than a compact topology is compact. Hence Y X must be already
compact. And, because Y is Hausdorff, so is Y X . Thus, we conclude from the assumption that
for every compact Hausdorff space Y and every exponential space X, the function space Y X

is compact Hausdorff, which is certainly not the case. For example, it is well-known that if
Y is a compact interval of the Euclidean line, then the function space Y Y is not even locally
compact. But trivial counterexamples also exist. Let Y be the two-point discrete space and X be
a compact Hausdorff space. A simple argument shows that Y X is discrete, with as many points
as X has clopen sets. Thus, if X is, for example, the Cantor discontinuum, then Y X , being a
countably infinite discrete space, is not compact. Therefore a space Z satisfying the conclusion
of the corollary is necessarily non-Hausdorff in general.

The following is known for the case in which the exponential topology is the compact-open
topology.
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3.8 Corollary For every space Y and every non-empty exponential space X, the function
space Y X is Tychonoff if and only if the space Y is.
Proof If the function space Y X is Tychonoff then Y , being a subspace of Y X via the constant-
maps embedding, is Tychonoff. Conversely, if Y is Tychonoff then Y X , being a subspace of a
compact Hausdorff space by the above corollary, is Tychonoff. ¤

3.3 Relation-space compactifications of function spaces

Another interesting consequence of Theorem 3.3 is that not only continuous functions of compact
Hausdorff spaces have closed graphs, but also the graph map f 7→ {(x, f(x)) | x ∈ X} is an
embedding into a space of closed relations.

3.9 Proposition If X and Y are compact Hausdorff spaces, then the graph map is an embedding
of the function space Y X into the relation space V(X × Y ).

This is a particular case of a more general situation. The Sierpinski space, denoted by S, is the
two-point lattice {0, 1} under the Scott topology. Thus, the singleton {1} is the only non-trivial
open set and hence the continuous maps of a space Y into S are the characteristic functions of
opens of Y . By (2.41), the function space SY is homeomorphic to O Y under the Scott topology,
for any exponential space Y . These observations together with those of Example 3.4 yield the
following.

3.10 For any compact Hausdorff space Y , the hyperspaces U0 Y and V0 Y are homeomorphic
to the function spaces SY and PatchSY respectively.

Generalized Vietoris hyperspaces In view of this, we generalize the Vietoris hyperspace
construction by defining, for every exponential space Y and every densely injective space I,

VI Y = Patch IY .

Notice that if Y is strongly embedded into IY then Y , being embedded into the Hausdorff
space VI Y , is a Hausdorff space. Under the assumption of exponentiality of Y , which amounts
to core-compactness, this is equivalent to saying that Y is locally compact Hausdorff.

3.11 Proposition If X, Y and I are spaces with X exponential, Y locally compact Hausdorff
and I densely injective, then the function E : Y X → VI(X × Y ) defined by

E(f)(x, y) = η(f(x))(y)

is an embedding for any strong embedding η : Y → IY .
Proof By Theorem 3.3, the function space Y X is strongly embedded into (IY )X , which is
homeomorphic to IX×Y by (2.37). Hence, by definition of strong embedding, the function space
Y X is embedded into Patch IX×Y , which is VI(X × Y ) by definition. Chasing the embeddings
and homeomorphisms, the function E is obtained. ¤
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In what follows, it is useful to regard strong embeddings Y → IY as exponential transposes
of continuous maps Y × Y → I. Under the translation (3.10), the singleton embedding of a
compact Hausdorff space Y into the hyperspace U0 Y of Example 3.4 becomes the transpose
of the function d : Y × Y → S defined d(y, y′) = 1 iff y 6= y′. Translating the resulting
embedding E : Y X → VS(X ×Y ) back, the graph map is obtained. For a core-compact space Y ,
let U0 Y and V0 Y denote the closed sets under the Scott and Lawson topologies of the reverse-
inclusion order, so that U0 Y ∼= SY and V0 Y ∼= VS Y = PatchSY as in (3.10). This generalization
of the hyperspace construction from compact Hausdorff spaces to core-compact spaces has to be
taken with caution. Firstly, notice that the empty closed set is an isolated point iff Y is compact.
More importantly, as it is proved in the paragraph that follows Proposition 3.13, d̄ : Y → SY

is an embedding if and only if Y is compact Hausdorff. Therefore we are not able to relax the
assumption that Y is compact Hausdorff in the following corollary. However, we can assume that
X is just exponential, so that the generalization is not useless.

3.12 Corollary If X is an exponential space and Y is a compact Hausdorff space, then the
graph map is an embedding of the function space Y X into the relation space V0(X × Y ).

Proposition 3.9 is a special case of this, because the image of the graph map is contained in
V(X × Y ).

3.13 Proposition Let d : Y × Y → I be a continuous map with Y locally compact Hausdorff
and I densely injective, and for y0 ∈ Y and r ∈ I, define

Br(y0) = {y | r ¿ d(y, y0)}, B̄r(y0) = {y | r ≤ d(y, y0)}.

1. The transpose d̄ : Y → IY is an embedding if and only if it is one-to-one and the open sets⋂{Br(q) | q ∈ Q}, for Q ⊆ Y compact and r ∈ I, constitute a subbase of O Y .

2. The transpose d̄ : Y → IY is continuous with respect to the dual topology of IY if and only
if the sets

⋂{B̄r(u) | u ∈ U}, for U ∈ O Y and r ∈ I, are closed in Y .
Proof Let Q ⊆ Y be compact and r ∈ I. Then the set V = {h ∈ IY | Q ⊆ h−1(↑↑ r)} is a
typical subbasic open, and the relation y ∈ d̄−1(V ) holds iff d̄(y) ∈ V iff Q ⊆ (d̄(y))−1(↑↑ r) iff
d̄(y)(q) ∈ ↑↑ r for all q ∈ Q iff y ∈ Br(q) for all q ∈ Q iff y ∈ ⋂{Br(q) | q ∈ Q}, which shows
that the trace of the topology of IY in Y is generated by the open sets of the form considered
in statement (1). Let U ∈ O Y and r ∈ I. Then C = {h ∈ IY | U ⊆ h−1(↑ r)} is a typical
subbasic closed set in the dual topology by (2.43) and (2.44), and d̄−1(C) =

⋂{B̄r(u) | u ∈ U}
by a similar calculation, which establishes statement (2). ¤

The map d : Y × Y → S defined by d(y, y′) = 1 iff y 6= y′, being the characteristic function
of the complement of the diagonal, is continuous iff Y is a Hausdorff space. For Y compact
Hausdorff, as it is discussed before Proposition 3.12, the transpose d̄ : Y → SY corresponds to
the singleton embedding of Y into U0 Y of Example 3.4 via the translation (3.10). For Y locally
compact Hausdorff, Proposition 3.13(1) asserts that the transpose is an embedding iff the sets⋂{B1(q) | q ∈ Q} with Q ⊆ Y compact generate the topology of Y . A point y is a member of
such an intersection iff y ∈ B1(q) for all q ∈ Q iff 1 ¿ d(y, q) for all q ∈ Q iff y 6= q for all q ∈ Q iff
y 6∈ Q iff y ∈ Y \Q. But the complements of the compact sets generate the topology of a locally
compact Hausdorff space Y iff Y is compact. Therefore the transpose is an embedding iff Y is
compact Hausdorff. In view of (3.10), Example 3.4 states that if Y is compact Hausdorff, then the
embedding is strong. This follows from Proposition 3.13(2), because

⋂{B̄1(U) | u ∈ U} = Y \U .
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Generalized Vietoris hyperspaces of locally compact metric spaces For any metric
space Y , its distance function d : Y × Y → [0,∞) is continuous with respect to the Euclidean
topology of [0,∞) and hence with respect to any weaker topology. We regard it as a continuous
map d : Y ×Y → D with D = [0,∞] under the topology of upper semicontinuity. Since this is the
Scott topology of the opposite of the natural order, which makes [0,∞] into a continuous lattice
(with bottom element ∞ and top element 0), the space D is injective. By virtue of the reversal
of the natural order, the sets Br(y0) and B̄r(y0) of Proposition 3.13 are the open and closed balls
of the metric. Considering singleton compact sets, Proposition 3.13(1) shows that the transpose
d̄ : Y → DY is an embedding because it is clearly one-to-one. Since arbitrary intersections of
closed balls are closed sets, Proposition 3.13(2) shows that this embedding is strong.

3.14 Corollary For any locally compact Hausdorff space Y metrized by d and any exponential
space X, the function E : Y X → VD(X ×Y ) defined by E(f)(x, y) = d(f(x), y) is an embedding.

3.4 Compactifications of spaces of real-valued continuous functions by
spaces of pairs of semicontinuous functions

We finish by resuming the discussion of the opening paragraph of the introduction. Let R be
the Euclidean line, R and R be the extended real line with the topologies of lower and upper
semicontinuity respectively, and R be the topological product R× R.

3.15 Lemma The map r 7→ (r, r) is a strong embedding of R into the injective space R.
Proof Since injective spaces are closed under the formation of products, R is injective. Since
the Euclidean topology is the join of the topologies of lower and upper semicontinuity, the map
k(r) = (r, r) is an embedding of R into R. For (a, b) ∈ R, we have that r ∈ k−1(↑(a, b)) iff
(a, b) ≤ k(r) iff (a, b) ≤ (r, r) iff a ≤ r and b ≥ r iff r ∈ [a, b], with the convention that [a, b]
denotes the empty interval if a 6≤ b, which shows that k−1(↑(a, b)) = [a, b] and hence that k is a
strong embedding. ¤

3.16 Corollary For any exponential space X, the function space RX is embedded into the
compact Hausdorff function space PatchRX .

Although, as we mentioned in the introduction, the relative topology of PatchRX on the
points of RX is strictly weaker than the topology of RX , we have the following.

3.17 Corollary For any exponential space X, the topology of the function space RX is the join
of the relative topologies of the spaces PatchRX and PatchRX

.

Proof By general properties of exponentials, RX is homeomorphic to RX × RX
. Since the

patch construction is a coreflection, it preserves categorical products, which topological products
are. Therefore PatchRX = PatchRX × PatchRX

. ¤
Coming back to Corollary 3.16, we observe that a distinguished subspace of R has already

appeared in a different guise, which is useful for discussing the closure of RX in PatchRX .

3.18 Proposition The closure of the image of the embedding r 7→ (r, r) of R into R consists of
the points (x, y) with x ≤ y.
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Proof Any closed set is a lower set in the specialization order, and the lower set of the image
consists of such points because (x, y) ≤ (r, r) holds for some r iff x ≤ r and r ≤ y hold for some r
iff x ≤ y. This set, being closed under formation of directed joins, is closed in the Scott topology,
which coincides with the topology of R. ¤

We have seen in Examples 2.8, 2.19 and 2.29 that the non-empty closed intervals of the
extended Euclidean line form a continuous Scott domain under the reverse-inclusion order. By
the interval space, denoted by IR, we mean the interval domain under the Scott topology.

3.19 Proposition IR is homeomorphic to the subspace of points (x, y) of R with x ≤ y.
Proof The map x 7→ (inf x, supx) is easily seen to be a homeomorphism. ¤

3.20 Corollary The map x 7→ {x} is a strong dense embedding of R into IR.

3.21 Corollary For every exponential space X, the function space RX is embedded into the
compact Hausdorff space Patch(IR)X .

It is natural to wonder whether Theorem 3.3 and its corollaries generalize to the case in which
the space X is compactly generated. Of course, the main difficulty is that the lattice of open sets
of such a space is not continuous unless the space is already exponential. The theory developed
in [8] may be relevant to this question.
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