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Abstract

Many categories of semantic domains can be considered from an order-theoretic
point of view and from a topological point of view via the Scott topology. The
topological point of view is particularly fruitful for considerations of computability
in classical spaces such as the Euclidean real line. When one embeds topological
spaces into domains, one requires that the Scott continuous maps between the host
domains fully capture the continuous maps between the guest topological spaces.
This property of the host domains is known as injectivity. For example, the con-
tinuous Scott domains are characterized as the injective spaces over dense subspace
embeddings (Dana Scott, 1972, 1980). From a third point of view, the continuous
Scott domains arise as the algebras of a monad (Wyler, 1985). The topological
characterization by injectivity turns out to follow from the algebraic characteriza-
tion and general category theory (Escardó 1998). In this paper we systematically
consider monads that arise in semantics and topology, obtaining new proofs and
discovering new characterizations of semantic domains and topological spaces by
injectivity.
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Introduction

In applications of domain theory to denotational semantics, one starts by
implicitly or explicitly embedding given topological spaces into appropriate
domains endowed with the Scott topology. For example, the discrete space
of natural numbers is embedded into the flat domain of natural numbers,
the one-point compactification of the discrete space of natural numbers is
embedded into the domain of lazy natural numbers, Baire space is embedded
into the domain of partial endofunctions of the natural numbers, Cantor space
is embedded into the domain of finite and infinite binary words ordered by
prefix, and the Euclidean real line is embedded into the domain of compact
real intervals ordered by reverse inclusion.

Given embeddings j : X → D and k : Y → E of topological spaces into
domains, one models continuous maps X → Y by Scott continuous functions
D → E. It is thus natural to demand that the latter fully capture the former.
Technically, the requirement amounts to the topological space E being injec-
tive over the embedding j : X → D (see Definition 3.3). For a more detailed
discussion of these issues see the introduction of [5]. Our main references to
domain theory are [1,7] (see also [18]).

Dana Scott [15] characterized the continuous lattices endowed with the
Scott topology precisely as the spaces that are injective over all subspace
embeddings. From another perspective, Alan Day [2] and Oswald Wyler [22]
independently characterized the continuous lattices as the algebras of a certain
filter monad on the category of topological spaces. It turns out that Scott’s
result actually follow from Day’s and Wyler’s. One uses the fact that the
filter monad is of the Kock-Zöberlein type, and that in any poset-enriched
category with such a monad structure, the injective objects over a certain
class of embeddings defined in terms of the monad structure are precisely
the algebras [5]. The conclusion follows from the fact that the embeddings
associated to the filter monad are exactly the topological embeddings [4].
Similarly, the continuous Scott domains are the injective spaces over dense
subspace embeddings [7] and this turns out to follow from the fact that they are
the algebras of the proper filter monad [24], because the embeddings associated
to the monad are the dense topological embeddings [4].

In this paper we systematically consider monads that arise in semantics
and topology, obtaining new proofs of known characterizations of semantic
domains and topological spaces by injectivity, and also new characterizations
by injectivity. We develop several examples in detail, but we only include the
main steps of other examples in this extended abstract.

This extended abstract is organized in the following sections: (1) The filter
monads, (2) Kock-Zöberlein monads, (3) Injective objects that are the alge-
bras of monads of the Kock-Zöberlein type, (4) Injective spaces over subspace
embeddings, (5) Injective spaces over dense subspace embeddings, (6) Injective
spaces over flat embeddings, (7) Injective spaces over completely flat embed-
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dings, (8) Injective spaces over perfect embeddings, (9) Injective spaces over
locally dense embeddings, (10) Injective spaces over open embeddings, (11)
Injective spaces over closed embeddings, (12) Injective spaces over semi-open
embeddings.

1 The filter monads

The filter monads considered in this paper are defined on the category of T0

topological spaces. We begin by considering the monad of all filters of open
sets [2]. After considering some variations, we prove basic properties.

1.1 The monad of all filters of opens

Given a space X, one denotes its lattice of open sets by ΩX and constructs
the filter space T X as follows. The points are the filters of ΩX. The topology
is generated by the sets

�U = {φ ∈ T X | U ∈ φ}, U ∈ ΩX,

which form a base as

�U ∩�U ′ = �(U ∩ U ′).

Given a continuous map f : X → Y , one defines

T f(φ) = {V ∈ ΩY | f−1(V ) ∈ φ}.

Then T is a functor and one has natural transformations η : 1 → T and
µ : T T → T defined by

ηX(x) = {U ∈ ΩX | x ∈ U}, µX(Φ) = {U ∈ ΩX | �U ∈ Φ},

which make T into a monad T = (T, η, µ). Notice that

(T f)−1(�V ) = �f−1(V ), η−1
X (�U) = U, µ−1

X (U) = �� U.

(It is interesting that the filter monad is formally analogous to the con-
tinuation monad. In fact, an open set can be regarded as a continuous map
into Sierpinski space and a filter can be regarded as a finite-meet-preserving
map into the two-point lattice, so that set-abstraction corresponds to lambda-
abstraction as in

T f(φ) = λV · φ(λx · V (f(x))),

ηX(x) = λU · U(x),

µX(Φ) = λU · Φ(λφ · φ(U)),

which is syntactically equivalent to the definition of the continuation monad.)
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Remark 1.1 µX(Φ) =
⋃{⋂U | U ∈ Φ}.

This shows that our definition is equivalent to that of Day [2].

Proof. This follows from Theorems 2.2 and 4.3 below, but we include a direct
proof. Let U ∈ µX(Φ). Then �U ∈ Φ by our definition. We have to show
that there is an open U ∈ Φ with U ∈ ⋂U . We can take U = �U , because⋂�U = ↑U , the principal filter generated by U . Conversely, let U ∈ ⋃{⋂U |
U ∈ Φ}. Then there is an open U ∈ Φ with U ∈ ⋂U , and hence with U ∈ φ
for all φ ∈ U . From this we see that U ⊆ �U . Hence �U ∈ Φ because filters
are upper sets. Therefore U ∈ µX(Φ) by our definition. 2

1.2 Variations

We now consider some variations on the filter monad, obtained by allow-
ing only particular kinds of filters of opens. The unit and multiplication
are defined in the same way as for the monad of all filters (but notice that
Remark 1.1 doesn’t apply to the variations). In all variations the equation
�U ∩ �U ′ = �(U ∩ U ′) on basic open sets holds, because filters are closed
under finite meets, but more equations arise. In order to avoid unnecessary
decorations, we denote all monads by the standard symbol T, relying on the
context.

The proper filter monad is obtained by letting T X be the set of proper
filters. Notice that the improper filter (the principal filter generated by the
empty set) was a top point in the specialization order. For this variation the
equation �∅ = ∅ holds (for the monad of all filters we have �∅ = {↑∅}, but
this “accidental” fact is unimportant).

The prime filter monad is obtained by letting T X be the set of prime
filters. Recall that a filter is prime iff it is inaccessible by finite joins. Since
the join of the empty set is included in this definition, we see that a prime filter
is proper. For this variation the equations �∅ = ∅ and �U ∪�U ′ = �(U ∪U ′)
hold.

The completely prime filter monad is obtained by letting T X be the set
of completely prime filters. Recall that a filter is completely prime iff it is
inaccessible by arbitrary joins. For this variation the equations �∅ = ∅ and⋃

i�Ui = �⋃
i Ui hold.

The Scott-open filter monad is obtained by letting T X be the set of Scott
open filters. Recall that a filter is Scott open iff it is inaccessible by directed
joins. For this variation the equation

⋃
i �Ui = �⋃

i Ui holds, and so does
�∅ = ∅ if the improper filter is excluded.

Yet another monad of filters (of connected open sets) will be considered in
Section 9.
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1.3 Basic properties

In what follows T is any of the filter monads introduced above. Continu-
ous maps of T0 topological spaces form a poset-enriched category under the
pointwise specialization order. By a simple unfolding of definitions, one sees
that the pointwise specialization order is characterized by, for all continuous
maps f, g : X → Y ,

f v g iff f−1(V ) ⊆ g−1(V ) for every V ∈ ΩY .

Lemma 1.2 T is locally monotone.

Proof. It is immediate that the specialization order of T X is inclusion of
filters. Let f, g : X → Y with f v g. In order to prove that T f v T g, let
φ ∈ T X and V ∈ T f(φ). This means that f−1(V ) ∈ φ. Since f−1(V ) ⊆
g−1(V ) and φ is an upper set, we have that g−1(V ) ∈ φ. But this means that
V ∈ T g(φ). Therefore T f(φ) ⊆ T g(φ). 2

Lemma 1.3 The inequality ηT X v T ηX holds for all spaces X.

Proof. By specializing the definitions to the appropriate types, we obtain

ηT X(φ) = {U ∈ ΩT X | φ ∈ U}, T ηX(φ) = {U ∈ ΩT X | η−1
X (U) ∈ φ}.

Let U ∈ ηT X(φ). Then φ ∈ U . Since the open sets �U form a base of ΩT X,
there is U ∈ ΩX with φ ∈ �U ⊆ U . Since U = η−1

X (�U) ∈ φ, we see that
�U ∈ T ηX(φ). Hence U ∈ T ηX(φ) because filters are upper sets. Therefore
ηT X(φ) ⊆ T ηX(φ). 2

Remark 1.4 The components of the unit are order-monic.

Proof. Assume that ηX(x) v ηX(y) and let U be an open neighborhood of x.
Then U ∈ ηX(x) and hence U ∈ ηX(y) by the assumption, which means that
y ∈ U . Therefore x v y. 2

2 Kock-Zöberlein monads

We begin by specializing the notion of a Kock-Zöberlein doctrine on a 2-
category to the notion of a Kock-Zöberlein monad on a poset enriched cate-
gory. For simplicity, our definition is dual (at the level of hom-posets) to that
of [13].

Definition 2.1 A monad T = (T, η, µ) defined on a poset-enriched cate-
gory X , with T : X → X a locally monotone functor, is of the Kock-Zöberlein
type if ηT X v T ηX for all X ∈ X .

By Lemmas 1.2 and 1.3, the filter monads introduced in the previous section
are of the Kock-Zöberlein type.

Since X is poset-enriched, one can consider adjunctions of arrows. An
arrow l : X → Y is left adjoint to an arrow r : Y → X, and r is right adjoint
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to l, if l ◦ r v idY and idX v r ◦ l. Such an adjunction is denoted by l a r.
It is reflective if l ◦ r = idY , and coreflective if idX = r ◦ l. In these cases one
writes l ar r and l ac r respectively. (In domain theory one usually refers to
coreflective adjunctions as embedding-projection pairs.)

By specializing Anders Kock’s results [13] from 2-categories to poset-enriched
categories, one learns that

Theorem 2.2 If T = (T, η, µ) is a Kock-Zöberlein monad then

(i) An arrow α : T X → X is the structure map of a T-algebra iff ηX ac α.

(ii) ηT X a µX .

(iii) µX a T ηX .

(See [5] for a direct proof, where it is also shown that each of these properties
is in fact equivalent to the defining condition of a Kock-Zöberlein monad.)

By property (i), every object can be the underlying object of at most one
algebra, and every structure map of an algebra is uniquely determined by the
underlying object of the algebra (as the right adjoint of the unit of the object).
Due to this reason, one can identify the algebras of a Kock-Zöberlein monad
with their underlying objects, and we adopt this practice.

3 Injective objects that are the algebras of monads of
the Kock-Zöberlein type

In what follows we work on a Kock-Zöberlein monad T = (T, η, µ) defined
on a poset-enriched category X . The maps defined below are particular cases
of the “semi-upper” maps of [20], for which the reflectivity condition is not
required:

Definition 3.1 By a T-embedding we mean an arrow j : X → Y such that
T j : T X → T Y has a reflective left adjoint, denoted by T∗j : T Y → T X.

For example, ηX : X → T X is a T-embedding with T∗ηX = µX , because the
adjunction µX a T ηX of Theorem 2.2 is reflective by virtue of the unit law
µX ◦ T ηX = idX .

Remark 3.2 The following conditions are equivalent:

(i) T-embeddings are order-monic.

(ii) The components of the unit are order-monic.

(iii) T is order-faithful.

(The conditions remain equivalent if the prefix “order-” is omitted.)

Proof. (i) =⇒ (ii): Immediate. (ii) =⇒ (iii): If T f v T g then we
have that T f ◦ ηX v T g ◦ ηX by composition with ηX , that ηY ◦ f v ηY ◦ g
by naturality, and that f v g by the assumption. (iii) =⇒ (i): Let j :
X → Y be a T-embedding and f, g : Z → X be arrows with j ◦ f v j ◦ g.
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Then T j ◦ T f v T j ◦ T g by local monotonicity of T. Hence T f v T g by
composition with T∗j. Therefore f v g by the assumption. 2

Definition 3.3 An object D is injective over an arrow j : X → Y if every
f : X → D has an extension f̄ : Y → D along j : X → Y , in the sense that
the following equation holds:

X
j - Y

@
@

@f R ª..
..
..
.

f̄
D.

One normally assumes that j : X → Y is a monomorphism, so that the word
“extension” is applied in the usual sense, but this is unimportant here.

Notice that there is nothing canonical about the extension f̄ in the def-
inition. But since X is poset-enriched, a definition with canonical choice is
possible. We first recall a concept.

Definition 3.4 A right Kan extension of an arrow f : X → D along an arrow
j : X → Y is a (necessarily unique) arrow f/j : Y → D such that

(i) f/j ◦ j v f and

(ii) g ◦ j v f implies g v f/j.

That is, f/j is the greatest solution in g to the inequality g ◦ j v f . When
we have equality in (i), so that f/j is an actual extension, we say that f/j is
a right extension of f along j (that is, we omit the word “Kan”).

Definition 3.5 We say that an object D is right injective over an arrow
j : X → Y if every f : X → D has a right extension along j : X → Y .

The following fact was established in [5].

Theorem 3.6 The following statements are equivalent for any object A:

(i) A is injective over T-embeddings.

(ii) A is right injective over T-embeddings.

(iii) A is a T-algebra.

In this case, if f : X → A is any arrow and j : X → Y is a T-embedding then
f/j : Y → A is constructed as follows, where mA : T A → A is the unique
structure map of the algebra A:
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Escardó and Flagg

X
j - Y T X ¾ T∗j

T Y ¾ ηY
Y

@
@

@f R ª..
..
..
.

f/j
@

@
@T f R

ª..
..
..
..
..
..
..
..
..
..

f/j
A T A

@
@

@mA R

A.

Remark 3.7 It is natural to ask whether the reflectivity condition in the
definition of T-embedding is actually necessary to obtain Theorem 3.6. It is
shown in [5, Theorem 4.2.2(4)] that every algebra of a Kock-Zöberlein monad is
actually a right Kan object over arrows j : X → Y such that T j : T X → T Y
has a (not necessarily reflective) left adjoint, where an object D is defined
to be a right Kan object over an arrow j : X → Y if every f : X → D
has a right Kan extension along j : X → Y (which is not assumed to be an
actual extension). However, in general there may be objects that are right
Kan objects over such arrows but are not algebras (see Remark 4.6).

Lemma 3.8 An object is a T-algebra iff it is a retract of a free T-algebra.

This result, which is a useful tool for identifying the algebras in concrete
situations, was first proved by Anders Kock [13]. It is also a corollary of
Theorem 3.6, using the facts that ηA is a T-embedding and that an injective
object over T-embeddings is a retract of every object into which it is T-
embedded.

4 Injective spaces over subspace embeddings

In this section we consider the monad of all filters of opens. We take the
characterization [15, Proposition 2.4] of continuous lattices as our definition.

Definition 4.1 A complete lattice D is continuous if every d ∈ D is the
“lim inf” of its filter of Scott open neighborhoods, in the sense that
d =

⊔{dU | d ∈ U}, where U ranges over Scott open sets.

Lemma 4.2 T X is an algebraic lattice endowed with the Scott topology.

Proof. Since the lattice of filters is algebraic with the principal filters as the
compact elements, and since �U is the set of filters containing the principal
filter ↑U , we see that �U is a basic Scott open set. 2

The following theorem was independently established by Day [2] and Wyler [23].
A simple proof based on the fact that the filter monad is of the Kock-Zöberlein
type is available [4]:
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Theorem 4.3 The algebras of the filter monad are the continuous lattices
endowed with the Scott topology. Moreover, the structure map mD : T D → D
of an algebra with underlying space D is given by

mD(φ) =
⊔ {l

U | U ∈ φ
}

.

Proof. The algebras are continuous lattices because every algebra is a retract
of a free algebra by Lemma 3.8, and retracts of algebraic lattices are continuous
lattices. Conversely, let D be a continuous lattice endowed with the Scott
topology. It is clear that mD is monotone. Thus, in order to show that it is
continuous, it is enough to show that mD(φ) =

⊔{mD(↑U) | U ∈ φ}, because
the principal filters are compact and every filter is the directed join of the
principal filters generated by its members. But this is immediate because
mD(↑U) =

d
U . By Theorem 2.2(i), the function mD is a structure map iff

ηD◦mD v idT D and mD◦ηD = idD. The equation holds precisely because D is
continuous. In order to establish the inequality, first notice that ηD ◦mD(φ) =
{U ∈ ΩD | ⊔{dU ′ | U ′ ∈ φ} ∈ U}. Let U ∈ ηD ◦ mD(φ). Then

d
U ′ ∈ U

for some U ′ ∈ φ because {dU ′ | U ′ ∈ φ} is directed and U is Scott open.
Hence U ∈ φ because U ′ ⊆ U . Therefore ηD ◦mD(φ) ⊆ φ, and the proof is
concluded. 2

(Day and Wyler also proved that if D and E are algebras then a continuous
function f : D → E is an algebra homomorphism iff it preserves all meets.)

Lemma 4.4 The T-embeddings are precisely the subspace embeddings.

Proof. Given a continuous map f : X → Y , its frame map f−1 : ΩY → ΩX
preserves all joins and hence has a right adjoint f∗ : ΩX → ΩY . We can thus
define a map T∗f : T Y → T X by

T∗f(γ) = {U ∈ ΩX | f∗(U) ∈ γ}.

The set T∗f(γ) is a filter because f∗ preserves meets. The function T∗f is
continuous because one easily computes (T∗f)−1(�U) = �f∗(U). That this
produces a left adjoint to T f is verified as follows:

T f(T∗f(γ)) = {V ∈ ΩY | f−1(V ) ∈ T∗f(γ)} = {V ∈ ΩY | f∗(f−1(V )) ∈ γ)} ⊇ γ,

because if V ∈ γ then f∗(f−1(V )) ∈ γ as V ⊆ f∗(f−1(V )). Similarly,

T∗f(T f(φ)) = {U ∈ ΩX | f∗(U) ∈ T f(φ)} = {U ∈ ΩX | f−1(f∗(U)) ∈ φ)} ⊆ φ.

Reflectiveness means that T∗f ◦ T f = idT X . So we have to check that the
equation f−1(f∗(U)) = U holds iff f is an embedding. But the equation is
equivalent to saying that f−1 is surjective. 2

The following major result of Scott [15] thus appears a corollary.
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Theorem 4.5 The injective spaces over subspace embeddings are the contin-
uous lattices endowed with the Scott topology. Moreover, if f : X → D is
a continuous map into a continuous lattice and j : X → Y is a subspace
embedding, then f has a greatest extension f/j : Y → D along j, given by

f/j(y) =
⊔ {l

U | y ∈ j∗(f−1(U))
}

.

Proof. This follows from Theorem 3.6 and Lemma 4.4. The above formula is
a special case of the general formula f/j = mA◦T f ◦T∗j◦ηY of Theorem 3.6.2

(Notice that Scott’s original formula [15, Proposition 3.8]

f/j(y) =
⊔ {l

f(j−1(V )) | y ∈ V
}

for the greatest extension is slightly different from ours.)

Remark 4.6 The proof of Lemma 4.4 shows that the map T j : T X → T Y
has a left adjoint for any continuous map j : X → Y . Hence, by Re-
mark 3.7, the injective spaces are right Kan spaces over arbitrary continuous
maps (see [5, Proposition 2.5.4] for a direct proof). But Thomas Erker [3]
showed that the converse is not true. In fact, he characterized the right Kan
spaces precisely as the essentially complete spaces.

5 Injective spaces over dense subspace embeddings

In this section we briefly consider the proper filter monad. A continuous Scott
domain is a poset with directed joins and non-empty meets (or, equivalently,
bounded joins), subject to the approximation axiom of Definition 4.1. In
the algebraic case one uses the terminology Scott domain. The argument of
Lemma 4.2 shows that T X is a Scott domain endowed with the Scott topology.
The argument of Lemma 4.4 shows that the T-embeddings are precisely the
dense subspace embeddings. In fact, a map f : X → Y is dense iff f∗(∅) = ∅,
and this is the condition for T∗f(φ) as defined in Lemma 4.4 being different
from ↑∅ for all φ and hence T∗f being well-defined. Finally, the argument of
Theorem 4.3 shows that the algebras of the filter monad are the continuous
Scott domains, a result originally proved by Wyler [24]. Scott’s result [7] that
the injective spaces over dense subspace embeddings are the continuous Scott
domains thus appears as a corollary.

6 Injective spaces over flat embeddings

In this section we consider the prime filter monad.

Definition 6.1 A sober space is stably compact if it is locally compact and its
compact saturated sets are closed under finite intersections [12,17]. A stably
compact space is spectral (or coherent) if the compact open sets form a base.
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Recall that a set is saturated iff it is the intersection of its neighborhoods iff
it is an upper set in the specialization order. For example, compact Hausdorff
spaces are stably compact. Notice that our definition of compactness does not
include the Hausdorff separation axiom. The proof of the following lemma
can be found in e.g. [18].

Lemma 6.2 T X is a spectral space.

The following theorem is due to Simmons [16] and Wyler [23] indepen-
dently (see also Flagg [6]). A simple proof using the fact that the monad is
of the Kock-Zöberlein type is available, but it is omitted from this extended
abstract due to lack of space.

Theorem 6.3 The algebras of the prime filter monad are the stably compact
spaces.

Definition 6.4 A continuous map f : X → Y is flat if the right adjoint
f∗ : ΩY → ΩX of the frame map f−1 : ΩY → ΩX preserves finite joins.

Since the join of the empty family is included, flat embeddings are dense. This
localic definition is that of [12, III.1.11]. An equivalent topological definition
is that the map sending each closed subset of X to the closure of its image
in Y preserves finite intersections [10], but we shall not use this.

Lemma 6.5 The T-embeddings are precisely the flat embeddings.

Proof. It is immediate that the map T∗f : T Y → T X constructed in
Lemma 4.4 is now well-defined only if f is flat. This is enough to conclude that
flat embeddings are T-embeddings. Conversely, assume that T f : T X → T Y
has a reflective left adjoint T∗f : T Y → T X, and define

ΩX
r- ΩY = ΩX

�- ΩT X
(T∗f)−1

- ΩT Y
η−1

Y- ΩY.

The map r clearly preserves finite joins. We show that f−1 a r reflectively, so
that f∗ = r and f is a flat embedding:

f−1 ◦ r(U) = f−1 ◦ η−1
Y ◦ (T∗f)−1(�U) by definition of r

= (ηY ◦ f)−1 ◦ (T∗f)−1(�U) by contravariance of (−)−1

= (T f ◦ ηX)−1 ◦ (T∗f)−1(�U) by naturality of η

= η−1
X ◦ (T f)−1 ◦ (T∗f)−1(�U) by contravariance of (−)−1

= η−1
X ◦ (T∗f ◦ T f)−1(�U) by contravariance of (−)−1

= η−1
X (�U) because T∗f a T f reflectively

= U,

11
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r ◦ f−1(V ) = η−1
Y ◦ (T∗f)−1(�f−1(V )) by definition of r

= η−1
Y ◦ (T∗f)−1 ◦ (T f)−1(�V ) because (T f)−1(�V ) = �f−1(V )

= η−1
Y ◦ (T f ◦ T∗f)−1(�V ) by contravariance of (−)−1

⊇ η−1
Y (�V ) because T∗f a T f

= V.

This method of proof is analogous to that of [20, Propositions 4.6 and 5.6].2

Notice that the above proof is essentially localic. Johnstone [11] proved
that every stably compact locale is injective over flat embeddings (without
mentioning the converse). In the full version of this extended abstract, we
prove that Johnstone’s result follows by considering the ideal monad on the
category of frames, which turns out to be of the Kock-Zöberlein type. The
general extension formula of Theorem 3.6 specializes to Johnstone’s. In this
extended abstract we formulate a topological version of the result, which im-
mediately follows from Lemma 6.5.

Theorem 6.6 The injective spaces over flat embeddings are the stably com-
pact spaces.

It follows that continuous lattices and continuous Scott domains endowed
with the Scott topology are stably compact spaces. In fact, since there are
fewer flat embeddings than embeddings and dense embeddings, there are more
flatly injective spaces than injective and densely injective spaces. Of course,
this has already been proved directly—see e.g. [1].

Proposition 6.7 The flat embeddings form the unique class of embeddings
over which all stably compact spaces are right injective.

Proof. Isbell [10] showed that an embedding j : X → Y is flat iff every
continuous map f : X → D into a finite T0 space has a right extension
along j. Since finite T0 spaces are trivially stably compact, Theorem 6.6
generalizes one half of Isbell’s result (every finite T0 space is right injective
over flat embeddings). If we put Theorem 6.6 together with the difficult half
of his, we obtain that an embedding j : X → Y is flat iff every continuous map
f : X → D into a stably compact space has a right Kan extension along j. 2

7 Injective spaces over completely flat embeddings

In this section we briefly consider the completely prime filter monad. Recall
that a space is sober iff every completely prime filter is the neighborhood filter
of a unique point [12,18]. Thus, T X is a sober space, the completely prime
filter monad is the sobrification monad, the unit is the sobrification map,
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and the multiplication is an isomorphism (the Kock-Zöberlein property of the
monad is thus of a trivial nature). Therefore the algebras of the completely
prime filter monad are the sober spaces. In particular, it follows that retracts
of sober spaces are sober.

Call a continuous map f : X → Y completely flat if the right adjoint
f∗ : ΩX → ΩY of the frame map f−1 : ΩY → ΩX preserves arbitrary joins.
One readily checks that a subspace embedding j : X → Y is completely flat
iff j−1 : ΩY → ΩX is a frame isomorphism. The idea is that, in the ambient
category of T0 spaces, j makes Y “more sober” than X, but both X and Y
have the same sobrification. The argument of Lemma 6.5 shows that the T-
embeddings are precisely the completely flat embeddings. It follows that the
injective spaces over completely flat embeddings are the sober spaces.

8 Injective spaces over perfect embeddings

In this section we consider the Scott open filter monad. Shalk [14] has shown
that this monad restricts to the category of core-compact spaces (a mild gener-
alization of locally compact spaces) and continuous maps, and that its algebras
are the continuous meet-semilattices endowed with the Scott topology.

Definition 8.1 A continuous map f : X → Y is perfect if the right adjoint
f∗ : ΩX → ΩY of its frame map f−1 : ΩY → ΩX preserves directed joins.

These maps are considered in detail in [5], where they are referred to as
finitary maps (these maps are sometimes called proper). If both X and Y
are sober and core-compact, then f is perfect iff f−1(Q) is compact for every
compact saturated Q ⊆ Y [8], but we shall not use this fact. The argument
of Lemma 6.5 shows that

Lemma 8.2 The T-embeddings are precisely the perfect embeddings.

Theorem 8.3 The injective spaces over perfect subspace embeddings in the
category of core-compact spaces are precisely the continuous meet-semilattices
endowed with the Scott topology.

The above result was obtained in [5] via the Smyth power space monad,
in a slightly more laborious way. The proof via the Scott open filter monad
is simpler, because the Smyth power space monad is ill-behaved for non-sober
spaces. But notice that, by the Hofmann-Mislove Theorem [9,21,1,18], both
monads agree on sober spaces.

9 Injective spaces over locally dense embeddings

Paul Taylor [19] characterized the category of L-domains and stable mor-
phisms as the category of algebras for the connected open filter monad on
the category of locally connected T0-spaces. We omit the definition of the

13
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connected open filter monad, which is easily seen to be of the Kock-Zöberlein
type.

Definition 9.1 A continuous map f : X → Y of topological spaces is lo-
cally dense if f−1 : ΩY → ΩX preserves connectedness and its right adjoint
f∗ : ΩX → ΩY preserves disjoint unions.

If X is T0 and locally connected then the second condition is implied by the
first.

Lemma 9.2 The T-embeddings are precisely the locally dense subspace em-
beddings.

Theorem 9.3 The injective spaces over locally dense embeddings in the cat-
egory of locally connected T0 spaces and continuous maps are the L-domains
endowed with the Scott topology.

10 Injective spaces over open embeddings

The lift monad on the category of cpos generalizes to topological spaces. Given
a space X, one obtains a new space T X by adding a new point ⊥ and a new
open set X ∪ {⊥}. We omit the routine details of the generalizations of the
functor, unit, and multiplication. This monad is easily seen to be of the
Kock-Zöberlein type. Its algebras are the spaces with a least point in the
specialization order. The T -embeddings are the open subspace embeddings.
It follows that the injective spaces over open embeddings are the spaces with
a least point in the specialization order.

11 Injective spaces over closed embeddings

Instead of adding a new bottom point, one can add a new top point >. The
open sets of the resulting space are the opens of the given space with the
top point added, together with empty set, of course. This construction also
gives rise to a Kock-Zöberlein monad. We leave to the reader the verification
that this gives rise to the fact that the injective spaces over closed subspace
embeddings are the topological spaces with a greatest isolated point in the
specialization order.

12 Injective spaces over semi-open embeddings

For the sake of completeness, we mention that the injective spaces over semi-
open embeddings are the algebras of the Hoare power space monad, referring
the reader to [5].
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Concluding remarks

On the conceptual side, we have used Kock-Zöberlein monads to show that
many characterizations of semantic domains and topological spaces by injec-
tivity hold due to the same abstract reason. This has led us to discover new
characterizations. Notice that the monads are used in the abstract proof of
the characterizations by injectivity, but are not mentioned in the formulations
of the characterizations. On the technical side, we have also used the monads
to simplify existing proofs of internal characterizations of the algebras.

Most monads considered in semantics are of the Kock-Zöberlein type. A
notable counter-example is the Plotkin power domain monad (which is a par-
ticular case of the Vietoris power space monad).

We speculate that this abstract account to classical domain theory and
topology via injectivity and monads may have applications to axiomatic and
synthetic domain theory.
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