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Abstract

An element of an effectively given domain is computable iff its basic
Scott open neighbourhoods are recursively enumerable. We thus refer to
computable elements as Scott computable and define an element to be Law-
son computable if its basic Lawson open neighbourhoods are recursively
enumerable. Since the Lawson topology is finer than the Scott topology,
a stronger notion of computability is obtained. For example, in the pow-
erset of the natural numbers with its standard effective presentation, an
element is Scott computable iff it is a recursively enumerable set, and it
is Lawson computable iff it is a recursive set. Among other examples, we
consider the upper powerdomain of Euclidean space, for which we prove
that Scott and Lawson computability coincide with two notions of com-
putability for compact sets recently proposed by Brattka and Weihrauch
in the framework of type-two recursion theory.

1 Introduction

The Lawson topology has its origins in topological algebra [8, 7]. A Lawson
semilattice is a locally compact Hausdorff topological semilattice for which each
point has a neighbourhood base of subsemilattices. Before continuous lattices
and domains were introduced by Dana Scott, it was known that the topology
of a Lawson semilattice is uniquely determined by its lattice structure. It was
an amazing discovery that the underlying lattices of the compact Lawson semi-
lattices are precisely the bounded complete continuous dcpos [8, 7]. Thus, the
Lawson topology of a bounded complete continuous dcpo arises as the unique
compact Hausdorff topology that makes the binary meet operation jointly con-
tinuous.
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Given this, it may come as a surprise that the Lawson topology happens
to have manifestations in the theory of computation. The first application to
semantics of which we are aware is Plotkin’s characterization of the so-called
“2/3 SFP” property of a domain as compactness with respect to the Lawson
topology [1, 3]. Other applications occur in the theory of function spaces over
semantic domains [11] and in the theory of computational models of classical
topological spaces [12].

Smyth has observed that the Scott topology can be regarded as a topology of
positive information, and that the Lawson topology can be regarded as a topol-
ogy of positive-and-negative information [18]. In this paper we make explicit
the computational content of Smyth’s observation.

It is easy to see that an element of an effectively given domain is computable
iff its basic Scott open neighbourhoods are recursively enumerable. This is elab-
orated in the technical development that follows. We thus refer to computable
elements as Scott computable and define an element to be Lawson computable
if its basic Lawson open neighbourhoods are recursively enumerable. Since the
Lawson topology is finer than the Scott topology, a stronger notion of com-
putability is obtained. As the Lawson topology is the join of the Scott and
the dual topologies, it is natural to also consider an induced notion of dual
computability.

For example, in the powerset of the natural numbers with its standard effec-
tive presentation, an element is Scott computable iff it is a recursively enumer-
able set, it is dual computable iff its complement is a recursively enumerable
set, and it is Lawson computable iff it is a recursive set.

Among other examples, we consider the upper powerdomain of Euclidean
space. Brattka and Weihrauch have recently shown that a considerable number
of possible effectivizations of the notion of compactness for subsets of Euclidean
space reduce, up to equivalence, to three [4]. We show that they correspond to
Scott, dual and Lawson computability in the upper powerdomain.

A point-free approach to the Lawson topology of a domain, and more gener-
ally to the patch topology of a stably locally compact space, has been developed
in [5, 6]. The constructions and results are intuitionistic in the sense of topos
logic. We leave it to further work to relate that approach to the classical point-
set approach based on recursion theory that is developed in this paper. In par-
ticular, we plan to investigate a notion of effectively given stably locally compact
space (and locale), with associated notions of computability, dual computability
and patch computability for points and maps.

Stably locally compact spaces are of interest in this context because their
theory reduces to that of continuous lattices, via a Stone-type duality, and
because they constitute a general framework that includes continuous Scott
domains (under their Scott, dual and Lawson topologies) and classical spaces
such as locally compact Hausdorff spaces at the same time. Moreover, they are
closed under the formation of various useful constructions such as upper and
Vietoris hyperspaces and probabilistic powerdomain [10, 9, 14, 2].
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2 Computability in effective domain theory

We consider three notions of computability for elements of effectively given
domains, which are induced by effectivizations of the Scott, dual and Lawson
topologies.

2.1 Effectively given topological spaces

Good introductions of topology for the theory of computation are Mislove [13],
Smyth [18], and Vickers [19]. In Weihrauch’s recent work, a theory of effec-
tively given topological spaces is developed as an intermediate tool for studying
computability notions induced by naming systems—see e.g. [20] and [21].

Definition 2.1 (Weihrauch [21]) An effectively given topological space is a topo-
logical space together with an enumeration of a base of the topology. Such an
enumeration is called a notation.

In Weihrauch’s original definition, effectively given spaces are assumed to
be T0. Having in mind that points are indentified with their (indices of basic)
neighbourhoods, this is a reasonable assumption. However, it is superfluous
in the mathematical development that follows. Also, in Weihrauch’s original
definition, one has an enumeration of a subbase rather than of a base of the
topology, but, since it is possible to effectively obtain an enumeration of a base
from an enumeration of a subbase, our definition is equivalent.

Definition 2.2 The name of a point of an effectively given space is the set of
indices of its basic open neighbourhoods. A point of an effectively given space
is computable if its name is a recursively enumerable set.

Of course, this notion of computability heavily depends on the notation that
effectively presents the space. For example, if Un is an enumeration of a base
and ψ is a non-recursive permutation of the natural numbers, then Vn = Uψ(n)

is another enumeration, which induces a completely different notion of com-
putability.

2.2 Continuous domain and the way-below relation

We assume some familiarity with continuous domain theory [1, 3, 8, 7]. Recall
that a dcpo is a poset with joins of directed sets. For a dcpo D and elements
x and y of D one defines x � y, and says that x is way below y, if for every
directed set S with y v

⊔
S, already x v s for some s ∈ S. The dcpo D is said

to be continuous if for every x ∈ D, the set

↓↓x def= {b ∈ D | b� x}

is directed and has x as its join. A continuous domain is a continuous dcpo. A
basis of a continuous domain D is a set B such that for every x in D, the set
↓↓x ∩B is directed and has x as its join.
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2.3 Effectively given domains

For the purposes of this paper, an effectively given domain is a continuous do-
main together with an enumeration of a basis, subject to the condition that
the way-below relation on basis elements is semidecidable with respect to the
indexing. For the theory of effectively given domains and its applications, some
technical conditions on the enumeration have to be added, particularly if one is
interested in closure under the formation of function spaces [17]. But such con-
ditions play no technical rôle in this work and hence they can be safely omitted.
An element of an effectively given domain is computable if the basis elements
way below it are recursively enumerable. Notice that by the assumption that the
way-below relation is semidecidable, all basis elements are computable. With a
natural definition of a notion of computability for Scott continuous maps, this
assumption is equivalent to the identity function being computable.

2.4 Scott computability

Recall that the Scott topology of a domain has as opens the upper sets U such
that whenever

⊔
S ∈ U for a directed set S, already s ∈ S for some s ∈ S. A

base for the Scott topology of a continuous domain D is given by the sets

↑↑b def= {x ∈ D | b� x},

for b ∈ B, where B is any basis of the domain. Thus, an effective presentation
bn of a domain D induces an effective presentation ↑↑bn of the Scott topology
of D.

Definition 2.3 An element of an effectively given domain is Scott computable
if it is computable via the induced effective presentation of the Scott topology.

Since bn � x is equivalent to x ∈ ↑↑bn, it is clear that an element of an effectively
given domain is computable in the sense of the previous subsection iff it is Scott
computable in the sense of the above definition.

2.5 Dual computability

The dual topology of a continuous domain D is generated by the closed subbase
consisting of the sets of the form

↑x def= {y ∈ D | x v y}

for x an element of the domain. Equivalently, one can take as a closed subbase
the compact saturated sets in the Scott topology. Here compactness is taken in
the topological sense: any open cover by Scott open sets has a finite subcover.
Recall that a set is saturated if and only if it is an upper set, if and only if it is
the intersection of its neighbourhoods in the Scott topology.

Lemma 2.4 If B is a basis of a continuous domain D, then the sets ↑ b, for
b ∈ B, form a closed subbase of the dual topology of D.
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Proof Let y be a member of the subbasic open set D \ ↑x. This means that
x 6v y. By continuity of D and the fact that B is a basis, there is b ∈ B with
b� x such that already b 6v y, and it is clear that y ∈ D \ ↑ b ⊆ D \ ↑x. �

Thus, an effective presentation bn of D induces an effective presentation
D \ ↑ bn of an open subbase of the dual topology of D, which in turns induces
an effective presentation of an open base.

Definition 2.5 An element of an effectively given domain is dual computable
if it is computable via the induced effective presentation of the dual topology.

2.6 Lawson computability

The Lawson topology of a domain is the join of the Scott topology and the dual
topology. A base for this topology is given by the sets of the form ↑↑b\↑F where
b is a basis element, F is a finite set of basis elements, and ↑F =

⋃
x∈F ↑x.

Thus, an effective presentation of a domain induces an effective presentation of
the Lawson topology via a standard coding of finite sets of natural numbers.

Definition 2.6 An element of an effectively given domain is Lawson computable
if it is computable via the induced effectivization of the Lawson topology.

2.7 Order-theoretic characterizations

In summary, the notions of Scott, dual and Lawson computability are charac-
terized in order-theoretical terms as follows.

Proposition 2.7 For any element x of a continuous domain with effective ba-
sis B,

1. x is Scott computable iff the condition b� x is semidecidable in b ∈ B.

2. x is dual computable iff the condition b � x is semidecidable in b ∈ B.

3. x is Lawson computable iff both conditions are semidecidable.

3 Basic examples

In this section we characterize the notions of Scott, dual and Lawson computabil-
ity in some basic examples of domains that arise in applications of domain theory
to semantics, recursion theory and effective analysis. As all the conclusions re-
quire only a basic knowledge of domain theory and recursion theory, we only
state them, leaving the details of the proofs to the reader. A more elaborate
example is the topic of Section 5 below.
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3.1 The powerset of the natural numbers

The powerset Pω of the natural numbers ordered by inclusion with a standard
enumeration ∆n of the basis of finite subsets is an effectively given algebraic
domain, which is investigated in detail by Scott [16]. In this domain, X � Y
iff X is a finite subset of Y .

1. An element of Pω is Scott computable iff it is recursively enumerable.

2. An element of Pω is dual computable iff it is co-r.e.

3. It follows that an element of Pω is Lawson computable iff it is recursive.

3.2 The partial functions

The domain of partial endofunctions on the natural numbers ordered by graph
inclusion is another algebraic domain, with an effective presentation given by a
standard enumeration of the functions with finite graph.

1. A partial function is Scott-computable iff its graph is r.e., which means
that it is partial recursive.

2. A partial function is dual-computable iff its graph is co-r.e.

3. A partial function is Lawson-computable iff it has a recursive graph.

3.3 The extended real line

The domain [−∞,∞] of extended reals under their natural order is a first ex-
ample of a continuous, non-algebraic domain. Its way-below relation is char-
acterized by x � y iff x < y or x = −∞. A countable basis is given by a
standard enumeration of the rationals enlarged by −∞. A base for the Scott
topology is given by the open sets of the form ↑↑r = (r,∞] with r rational.
Thus, the Scott topology is the topology of lower semicontinuity. A real num-
ber is Scott computable iff it is lower semicomputable, or left computable in
Weihrauch’s terminology, which means that one can semidecide if a rational
is strictly smaller than the real. A base for the dual topology is given by the
open sets of the form [−∞,∞] \ ↑ r = [−∞,∞] \ [r,∞] = [−∞, r) with r ra-
tional. Thus, the dual topology is the topology of upper semicontinuity. Hence
a real is dual computable iff it is upper semicomputable or right computable.
The Lawson topology, being the join of the Scott and the dual topology, is the
Euclidean topology. A real is Lawson computable iff it is computable in the
classical sense of effective analysis, which means that it is both lower and upper
semicomputable. Thus, these are effectivizations of the notions of right, left
and double Dedekind sections: a real is Scott computable iff its left Dedekind
section is r.e., it is dual computable if its right Dedekind section is r.e., and it
is Lawson computable if both sections are r.e.
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3.4 The partial real line

Our last example in this section is the domain of non-empty compact intervals
of the extended Euclidean real line ordered by reverse inclusion. We regard
intervals as partial real numbers, and singletons as total real numbers. Partial
(and total) reals numbers are ranged over by the letters x, y, z and are regarded
as generalized real numbers, and one writes x = [x, x]. The following facts are
well known.

1. Partial real numbers form a domain with joins of directed sets given by
intersections.

2. x� y iff the interior of x in the Euclidean topology contains y.

3. Partial real numbers form a continuous domain with the intervals with
rationals endpoints as a basis.

An effective presentation is given by a standard enumeration of the rational
basis. The following facts are routine consequences of the definitions.

1. A partial number x is Scott computable iff x is lower semicomputable and
x is upper semicomputable.

2. A partial number x is dual computable iff x is upper semicomputable and
x lower semicomputable.

3. A partial number x is Lawson computable iff both x and x are computable.

In particular, for total real numbers, we have that Scott, dual, and Lawson
computability coincide. This is an effectivization of the fact that the relative
Scott, dual and Lawson topologies on total real numbers coincide with the
Euclidean topology.

4 Effective reducibility

In our main example, which is the subject of the next section, we discuss notions
of computability for compact subsets of Euclidean space. As a preparation, in
this section we develop some tools for effective reducibility of effective presen-
tations of topologies.

So far, we have deliberately avoided introducing formal notation. At this
point, for easy comparison with Weihrauch’s work, it is convenient to adopt his
notation, which we introduce as we proceed. We begin by recalling the definition
of an effectively given topological space and introducing its associated formal
notation.

Definition 4.1 An effective topological space is a triple T = (M, τ, ν) where M
is a set, τ is a topology on M and ν is an enumeration of a base of τ . Such an
enumeration ν is called a notation. The T-name of a point x ∈M , denoted by
NT(x), is the set of indices n such that x ∈ νn. A point of M is T-computable
if its T-name is recursively enumerable.
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Our approach is formally different from Weihrauch’s, because he uses Turing
machines that operate on infinite words over a finite alphabet Σ, while we use
partial recursive operators. The main resulting difference is that Weihrauch’s
representations are surjective partial maps from Σω to M , while our T-names
are total maps from M to Pω. For the formal definition and theory of partial
recursive operators, see Rogers [15]. One can think of a partial recursive op-
erator, which is formally defined to be an endofunction of Pω subject to some
effectivity conditions, as an algorithm that reads integers sequentially from an
input list and that, from time to time, adds an integer to the output list.

Definition 4.2 Let T = (M, τ, ν) and T′ = (M, τ ′, ν′) be two effective topo-
logical spaces with the same underlying set M . We say that T is effectively
reducible to T′ if there exists a partial recursive operator Φτ→τ ′ : Pω → Pω
such that

NT′ = Φτ→τ ′ ◦ NT.

Pω

Φτ→τ′

��

M

NT

=={{{{{{{{

NT′ !!CC
CC

CC
CC

Pω
When there is no ambiguity regarding the involved topologies, we denote the
operator simply by Φ.

Proposition 4.3 Let T = (M, τ, ν) and T′ = (M, τ ′, ν′) be two effective topo-
logical structures on the same set M . If T is effectively reducible to T′, then τ
is finer than τ ′.

Proof Let U be a τ ′-open set and x be a point of U . By hypothesis, there exists
an index m such that x ∈ ν′(m) ⊆ U . Because Φ is computable, it is Scott con-
tinuous. The continuity condition expressed at NT(x) tells us that Φ−1(↑↑{m})
is a Scott open subset of Pω containing NT(x). Thus, there exists a finite subset
F of NT(x) such that Φ(↑↑F ) ⊆ ↑↑{m}, which means that Φ(F ) 3 m. Hence
V

def= ∩i∈F ν(i), being a finite intersection of τ -opens, is a τ -open set. Now,
for all y ∈ V , we have that NT(y) ⊇ F . By monotonicity of Φ, we conclude
that Nτ ′(y) = Φ(Nτ (y)) ⊇ Φ(F ) 3 m. This implies that y ∈ ν′(m). Therefore
x ∈ V ⊆ ν′(m) ⊆ U , which shows that U is τ -open. �

For the converse, an additional hypothesis is needed.

Lemma 4.4 Let T = (M, τ, ν) and T′ = (M, τ ′, ν′) be two effective topological
spaces on the same set M . If τ is finer than τ ′ and the predicate ν(n) ⊆ ν′(m)
is r.e. in n and m then T is effectively reducible to T′.

Proof We define Φ as an algorithm. We suppose we are parsing a sequence ni
that enumerates the set {n | x ∈ ν(n)}. Each time we read an ni, we fork a
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process that prints a list of the set {m | ν(ni) ⊆ ν′(m)}. The set we obtain is
clearly a subset of {m | x ∈ ν′(m)}. And because τ is finer than τ ′, the inclusion
in the other direction also holds. �

This lemma is our main tool in proofs of effective equivalence of topologies.

Corollary 4.5 If T is effectively reducible to T′, then every T-computable point
x ∈M is T′-computable.

Proof The image of an r.e. subset of N by a recursive operator is again an r.e.
subset of N — see e.g. [15]. �

Definition 4.6 Let T and T′ be two effective topological spaces on the same set,
we say that T and T′ are effectively equivalent iff they are effectively reducible
to each other.

In this case, it is clear that they induce the same computable points.

5 Main example

We now come to our last example, the domain of compact subsets of the Eu-
clidean space RN for some finite dimension N . This example is more complex
than the previous and we thus study it in detail. It is a generalization of the
last example of Section 3. The main difference is that the ambient space is not
compact anymore. This lack of compactness changes some results concerning
dual computability.

5.1 The upper powerdomain of Euclidean space

Let K be the set of non-empty compact subsets of RN , and endow RN with any
classical norm such as L1, L2 or L∞. In fact, we only need a norm such that
Lemma 5.4 below holds. That is, we must be able to decide natural lattice-
theoretic questions about the basic elements. We denote by B(x, r) the open
ball with center x and radius r with respect to this norm. We extend this
notation to a subset A of RN by B(A, r) =

⋃
x∈AB(x, r). Let Bn be a standard

enumeration of the open balls with rational center and radius, where a point
of RN is called rational if its coordinates are rational. Similarly, let Kn be a
standard enumeration of the finite unions of closed rational balls. Notice that
the sets Kn, being bounded, are compact.

Notation 5.1 The interior of a subset A of a topological space is denoted by
Å or (A)◦, and its complement by Ac. The lattice of open sets of a topological
space X is denoted by OX.

Proposition 5.2 The following predicates are decidable in m and n:
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1. Kn ⊆ Km,

2. Kn ⊆ K̊m,

3. Kn ∩Km = ∅,

4. K̊n ∩ K̊m = ∅,

5. K̊n ∩Km = ∅.

Proof These conditions can be checked by a finite number of comparisons be-
tween rational numbers. �

As usual, we order the upper powerdomain K by reverse inclusion:

K v L ⇐⇒ K ⊇ L,

which is clearly a directed complete partial order.

Proposition 5.3 For K,L ∈ K, the condition K � L is equivalent to L ⊆ K̊.

Proof See e.g. [8]. �

Lemma 5.4 For every K ∈ K and every ε > 0 there is n with

K ⊆ K̊n ⊆ B(K, ε).

Proof Given K ∈ K, and ε > 0, let Kε
def= B(K, ε). Then

K ⊆ Kε =
⋃

Bn⊆Kε

Bn,

and we can thus extract a finite subcover such that K ⊆
⋃p
i=1Bni

. Since there
is n with Kn =

⋃p
i=1 B̄ni

, we conclude that K ⊆
⋃p
i=1Bni

⊆ K̊n ⊆ Kε. �

Proposition 5.5 The set K of compact subsets of RN ordered by reverse in-
clusion is a continuous domain with the compact sets of the form Kn as a basis.

Proof The fact that K is continuous comes from the fact that RN is a locally
compact Hausdorff space. We only have to prove that theKn form a basis of this
domain. Given indices n and m such that Kn � K and Km � K, we have that
K ⊆ K̊n ∩ K̊m = (Kn ∩Km)◦. This implies that K ∩ ((Kn ∩Km)◦)c = ∅.
And because K is compact and the other set is closed, the distance δ be-
tween them is strictly positive. By Lemma 5.4, we can choose an index p with
K ⊆ K̊p ⊆ Kδ ⊆ Kn ∩Km. Then we have that Kn ∨Km v Kp � K, which
shows that the set of Kn that are way-below K is directed. Its join is K because
K =

⋂
ε>0B(K, ε). �

We assume that RN is endowed with the Euclidean topology, which coincides
with the topology induced by the norm, denoted by ORN .
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Definition 5.6 For U ∈ ORN , we define

1. �U = {K ∈ K | K ⊆ U},

2. ♦U = {K ∈ K | K ∩ U 6= ∅}.

Proposition 5.7

1. � and ♦ are injective monotone maps from ORN to P(K),

2. �U ∩�V = �(U ∩ V ),

3. �U ∪�V ⊆ �(U ∪ V ),

4. ♦U ∩ ♦V ⊇ ♦(U ∩ V ),

5. ♦U ∪ ♦V = ♦(U ∪ V ).

5.2 The upper topology

The Scott topology on K is generated by open sets of the form ↑↑Kn = �K̊n

for K ∈ K. Thus, Scott computability coincides with T-computability for the
effective topological space TS = (K, τS , νS) where νS(n) = ↑↑Kn.

Following Weihrauch [21], we effectively present the upper topology, denoted
by τ>, on K by considering an enumerated subbase defined by

U>,〈n,r〉
def= �B(0, r) ∩�B̄cn.

In order to have a base of the topology, we need to consider all the finite inter-
sections of sets of this form. But we have that

⋂
1≤i≤k

U>,〈ni,ri〉 = �

B(0, min
1≤i≤k

ri)
⋂  ⋃

1≤i≤k

B̄ni

c
= �

(
B(0, min

1≤i≤k
ri) ∩Km

c

)
for some m.

Thus we have a base of the upper topology by considering sets of the form

O>,〈n,r〉
def= � (B(0, r) ∩Kn

c) .

Define
T> = (K, τ>, ν>) where ν>(p) = O>,p.

Lemma 5.8 The following equivalences hold:

νS(m) ⊆ ν>(〈n, r〉) ⇐⇒ K̊m ⊆ B(0, r) and K̊m ∩Kn = ∅,
ν>(〈n, r〉) ⊆ νS(m) ⇐⇒ K̊m ∪Kn ⊇ B(0, r).

Moreover, these predicates are recursive in n and m.
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Proof This follows from Propositions 5.7 and 5.2. �

Proposition 5.9 T> and TS are effectively equivalent.

Proof Choose an open O>,〈n,r〉 and a compact K ∈ O>,〈n,r〉. Then we have
that K ⊆ B(0, p) and K∩Kn = ∅. Because K is compact and B(0, p)c is closed,
there exists ε > 0 such that B(K, ε) ⊆ B(0, p) and B(K, ε) ∩ Kn = ∅. Then
choose a Km according to Lemma 5.4 such that K ⊆ K̊m ⊆ B(K, ε). Thus, by
Lemma 5.8, we have that K ∈ ↑↑Km ⊆ O>,〈n,r〉. This proves that τS is finer
than τ>.

Now choose a Km and K ∈ ↑↑Km. Firstly, there is an index p with Km ⊆
B(0, p). Secondly, there is ε > 0 with B(K, ε) ⊆ K̊m. Since L = B̄(0, p)∩(K̊m)

c

is a non-empty compact subset of RN , there is a Kn such that L ⊆ K̊n ⊆
B(L, ε/2) according to Lemma 5.4. By the triangle inequality, we have that
d(Kn,K) ≥ ε/2, so that Kn ∩K = ∅. Thus K ∈ � (B(0, r) ∩Kn

c) = O>,〈n,r〉.
On the other hand, B(0, r) ⊆ L ∪ K̊m ⊆ Kn ∪ K̊m. Hence, by the Lemma 5.8,
we have that O>,〈n,r〉 ⊆ ↑↑Km, which proves that τ> is finer than τS .

Now, we have proved that τ> and τS are the same topology. Lemma 5.8 tells
us also that the predicates ν>(n) ⊆ (resp. ⊇) νS(m) are recursive. So we can
apply Lemma 4.4 twice to obtain the desired result. �

In other words:

Theorem 5.10 A compact subset of RN is upper computable if and only it is
Scott computable.

5.3 The lower topology

Weihrauch introduces another effective topology on K. A subbase of this topol-
ogy is given by sets of the form

U<,〈n,r〉
def= �B(0, r) ∩ ♦Bn.

As before, we need to take all the finite intersections of such sets. This gives us
the following natural enumeration of the base:

O<,〈n,r〉
def= �B(0, r)

⋂ (
∩ki=1♦Bni

)
,

where n = 〈k,m〉 and m = 〈n1, . . . , nk〉. Then T< = (K, τ<, ν<) where ν<(p) def=
O<,p.

This topology gives information from the inside of a compact set. We want
to relate it to the dual topology of the domain (K,⊇). A subbase of the dual
topology is given by opens of the form K\ ↑Km. Then we enumerate all the
finite intersections of such open sets:

νD(m) def=
k⋂
i=1

K\↑Kmi
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where m = 〈k, n〉 and n = 〈m1, · · · ,mk〉.

Lemma 5.11 For ν<(n)
def
= �B(0, r)

⋂
∩i♦Bni

and νD(m)
def
=

⋂
j(K\ ↑Kmj

),
we have that

ν<(n) ⊆ νD(m) ⇐⇒ ∀j∃i, B(0, r) ∩Bni ∩Kmj = ∅.

This proves that the predicate ν<(n) ⊆ νD(m) is r.e.

Proposition 5.12 T< is effectively reducible to TD and τ< is strictly finer
than τD.

Proof As before, because we know that ν<(n) ⊆ νD(m) is r.e., we only have
to prove that τ< is strictly finer than τD. For this, choose K and m such that
K ∈ K\↑Km. Then we have that K 6⊆ Km. So there exists a point x ∈ K \Km,
a ball Bn and a radius r > 0 such that x ∈ Bn, K ⊆ B(0, r) and Bn ∩Km = ∅.
Now, let p satisfy

O<,p = �B(0, r) ∩ ♦Bn.

Then it is clear that K ∈ O<,p ⊆ K\↑Km. Hence τ< is finer than τD.
Now, for every m and every r > 0, we can find K ∈ νD(m) with K 6⊆ B(0, r).

This implies that we never have νD(m) ⊆ ν<(n). Therefore τD can’t be as fine
as τ<. �

In this case, the topologies are not the same. The problem arises from
the non-compactness of RN . The point is that we can’t have any boundedness
information for a compact by looking at its neighbourhoods in the dual topology.
Then, by virtue of Proposition 4.3, this implies that TD can’t be effectively
reducible to T<.

However, we still have a positive effectivity result. For each R ∈ N, we denote
by KR the set of all the compact subsets of the open ball B̄(0, R) that are not
contained in the open ball B̄(0, R − 1), equipped with the induced effective
topology (T<,R or TD,R). Formally, we have KR = �B(0, R) \�B(0, R− 1).

Lemma 5.13 If K ∈ KR then

K ∩Bn 6= ∅ ⇐⇒ ∃m ∈ N,Km ∪Bn ⊇ B(0, R) and K 6⊆ Km.

In this case, we have KR\↑Km ⊆ ♦Bn.

Proof (⇐=) Immediate. (=⇒) If K ∩Bn 6= ∅, then, because K is compact and
Bn = B(~xn, Rn) is open, there exists an ε > 0 such that K ∩B(~xn, Rn− ε) 6= ∅.
And because L = B̄(0, R) \ B̊n is a compact set, we can apply Lemma 5.4
to obtain a basic compact set Km such that L ⊆ K̊m ⊆ B(L, ε). Then
Km ∩ B(~xn, Rn − ε) = ∅. And because K ∩ B(~xn, Rn − ε) 6= ∅, we have that
K 6⊆ Km. The choice of Km proves that we have Bn ∪Km ⊇ B(0, R). �

Proposition 5.14 TD,R is effectively reducible to T<,R.
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Proof By the lemma, we may assume that we are given K ∈ ν<,R(n) =
KR

⋂
�B(0, r)

⋂
∩iBni

. Then, for each ni there exists an mi such that K ∈
KR\ ↑Kmi

⊆ ♦Bni
. Intersecting all these subbasic dual neighbourhoods of

K, we get an index m such that K ∈ νD,R(m) ⊆ ν<,R(n). This proves that
τD,R is finer than τ<,R. Moreover, we can deduce from the same lemma that
νD,R(m) ⊆ ν<,R(n) is r.e. Therefore the result follows from Lemma 4.4. �

The following is an immediate consequence of the above development:

Theorem 5.15 A compact subset of RN is lower computable if and only if it
is dual computable.

Notice that this is a slightly paradoxical situation. We have two notions of
computability on K with the same computable elements, but it is impossible to
effectively translate the dual name of a compact set into its upper name, even
if the compact set is computable. To show the equivalence we used our non-
effective, a priori knowledge that our elements are compact and hence bounded,
without any information about the bound.

5.4 The strong topology

If we consider the join of the two effective topologies of Weihrauch, we get a
stronger effective topology which coincides with the Vietoris topology (induced
by the Hausdorff metric). We call TH = (K, τH , νH) this effective topology with
νH(〈m,n〉) = ν>(n) ∩ ν<(m). Similarly, we have the Lawson effective topology
that we call TL = (K, τL, νL) where νL(〈m,n〉) = νS(n) ∩ νD(m). We prove
that these topologies are effectively equivalent.

Proposition 5.16 TH and TL are effectively reducible to each other.

Proof The fact that TH is effectively reducible to TL comes from the fact that
TV is the join of T> and T<, and each of these effective topologies is effectively
reducible respectively to TS and TD.

In the other direction, by Proposition 5.9, we have a recursive operator
ΦS→> that reduces TS to T>. Suppose we are given a K ∈ K with Lawson
name A. Each time we read a q = 〈m, p〉 ∈ A, we can compute an r ∈ N such
that K ∈ B(0, r) because we know that K ⊆ K̊m. So, for each r that we parse,
we fork a process. This process parses A from the beginning and each time it
parses q′ = 〈m′, p′〉 ∈ A, it forks again and the new child process prints the list
of all the pairs 〈r, n〉 such that Kp′ ∪ Bn ⊇ B(0, r) (remember that K 6⊆ Kp′).
By Lemma 5.13, we are enumerating all the subbasic lower neighbourhoods of
K. Now, by taking the indices of all the finite intersections, we can generate
the lower name of K. This algorithm describes a recursive operator ΦL→< that
translates a Lawson name to a lower name. And with the previous operator
ΦS→>, we can construct an effective operator ΦL→H from TL to TH . �
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We have already mentioned that the dual topology is not effectively reducible
to the lower topology. But with the help of the information that comes from the
Scott topology (essentially an information on the bound of a compact set that
is unreachable by the dual topology), we have been able to effectively obtain
the lower name.

Theorem 5.17 A compact subset of RN is strongly computable if and only if
it is Lawson computable.
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