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Abstract

In recent work we developed the notion of exhaustible set as a higher-type com-
putational counter-part of the topological notion of compact set. In this paper we give
applications to the computation of solutions of higher-type equations. Given a continu-
ous functional f : X → Y and y ∈ Y , we wish to compute x ∈ X such that f(x) = y,
if such an x exists. We show that if x is unique and X and Y are subspaces of Kleene–
Kreisel spaces of continuous functionals with X exhaustible, then x is computable
uniformly in f , y and the exhaustibility condition. We also establish a version of this
for computational metric spaces X and Y , where is X computationally complete and
has an exhaustible set of Kleene–Kreisel representatives. Examples of interest include
evaluation functionals defined on compact spaces X of bounded sequences of Taylor
coefficients with values on spaces Y of real analytic functions defined on a compact set.
A corollary is that it is semi-decidable whether a function defined on such a compact
set fails to be analytic, and that the Taylor coefficients of an analytic function can be
computed extensionally from the function.

Keywords and phrases. Higher-type computability, Kleene–Kreisel spaces of con-
tinuous functionals, exhaustible set, searchable set, computationally compact set, QCB
space, admissible representation, topology in the theory of computation.

1 Introduction
Given a continuous functional f : X → Y and y ∈ Y , we consider the equation

f(x) = y

with the unknown x ∈ X . We show that if X and Y are subspaces of Kleene–Kreisel [9]
spaces with X exhaustible [5], the solution is computable uniformly in f , y and the ex-
haustion functional ∀X : 2X → 2, provided the solution is unique. Moreover, under the
same assumptions for X and Y , it is uniformly semi-decidable whether a solution x ∈ X
fails to exist.

Kleene–Kreisel spaces are recalled in Section 1.1 (see also Section 1.2), the notion of
exhaustibility, which amounts to a computational counter-part of the topological notion of
compactness, and its fundamental properties are recalled in Section 2, and the uniqueness
and exhaustibility requirements are examined in Section 3.

The computation of unique solutions of equations of the form

g(x) = h(x)

with g, h : X → Y is easily reduced to the case f(x) = y, because there are (abelian) com-
putable group structures on the ground types that can be lifted componentwise to product
types and pointwise to function types, and hence x ∈ X is a solution of such an equation if
and only if it is a solution of the equation f(x) = 0, where f(x) = h(x)− g(x). And, by
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cartesian closedness of the category of Kleene–Kreisel spaces, the case in which g and h
depend on parameters a,

g(a, x) = h(a, x),

and in which the solution can be computed uniformly in a is covered. Moreover, because
the Kleene–Kreisel spaces are closed under finite products and countable powers, this in-
cludes the solution of finite and countably infinite systems of equations

gi(~ai, ~xi) = hi(~ai, ~xi),

with functionals gi, hi of finitely many or countably infinitely many parameters ~ai and
variables ~xi.

Similar results are known in constructive mathematics [4], but with a different level
of generality and different foundational assumptions (here we develop higher-type com-
putability in the realm of classical mathematics). In particular, whereas in constructive
mathematics the emphasis has been on metric spaces, here the emphasis is in Kleene–
Kreisel spaces, which fail to be metrizable, as is well known (but see Theorem 5.10).
Moreover, in constructive mathematics, compactness is usually taken to mean complete-
ness and total boundedness, but here, in the absence of a metric, the role of compactness
is played by the notion of exhaustibility [5] (recalled in Section 2), which doesn’t require
metric assumptions (but again see Theorem 5.10).

We also consider a generalization to computational metric spaces, but still using ex-
haustibility as the computational manifestation of compactness, where f can be a func-
tional and x a function (Section 5). And, as an application, we develop examples of sets of
analytic functions that are exhaustible and can play the role of the space Y (Section 6).

This journal paper extends its earlier conference version [6] by the addition of

1. Section 3, which discusses the role of the uniqueness and exhaustibility assumptions
in the context of higher-type computation with Kleene–Kreisel spaces.

2. The new proof of the result from [5] that exhaustible subspaces of arbitrary Kleene–
Kreisel spaces are computationally homeomorphic to exhaustible subspaces of the
Baire space (Theorem 4.7), derived as a corollary of our main Theorem 4.1.

3. Theorem 5.10, which partially answers Question 5.3, originally formulated in the
conference version, and shows that any Kleene–Kreisel space has a metric which in-
duces a zero-dimensional topology coarser than the original topology, but that agrees
on compact sets, and, moreover, is computationally complete on exhaustible subsets.
It seems, as our development indicates, that sometimes uniqueness can be replaced
by completeness, but that uniqueness is more fundamental, and that this is at the
heart of Question 5.3.

This paper also has a streamlining of the expository and technical development, with a
number of new observations and technical clarifications.

1.1 Background
Recall that the Kleene–Kreisel spaces are inductively constructed from the discrete space N
by iterating finite products and function spaces in a suitable cartesian closed category [7]
(e.g. sequential topological spaces, filter spaces, limit spaces, compactly generated Haus-
dorff spaces, equilogical spaces or QCB spaces). Our main reference to computation over
Kleene–Kreisel spaces of continuous functionals is Normann [9] (see also his expository
and survey papers [10, 11]). The Kleene–Kreisel spaces can be constructed in a vari-
ety of ways [8], some of them alluded above. There are also a number of equivalent
approaches to computation over such spaces, based e.g. on total elements of effectively
given domains or on Kleene associates (which amount to admissible representations in the
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sense of Weihrauch [15, 16, 13]). In every such approach, one has a cartesian closed cat-
egory, and hence computable maps are closed under λ-definability, which is the tool we
apply to establish computability results. We reduce non-computability results to failure of
continuity. In view of this, it is not strictly necessary to be acquainted with the techni-
cal notions and results in the form presented in the above references in order to be able
to rigorously follow our presentation, provided the reader has some familiarity with the
λ-calculus and with continuity at higher types. See e.g. [7] regarding continuity and other
topological properties. We often rely on the density theorem [12], in the form that says
that the Kleene–Kreisel spaces have computable dense sequences. We also use the fact that
every Kleene–Kreisel space is a computable retract of a space of the form NX with X a
Kleene–Kreisel space (see e.g. [8] for a detailed proof).

1.2 Generality of the Results
Most of our results hold for all spaces that arise as computable retracts of spaces of the
form NX with X a Kleene–Kreisel space, and therefore for all computable retracts of
Kleene–Kreisel spaces, and sometimes even more generally, as can be seen directly from
the proofs we offer. The right ambient category for taking such computable retracts, in
terms of generality, seems to be that of effectively presented QCB spaces [1], where by
an effective presentation we mean an effectively admissible quotient representation in the
sense of Schröder [13] (see the discussion of Section 8 of [1]), but knowledge of the theory
of QCB spaces is not required for our presentation of the results. Readers familiar with
QCB spaces will recognize that most of our result hold for retracts of spaces of the form NX
where X is a Hausdorff QCB space with a computable dense sequence and an effectively
admissible quotient representation.

1.3 Contents and Organization
The main original contributions of this paper are in Sections4)–(6), which are preceded by
sections that introduce further background and motivate the assumptions.

2 Exhaustible spaces. Background and a few new observations.

3 Uniqueness and exhaustibility assumptions. Such assumptions, under the under-
standing that exhaustibility amounts to computational compactness, are familiar from
constructive mathematics, but here they are treated in the context of computability
with higher-type continuous functionals, and are justified by (counter-)examples of
increasing complexity.

4 Equations over Kleene–Kreisel spaces. This and the next section formulate and de-
velop the main results of this this paper, and readers who are familiar with the main
underlying concepts would probably prefer to start from this section, using the pre-
vious sections for reference or clarification.

5 Equations over metric spaces. This adapts the development of the previous section
to the setting of computational metric spaces via representations, where the notion
of pseudo-metric with decidable closedness is introduced as the main technical tool
to deal with the lack of uniqueness in the intensional level.

6 Exhaustible spaces of analytic functions. This develops applications to real analysis.
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2 Exhaustible Spaces
In previous work we investigated exhaustible sets of total elements of effectively given
domains and their connections with Kleene–Kreisel spaces of continuous functionals [5].
In this section we recall and formulate these results directly in terms of Kleene–Kreisel
spaces. Denote by Y X the space of continuous functionals from X to Y , sometimes also
written (X → Y ). For the sake of definiteness and generality of the definitions, we work
in the ambient cartesian closed category of effectively presented QCB spaces, discussed in
Section 1.2.

Definition 2.1. Let 2 = {0, 1} be discrete.

1. A space K is called exhaustible if the universal quantification functional

∀K : 2K → 2

defined by ∀K(p) = 1 if and only if p(x) = 1 for all x ∈ K is computable.

2. It is called searchable if there is a computable selection function

εK : 2K → K

such that for all p ∈ 2K , if there is x ∈ K with p(x) = 1 then p(εK(p)) = 1.

3. A set F ⊆ X is decidable if its characteristic map X → 2 is computable.

Equivalently, K is exhaustible if and only if the functional ∃K : 2K → 2 defined by
∃K(p) = 1 if and only if p(x) = 1 for some x ∈ K is computable. IfK is searchable, then
it is exhaustible, because

∃K(p) = p(εK(p)).

The empty space is exhaustible, but not searchable, because there is no map 2∅ → ∅.

Remark 2.2. Notice that the selection function εK computes solutions of equations of the
form p(x) = 1 with the unknown x ∈ K and with Y = 2. In this work we use εK
(or its special cases ∃K ,∀K) to compute the solution of equations with more general Y ,
but still with x ranging over an exhaustible space K. In fact, [5, Section 8.2] anticipates
the development of the present paper based on this observation. See also [5, Section 8.1],
which regards satisfiability as equation-solving and gives an explicit formula for the solu-
tion which is not based on trial and error.

Lemma 2.3 (Escardó [5]).

1. The Cantor space 2N is searchable.

2. Searchable spaces are closed under the formation of computable images, intersec-
tions with decidable sets, and finite products.

3. Any exhaustible subspaceK of a Kleene–Kreisel spaceX is compact, and moreover,
if it is non-empty, it is a computable retract of X , and a computable image of the
Cantor space, and hence searchable by (1) and (2).

4. A product
∏
iKi ⊆ XN of countably many searchable subspaces Ki ⊆ X of a

common Kleene–Kreisel space X is searchable uniformly in the sequence of quan-
tification functionals ∀Ki

.

This exhibits exhaustibility as a computational counter-part of the topological notion
of compactness, at least for subspaces of Kleene–Kreisel spaces. It is important that these
results are all uniform in the given data.
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Remark 2.4. There is a subtle and important difference between the setting considered
here and that considered in [5], already discussed in Section 8.7 of [5]. This is because the
definition of exhaustibility studied there is more general and stronger, for two reasons:

1. Exhaustibility is defined for subsets K of a given domain D, with a computable
functional ∃K : (D → 2⊥)→ 2⊥, where 2⊥ = {0, 1,⊥} is the domain with minimal
element ⊥ and maximal elements 0, 1.

2. The relevant predicates p : B → 2⊥ need to be defined (that is, assume values distinct
from ⊥) on the subspace K ⊆ D but are not required to be total in the ambient
domain D.

For the weaker notion considered here, which is enough for our purposes, and more natural
in the context of computation with total objects, the fact that exhaustible spaces are search-
able is an easy consequence of the density theorem and the fact that K is a computable
retract of its ambient Kleene–Kreisel space X . In fact, let s : K → X be the inclusion and
r : X → K be the retraction with r ◦ s = id. Then a dense sequence δ : N → X gives
rise to a dense sequence r ◦ δ : N→ K, and assuming that K has a computable existential
quantification functional ∃K : 2K → 2 we can define a (total) computable search functional
εK : 2K → K by

ε(p) = r ◦ δ(µn.p(r ◦ δ(n)) = ∃K(p))

which shows that exhaustibility implies searchability, for the sense of the notions used in
this section and the present paper.

3 Uniqueness and Exhaustibility Assumptions
We now justify the technical assumptions made in later sections and that were briefly men-
tioned in the introduction. Readers who don’t need such a justification can jump directly to
Section 4.

Given a continuous function f : X → Y of Kleene–Kreisel spaces, or more generally
of computable retracts of Kleene–Kreisel spaces, and a point y ∈ Y , we wish to compute a
point x ∈ X , uniformly in f and y, such that

f(x) = y.

We emphasize that, in this paper, including Section 5 on metric spaces, the terminology
uniform is used in the sense of recursion theory, rather than metric topology (the notions of
uniform continuity and uniform convergence don’t feature in this paper). When we say that
x ∈ X is computable uniformly in f : X → Y and y ∈ Y , for suitable f and y, we mean
that there is a computable functional s, defined on a suitable subspace of (X → Y ) × Y ,
such that x can be computed as s(f, y) for suitable f and y.

We discuss several cases forX and Y , of increasing generality, and explain why further
assumptions and data are required in general. The simplest case is X = Y = N, for which
the algorithm

µx.f(x) = y

computes a solution if and only if a solution exists. This is subsumed by the next case.
Consider X arbitrary and Y = N. By the Kleene–Kreisel density theorem, X has a

computable dense sequence δ : N → X , and, by continuity of f and discreteness of N,
if the equation has a solution, there is one of the form x = δn for some n. Hence the
algorithm

x = δµn.f(δn)=y

computes a solution if and only if a solution exists. Moreover, in this particular case it
is semi-decidable whether a solution exists, with the algorithm ∃n.f(δn) = y. This is in
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contrast with the result that it is semi-decidable whether a solution fails to exists in given
exhaustible subspaces (Section 4). Notice also that, by density of δ and discreteness of N,
whenever there is a non-isolated solution, there are uncountably many solutions unless
X = N, and so, in the absence of further assumptions, solutions are never unique if X is
a Kleene–Kreisel space distinct from N. In the complete metric case, working with repre-
sentations, we are able to compute solutions that are unique up to equivalence (Section 5).

Now consider X = 2 = {0, 1} discrete and Y = NN. Then computing a solution to the
above equation amounts to finding x ∈ 2 such that f(x)(n) = y(n) for all n ∈ N. In other
words, under the assumption that

f(0) = y or f(1) = y,

we want to find x ∈ 2 such that f(x) = y. If the only data supplied to the desired
algorithm are f, y, this is not possible, because no finite amount of information about the
data can determine that one particular disjunct holds (a similar situation is worked out in
detail below). However, if we instead assume that

one of f(0) = y and f(1) = y holds, but not both,

that is, f(x) = y has a unique solution, then we can compute x ∈ 2 as follows:

Find the least n such that f(0)(n) 6= y(n) or f(1)(n) 6= y(n), and let x be the
unique number such that f(x)(n) = y(n).

Thus, in general, it is not possible to compute solutions unless we know that they are
unique, and in this particular case one can compute unique solutions. This kind of phe-
nomenon is well known in constructive mathematics (see e.g. [3]), and this section we
explore the further subtleties that arise in higher-type computation with continuous func-
tionals.

Next consider X = N and Y = NN, and assume that the equation f(x) = y has a
unique solution. Now it is no longer possible to compute it uniformly in f and y. For
suppose there existed a computable partial functional s : (NN)N × NN → N, defined on
some superset of

S = {(f, y) | the equation f(x) = y has a unique solution x0},

such that x0 = s(f, y) is the solution for f, y ∈ S. By continuity, for any (f, y) ∈ S there
is a number n such that s(f, y) = x0 = s(g, y) for every g such that g(x)(i) = f(x)(i) for
all x < n and i < n. W.l.o.g. we can assume that x0 < n by replacing n by max(n, x0)+1
if necessary. Choose g defined by

g(x)(i) =


f(x)(i) if x < n and i < n,
y(i) if x = n,

y(i) + 1 otherwise.

By construction, x = n is the unique solution of g(x) = y, and hence s(g, y) = n, which
contradicts s(g, y) = x0, and concludes the proof of the impossibility claim.

However, if we know that there is a unique solution in a finite set K ⊆ N, then the
solution can be found uniformly in f, y and a finite enumeration e0, . . . , ek−1 of K, as
follows:

Find n and j < k such that the decidable conditions ∀i < n.f(ej)(i) = y(i)
and ∀l < k, l 6= j.∃i < n.f(el)(i) 6= y(i) hold, and take x = ej .

This generalizes the situation X = 2, and is a particular case of Theorem 4.1 below,
which shows that unique solutions in exhaustible subsets K of Kleene–Kreisel spaces are
computable uniformly in f , y and ∀K .
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It must be stressed, however, that uniqueness is not the only possible requirement to
guarantee the uniform of computability of solutions in exhaustible domains. In fact, the
solutions computed in Section 5 below are not unique at the intensional level, although
they are unique up to equivalence, and completeness is the assumption that replaces strict
uniqueness.

4 Equations over Kleene–Kreisel Spaces
This section proves the main result of this work:

Theorem 4.1. If f : X → Y is a continuous map of subspaces of Kleene–Kreisel spaces
with X exhaustible, and y ∈ Y , then, uniformly in ∀X , f , and y:

1. It is semi-decidable whether the equation f(x) = y fails to have a solution.

2. If f(x) = y has a unique solution x ∈ X , then it is computable.

Under the same assumptions:

Corollary 4.2. If f : X → Y is a computable bijection then it has a computable inverse,
uniformly in ∀X and f .

This is a computational counter-part of the topological theorem that any continuous
bijection from a compact Hausdorff space to a Hausdorff space is a homeomorphism. The
following will be applied to semi-decide absence of solutions:

Lemma 4.3. Let X be an exhaustible subspace of a Kleene–Kreisel space and Kn ⊆ X
be a sequence of sets that are decidable uniformly in n and satisfy Kn ⊇ Kn+1. Then,
uniformly in the data:

emptiness of
⋂
nKn is semi-decidable.

Proof. BecauseX is compact by exhaustibility,Kn is also compact as it is closed. Because
X is Hausdorff,

⋂
nKn = ∅ if and only if there is n such that Kn = ∅. But emptiness of

this set is decidable uniformly in n by the algorithm ∀x ∈ X.x 6∈ Kn, because the set Kn

is decidable. Hence a semi-decision procedure is given by ∃n.∀x ∈ X.x 6∈ Kn.

As a preparation for a lemma that will be applied to compute unique solutions, notice
that if a singleton {u} ⊆ NZ is exhaustible, then the function u is computable, because
u(z) = µm.∀v ∈ {u}.v(z) = m. Moreover, u is computable uniformly in ∀{u}, in the
sense that there is a computable functional

U : S → NZ with S = {φ ∈ 22
NZ

| φ = ∀{v} for some v ∈ NZ},

such that u = U
(
∀{u}

)
, namely

U(φ)(z) = µm.φ(λu.u(z) = m).

Lemma 4.4 below generalizes this, using an argument from [5] that was originally used to
prove that non-empty exhaustible subsets of Kleene–Kreisel spaces are computable images
of the Cantor space and hence searchable. Here we find additional applications and further
useful generalizations.
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Lemma 4.4. Let X be an exhaustible subspace of a Kleene–Kreisel space and Kn ⊆ X
be a sequence of sets that are exhaustible uniformly in n and satisfy Kn ⊇ Kn+1. Then,
uniformly in the data:

if
⋂
nKn is a singleton {x}, then x is computable.

Proof. By Lemma 2.3, X is a computable retract of its Kleene–Kreisel super-space. Be-
cause any Kleene–Kreisel space is a computable retract of a Kleene–Kreisel space of the
form NZ , and because retractions compose, there are computable maps s : X → NZ and
r : NZ → X with r ◦ s = idX . It suffices to show that the function u = s(x) ∈ NZ is
computable, because x = r(u). The sets Ln = s(Kn) ⊆ NZ , being computable images
of exhaustible sets, are themselves exhaustible. For any z ∈ Z, the set Uz = {v ∈ NZ |
v(z) = u(z)} is clopen and

⋂
n Ln = {u} ⊆ Uz . Because NZ is Hausdorff, because

Ln ⊇ Ln+1, because each Ln is compact and because Uz is open, there is n such that
Ln ⊆ Uz . That is, v ∈ Ln implies v(z) = u(z). Therefore, for every z ∈ Z there is n such
that v(z) = w(z) for all v, w ∈ Ln. Now, the map n(z) = µn.∀v, w ∈ Ln.v(z) = w(z) is
computable by the uniform exhaustibility ofLn. But u ∈ Ln(z) for any z ∈ Z and therefore
u is computable by exhaustibility as u(z) = µm.∀v ∈ Ln(z).v(z) = m, as required.

To build sets Kn suitable for applying these two lemmas, we use:

Lemma 4.5. For every computable retract of a Kleene–Kreisel space, there is a family
(=n) of equivalence relations that are decidable uniformly in n and satisfy

x = x′ ⇐⇒ ∀n. x =n x
′,

x =n+1 x
′ =⇒ x =n x

′.

Proof. Let X be a Kleene–Kreisel space and s : X → NZ and r : NZ → X be computable
maps with Z a Kleene–Kreisel space and r ◦ s = idX . By the density theorem, there is a
computable dense sequence δn ∈ Z. Then the definition

x =n x
′ ⇐⇒ ∀i < n.s(x)(δi) = s(x′)(δi)

clearly produces an equivalence relation that is decidable uniformly in n and satisfies
x =n+1 x

′ =⇒ x =n x
′. Moreover, x = x′ iff s(x) = s(x′), because s is injective, iff

s(x)(δn) = s(x′)(δn) for every n, by density, iff x =n x
′ for every n, by definition.

Proof of Theorem 4.1. The set Kn = {x ∈ X | f(x) =n y}, being a decidable subset of an
exhaustible space, is exhaustible. Therefore the result follows from Lemmas 4.3 and 4.4,
because x ∈

⋂
nKn iff f(x) =n y for every n iff f(x) = y by Lemma 4.5.

Algorithms 4.6. In summary, the algorithm for semi-deciding non-existence of solutions
is

∃n.∀x ∈ X.f(x) 6=n y,

and that for computing the solution x0 as a function of ∀X , f , and y is:

∀x ∈ Kn.p(x) = ∀x ∈ X.f(x) =n y =⇒ p(x),

∀v ∈ Ln.q(v) = ∀x ∈ Kn.q(s(x)),

n(z) = µn.∀v, w ∈ Ln.v(z) = w(z),

u(z) = µm.∀v ∈ Ln(z).v(z) = m,

x0 = r(u).

Here r : NZ → X is a computable retraction with section s : X → NZ , where Z is a
Kleene–Kreisel space, as constructed in the proof of Lemma 4.4.
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Of course, even in the absence of uniqueness, approximate solutions with precision n
are trivially computable with the algorithm

εX(λx.f(x) =n y),

using the fact that non-empty exhaustible subsets of Kleene–Kreisel spaces are searchable.
But the above unique-solution algorithm uses the quantification functional ∀X rather than
the selection functional εX . In the next section we compute solutions as limits of approxi-
mate solutions.

We conclude this section by showing that Theorem 4.1 gives an alternative route to the
following fact established in [5]:

Theorem 4.7. Any exhaustible subspace of a Kleene–Kreisel space is computably homeo-
morphic to an exhaustible subspace of the Baire space NN.

Proof. Let K be an exhaustible subspace of a Kleene–Kreisel space, let s : K → NZ
and r : NZ → K be computable maps with r ◦ s = idK and Z a Kleene–Kreisel space,
and let δn ∈ Z be a computable dense sequence. The subspace X = s(K) ⊆ NZ ,
being a computable image of an exhaustible space, is itself exhaustible. As in [5], we
consider the map X → NN that sends u ∈ X to the sequence u(δn), but we argue using
Theorem 4.1 instead. Let f : X → Y be the restriction of this map to its image Y ⊆ NN.
By density, f is one-to-one, and, by construction, it is onto, and hence it has a computable
inverse. Therefore there is computable map g : K → Y defined by g(k) = f(s(k)) with
computable inverse given by g−1(α) = r(f−1(α)).

5 Equations over Metric Spaces
For the purposes of this and the following section, we can work with computational spaces
in the sense of TTE [15] using Baire-space representations, or equivalently, using partial
equivalence relations on representatives living in effectively given domains [2]. Our tech-
niques apply to both, but we choose a development based on representations, where we
more conveniently assume that representatives form subspaces of arbitrary Kleene–Kreisel
spaces rather than just the Baire space NN, and this is the approach we take. Because
Kleene–Kreisel spaces are known to have Baire-space admissible quotient representations,
in fact given by Kleene associates, there is no gain in terms of generality. We first formulate
the main result of this section and then supply the missing notions in Definition 5.4:

Theorem 5.1. Let X and Y be computational metric spaces with X computationally com-
plete and having an exhaustible set of Kleene–Kreisel representatives.

If f : X → Y is continuous and y ∈ Y , then, uniformly in f , y and the
exhaustibility condition:

1. It is semi-decidable whether the equation f(x) = y fails to have a solu-
tion.

2. If f(x) = y has a unique solution x ∈ X , then it is computable.

Under the same assumptions:

Corollary 5.2. Any computable bijection f : X → Y has a computable inverse, uniformly
in f and the exhaustibility condition.
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Question 5.3. Given that exhaustibility is a computational counter-part of the topological
notion of compactness, and that compact metric spaces are complete, it is natural to conjec-
ture that, at least under suitable computational conditions, the assumption of computational
completeness in the above theorem is superfluous. We leave this as an open question, with
a partial result in this direction given by Theorem 5.10 below. In connection with this, no-
tice that Theorem 5.1 is analogous to a well-known result in constructive mathematics [4],
with the assumptions reformulated in our higher-type computational setting.

There is a technical difficulty in the proof of the theorem: at the intensional level, where
computations take place, solutions are unique only up to equivalence of representatives. In
order to overcome this, we work with pseudo-metric spaces at the intensional level and
with a notion of decidable closeness for them. Recall that a pseudo-metric on a set X is a
function d : X ×X → [0,∞) such that

d(x, x) = 0, d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z).

Then d is a metric if it additionally satisfies d(x, y) = 0 =⇒ x = y. If d is only a
pseudo-metric, then the relation (∼) defined by

x ∼ y ⇐⇒ d(x, y) = 0

is an equivalence relation, referred to as pseudo-metric equivalence. A pseudo-metric
topology is Hausdorff if and only if it is T0 if and only if the pseudo-metric is a metric.
Moreover, two points are equivalent if and only if they have the same neighbourhoods.
Hence any sequence has at most one limit up to equivalence.

A computational metric space is a computational pseudo-metric space in which the
pseudo-metric is actually a metric, and hence we formulate the following definitions in the
generality of pseudo-metric spaces.

Definition 5.4. We work with the standard admissible representation of the real line R
given by fast-converging Cauchy sequences of rational numbers, that is, sequences qn ∈ Q
with |qn − qn+1| < 2−n. We also work with the subspace [0,∞) ⊆ R with the relative
representation.

1. A computational pseudo-metric space is a computational space X endowed with a
computable pseudo-metric, denoted by d = dX : X ×X → [0,∞).

2. A fast-converging Cauchy sequence in a computational pseudo-metric space X is a
sequence xn ∈ X with d(xn, xn+1) < 2−n. The subspace of XN consisting of fast
Cauchy sequences is denoted by Cauchy(X).

3. A computational pseudo-metric space X is called computationally complete if every
sequence xn ∈ Cauchy(X) has a limit uniformly in xn.

4. A computational pseudo-metric space X has decidable closeness if there is a family
of relations ∼n on X that are decidable uniformly in n and satisfy:

(a) x ∼n y =⇒ d(x, y) < 2−n,
(b) x ∼ y =⇒ ∀n.x ∼n y.
(c) x ∼n+1 y =⇒ x ∼n y,
(d) x ∼n y ⇐⇒ y ∼n x,
(e) x ∼n+1 y ∼n+1 z =⇒ x ∼n z.

The second last condition corresponds to symmetry of the metric and the last one
is a counter-part of the triangle inequality. It follows from the first condition that if
x ∼n y for every n, then x ∼ y. Write

[x] = {y ∈ X | x ∼ y}, [x]n = {y ∈ X | x ∼n y}.

Then the equivalence class [x] is the closed ball of radius 0 centered at x.
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For instance, the spaces R and [0,∞) are computationally complete metric spaces under
the Euclidean metric, but don’t have decidable closeness, although their representing spaces
consisting of Cauchy sequences of rational numbers do (Lemma 5.5).

We are now ready to prove the theorem.

Lemma 5.5. For every computational metric space X there is a canonical computable
pseudo-metric d = dpXq on the representing space pXq such that:

1. The representation map ρ = ρX : pXq→ X is an isometry:

d(t, u) = d(ρ(t), ρ(u)).

In particular:

(a) t ∼ u ⇐⇒ d(t, u) = 0 ⇐⇒ ρ(t) = ρ(u).

(b) If f : X → Y is a computable map of metric spaces, then any representative
pfq : pXq→ pY q preserves the relation (∼).

2. If X is computationally complete, then so is pXq.

3. The representing space pXq has decidable closeness.

Proof. Construct dpXq : pXq× pXq→ [0,∞) as the composition of a computable repre-
sentative pdXq : pXq×pXq→ p[0,∞)q of dX : X×X → [0,∞) with the representation
map ρ[0,∞) : p[0,∞)q → [0,∞). A limit operator for pXq from a limit operator for X is
constructed in a similar manner. For given t, u ∈ pXq, let qn be the n-th term of the se-
quence pdXq(t, u) ∈ p[0,∞)q ⊆ Cauchy(Q) and define In = [qn − 2−n, qn + 2−n]. By
the triangle inequality and the fast Cauchy property, In ⊆ In+1, and the limit of qn is in the
intersection of these intervals, and so dpXq(t, u) ∈ In for every n. Hence we can define
t ∼n u to mean that 0 ∈ In, which amounts to qn ∈ [−2−n, 2−n].

Lemma 5.6. Let Z be a subspace of a Kleene–Kreisel space with complete computational
pseudo-metric structure and decidable closeness, and Kn ⊆ Z be a sequence of sets that
are exhaustible uniformly in n and satisfy Kn ⊇ Kn+1. Then, uniformly in the data:

if
⋂
nKn is a subset of an equivalence class, then it has a computable member.

Proof. Let z ∈
⋂
nKn. For any m, we have

⋂
nKn ⊆ [z] ⊆ [z]m+1, and hence there is n

such that Kn ⊆ [z]m+1, because the sets Kn are compact, because Kn ⊇ Kn+1, because
Z is Hausdorff and because [z]m+1 is open. Hence for every u ∈ Kn we have u ∼m+1 z,
and so for all u, v ∈ Kn we have u ∼m v. By the exhaustibility of Kn and the decidability
of (∼n), the function n(m) = µn.∀u, v ∈ Kn. u ∼m v is computable. By the searchability
of Kn, there is a computable sequence um ∈ Kn(m). Because n(m) ≤ n(m+1), we have
that Kn(m) ⊇ Kn(m+1) and hence um ∼m um+1 and so d(um, um+1) < 2−m and um is
a Cauchy sequence. By completeness, um converges to a computable point u∞. Because
z ∈ Kn(m), we have um ∼m z for every m, and hence d(um, z) < 2−m. And because
d(u∞, um) < 2−m+1, the triangle inequality gives d(u∞, z) < 2−m+2−m+1 for everym
and hence d(u∞, z) = 0 and therefore u∞ ∈

⋂
nKn.

The proof of the following is essentially the same as that of Theorem 4.1, but uses
Lemma 5.6 rather than Lemma 4.4, and Lemma 5.5 instead of Lemma 4.5.
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Lemma 5.7. Let Z and W be subspaces of Kleene–Kreisel spaces with computational
pseudo-metric structure and decidable closeness, and assume that Z is computationally
complete and exhaustible.

If g : Z → W is a computable map that preserves pseudo-metric equivalence
and w ∈W is computable, then, uniformly in ∀Z , g, and w:

1. It is semi-decidable whether the equivalence g(z) ∼ w fails to have a
solution z ∈ Z.

2. If g(z) ∼ w has a unique solution z ∈ Z up to equivalence, then some
solution is computable.

Proof. The set Kn = {z ∈ Z | g(z) ∼n w}, being a decidable subset of an exhaustible
space, is exhaustible. Therefore the result follows from Lemmas 4.3 and 5.6, because
z ∈

⋂
nKn iff g(z) ∼n w for every n iff g(z) ∼ w.

Algorithm 5.8. The solution z = u∞ is then computed from ∀Z , g and w as follows,
where we have expanded ∀Kn

as a quantification over Z:

n(m) = µn.∀u, v ∈ Z. g(u) ∼n w ∧ g(v) ∼n w =⇒ u ∼m v,

u∞ = lim
m
εK(λz.g(z) ∼n(m) w).

Thus, although there are common ingredients with Theorem 4.1, the resulting algorithm is
different from 4.6, because it relies on the limit operator and approximate solutions.

But, for Theorem 5.1, approximate solutions are computable uniformly in the repre-
sentatives pfq and pyq only, as different approximate solutions are obtained for different
representatives of f and y:

Proof of Theorem 5.1. Let f : X → Y and y ∈ Y be computable. Now apply
Lemma 5.7 with Z = pXq, W = pY q, g = pfq, w = pyq, using Lemma 5.5 to ful-
fil the necessary hypotheses. If f(x) = y has a unique solution x, then g(z) ∼ w has
a unique solution z up to equivalence, and x = ρ(z) for any solution z, and hence x is
computable. Because g preserves (∼) by Lemma 5.5, if g(z) ∼ w has a solution z, then
x = ρ(z) is a solution of f(x) = y. This shows that f(x) = y has a solution if and only
if g(z) ∼ w has a solution, and we can reduce the semi-decision of absence of solutions of
f(x) = y to absence of solutions of g(z) ∼ w.

Before giving applications to computational real analysis, in Section 6, we clarify some
aspects of the above development.

Remark 5.9. In the above definition, we don’t require the representation topology of X to
agree with the pseudo-metric topology generated by open balls. But notice that the metric
topology is always coarser than the representation topology, because, by continuity of the
metric, open balls are open in the representation topology. Hence the representation topol-
ogy of any computational metric space is Hausdorff. Moreover, if X has an exhaustible
Kleene–Kreisel space of representatives and the metric topology is compact, then both
topologies agree, because no compact Hausdorff topology can be properly refined to an-
other compact Hausdorff topology.

Recall that an ultra-metric space is a metric space for which the triangle inequality holds
in the stronger form d(x, z) ≤ max(d(x, y), d(y, z)), and that an ultra-metric topology
is zero-dimensional because open balls are closed. We now again use the equivalence
relations (=n) given in Lemma 4.5.
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Theorem 5.10. Any space X that is a computable retract of some Kleene-Kreisel space
becomes a computational ultra-metric space when it is equipped with the metric d defined
by

d(x, y) = inf{2−n | x =n y}.

Moreover:

1. The metric has decidable closeness given by (∼n) = (=n).

2. The metric topology is in general strictly coarser than the intrinsic topology, but both
agree on compact subsets.

3. Exhaustible subspaces with the relative metric are computationally complete.

Proof. Computability of the ultra-metric and decidability of closeness are immediate.
Let s : X → NZ and r : NZ → X be the same computable functions selected in

the proof of Lemma 4.5, let δ be the same dense sequence, and for u, v ∈ NZ define
u =n v ⇐⇒ ∀i < n. u(δi) = v(δi) so that x =n y iff s(x) =n s(y).

Agreement of topologies: A subbasic open set in the topology of pointwise convergence
(product topology) of NZ is of the form N(z, V ) = {u ∈ NZ | u(z) ∈ V } with z ∈ Z
and V ⊆ N. Now u =n v iff d(u, v) < 2−n, and hence the open ball B2−n(u) is the
intersection of the pointwise open sets N(δi, {u(δi)}), for i < n, and hence open balls are
open in the topology of pointwise convergence. For a compact subspace of NZ , density
of δ gives that the metric topology agrees with the pointwise topology. But the relative
topology on compact subsets of NZ coincides with the topology of pointwise convergence,
because the pointwise topology is compact Hausdorff and no such topology has a proper
refinement. The reduction of this to X via the retraction is easy.

Completeness: Let xn ∈ K be a fast Cauchy sequence in an exhaustible subset K ⊆ X .
Then xn =n xn+1 and hence s(xn) =n s(xn+1). It suffices to show that the sequence
fn = s(xn) converges to a computable limit f∞, because then the sequence xn = r(fn)
converges to the computable point x∞ = r(x∞) by continuity of r. The set L = s(K) is
exhaustible because it is a computable image of an exhaustible set. For any n, the set Ln =
{g ∈ L | g =n fn} is exhaustible because it is a decidable subset of an exhaustible set, and
fn ∈ Ln. By compactness,

⋂
n Ln 6= ∅ because clearly Ln ⊇ Ln+1. If g, h ∈

⋂
n Ln, then

g =n fn =n h for every n, and hence g = h, and so
⋂
n Ln = {f∞} for some computable

f∞ by Lemma 4.4. Because f∞ ∈
⋂
n Ln, we have f∞ =n fn for every n. Hence if some

ball B2−k(h) is a neighbourhood of f∞, then h =k f∞ =k fn for all n ≥ k, and hence
fn ∈ Bk(h) for all n ≥ k, which shows that fn → f∞.

In view of this theorem, Lemma 5.6 generalizes Lemma 4.4. But Lemma 4.4 cannot be
eliminated, because it is used to prove the theorem.

Algorithm 5.11. Expanding Lemma 4.4, the algorithm for computing limn fn for a fast
Cauchy sequence fn ∈ K ⊆ NZ with K exhaustible is:

n(z) = µn.∀g, h ∈ K.g =n fn ∧ h =n fn =⇒ g(z) = h(z),

lim
n
fn = λz.µm.∀g ∈ K.g =n(z) fn(z) =⇒ g(z) = m.

Independently of this, Matthias Schröder (personal communication) showed that if a
QCB space X is the sequential coreflection of a zero-dimensional topology, then there is
a metric d on X such that: (1) The topology induced by d is coarser than that of X and
than the zero-dimensional topology. (2) On compact subsets of X , the three topologies
agree. (3) The image of d is contained in {0} ∪ {2−n|n ∈ N}. This applies to all retracts
of Kleene–Kreisel spaces in particular, as their topologies satisfy the hypotheses. His con-
struction uses countable pseudo-bases rather than dense sequences. However, at the time
of writing, he hasn’t proved computational versions of these statements.
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6 Exhaustible Spaces of Analytic Functions
For any ε ∈ (0, 1), any x ∈ [−ε, ε], any b > 0, and any sequence a ∈ [−b, b]N, the Taylor
series

∑
n anx

n converges to a number in the interval [−b/(1−ε), b/(1−ε)]. The following
is proved by a standard computational analysis argument:

Lemma 6.1. Any analytic function f ∈ R[−ε,ε] of the form f(x) =
∑
n anx

n is com-
putable uniformly in any given ε ∈ (0, 1), b > 0 and a ∈ [−b, b]N.

Definition 6.2. Denote by A = A(ε, b) ⊆ R[−ε,ε] the subspace of such analytic func-
tions, and by T = Tε,b : [−b, b]N → A(ε, b) the functional that implements the uniformity
condition, so that f = T (a).

The following results also hold uniformly in ε and b, but we omit explicit indications for
the sake of brevity. The results are uniform in the exhaustibility assumptions too. Because
[−b, b]N is compact and T is continuous, the space A is compact as well. Moreover:

Theorem 6.3. The space A has an exhaustible set of Kleene–Kreisel representatives.

Proof. The space [−b, b]N has an exhaustible space of representatives, e.g. using signed-
digit binary representation. Because exhaustible spaces are preserved by computable im-
ages, the image of any representative pTq : p[−b, b]Nq → pAq of T gives an exhaustible
set of representatives of A contained in the set pAq of all representatives of A.

Hence the solution of a functional equation with a unique analytic unknown in A can
be computed using Theorem 5.1 (and this applies to a number of differential equations,
including important cases of Peano’s Theorem). We conclude by showing that the Taylor
coefficients of any f ∈ A can be computed from f alone, without using differentiation.

Lemma 6.4. For any non-empty space X with an exhaustible set of Kleene–Kreisel repre-
sentatives, the maximum- and minimum-value functionals

maxX ,minX : RX → R

are computable.

Of course, any f ∈ RX attains its maximum value because it is continuous and because
spaces with exhaustible sets of representatives are compact.

Proof. We discuss max only. By e.g. the algorithm given in [14], this is the case for
X = 2N. Because the representing space pXq, being a non-empty exhaustible subspace
of a Kleene–Kreisel space, is a computable image of the Cantor space, the space X itself
is a computable image of the cantor space, say with q : 2N → X . Then the algorithm
maxX(f) = max2N (f ◦ q) gives the required conclusion.

Corollary 6.5. If K is a subspace of a metric space X and K has an exhaustible set of
Kleene–Kreisel representatives, then K is computably located in X , in the sense that the
distance function dK : X → R defined by

dK(x) = min{d(x, y) | y ∈ K}

is computable.

Corollary 6.6. For any metric space X with an exhaustible set of Kleene–Kreisel repre-
sentatives, the max-metric d(f, g) = max{d(f(x), g(x)) | x ∈ X} on RX is computable.

Corollary 6.7. For f ∈ R[−ε,ε], it is semi-decidable whether f 6∈ A.

Proof. Because A is computationally located in R[−ε,ε] as it has an exhaustible set of rep-
resentatives, and because f 6∈ A ⇐⇒ dA(f) 6= 0.
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Another proof, which doesn’t rely on the exhaustibility of a set of representatives of A,
uses Theorem 5.1: f 6∈ A if and only if the equation T (a) = f doesn’t have a solution a ∈
[−b, b]N. But this alternative proof relies on a complete metric on [−b, b]N. For simplicity,
we consider a standard construction for 1-bounded metric spaces. Because we apply this
to metric spaces with exhaustible sets of representatives, this is no loss of generality as
the diameter of such a space is computable as max(λx.max(λy.d(x, y))) and hence the
metric can be computably rescaled to become 1-bounded.

Lemma 6.8. For any computational 1-bounded metric space X , the metric on XN defined
by

d(x, y) =
∑
n

2−n−1d(xn, yn)

is computable and 1-bounded, and it is computationally complete if X is.

Proof. Use the fact that the map [0, 1]N → [0, 1] that sends a sequence a ∈ [0, 1]N to
the number

∑
n 2
−n−1an is computable. Regarding completeness, it is well known that a

sequence in the space XN is Cauchy if and only if it is componentwise Cauchy in X , and
in this case its limit is calculated componentwise.

Corollary 6.9. The Taylor coefficients of any f ∈ A can be computed from f .

Proof. Because [−b, b]N has an exhaustible set of representatives, the function T has a
computable inverse by Theorem 5.1 and Lemma 6.8.
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[5] M. Escardó. Exhaustible sets in higher-type computation. Log. Methods Comput.
Sci., 4(3):3:3, 37, 2008.
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