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Chapter 1

Introduction

We introduce real number computation with digital computers, as formalized by
Turing machines, from both practical and theoretical perspectives. In the com-
putational models that we consider, real number computations can be performed
to any desired degree of accuracy.

An important property of the models is that the programmer doesn’t need to
be concerned with the syntactical details of the notation systems for real numbers
in order to develop mathematically correct programs. As far as the programmer
is concerned, real numbers are taken in the usual (classical) mathematical sense.
Of course, in any approach to real number computation, there must be an under-
lying machinery (called the operational semantics) for computing a syntactical
representative of the mathematical entity denoted by a program (called the se-
mantical denotation). The perfect match of the operational and the denotational
semantics is called computational adequacy. This is what ensures that the pro-
grammer can ignore the operational semantics, relying only on algebraic and
analytic methods, in order to derive mathematically correct programs.

Two topics, computability and complexity, are not developed in this introduc-
tory account—see Pour-el and Richards [48], Weihrauch [64] and Ko [35] among
other references—but the fundamental properties of the notion of computabil-
ity are included. Computability theory is concerned with the classification of
mathematical entities as either computable or not computable, and complexity
theory is concerned with the classification of computable mathematical entities in
degrees of consumption of computational resources—space and time. No doubt,
these two topics are not only of fundamental importance but also of interest in
their own right. In these notes, however, we wish to emphasize the connections
between operational and denotational aspects of real number computation.

Another omission is the well-known BSS model of real number computation of
Blum, Shub and Smale [10, 9]. In our view, this is best regarded as a mathemat-
ical abstraction of floating-point computation. What we study here, however, is
an alternative approach to real number computation proposed by Turing in 1937,
with ideas going back to Brouwer in 1920.
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With recent technological advances on digital computers, which have dramat-
ically increased their speed and their storage capabilities, the theoretical ideas
of Brouwer and Turing have been experimentally put in practice. Many (non-
commercial) packages for exact real number computation have been implemented
in a variety of programming languages. A competition between systems for ex-
act real computation is being organized by David Lester as part of the fourth
workshop on Computability and Complexity in Analysis in Swansea, Wales in
September—see

http://www.informatik.fernuni-hagen.de/import/cca/cca2000/

Overview (2) Before introducing exact numerical computation, we discuss the
usual problems that arise in computation with floating-point numbers, consid-
ering a particular example. (3) We then arrive at exact numerical computation
in a series of attempts, considering the same example as a guide. (4) At this
point the notions of operational and denotational semantics are introduced. In
the above development, only operational aspects have been discussed. (5) To
make the connection with the denotational aspects, we make the set of decimal
expansions into a topological space, so that notions of limit and continuity are
available. (6) Using this, we prove the fact, first discovered by Brouwer, that in-
finite decimal expansions are inadequate as a notation system for an operational
semantics of real number computation. We then prove the fact, also discovered by
Brouwer, that computable functions are continuous. (7) We then briefly discuss
several alternative notation systems for real number computation that mathe-
maticians, logicians and computer scientists have proposed over the years. They
are all equivalent, in the sense that one can effectively translate between them,
and a Church-Turing Thesis for real number computation has been formulated.
Moreover, they are characterized, among all possible notation systems, by a topo-
logical maximality property. Among these systems, we choose signed-digit binary
notation as a paradigmatic example. (8) Each number is denoted by (infinitely)
many syntactical representations. We show that it is not possible to effectively
pick a canonical one. (9) We then discuss how the numerical order can be read
off from the signed-digit binary notation of two numbers. We show that there
is an effective normalization procedure for pairs of signed-digit infinite numerals,
such that, for normal pairs, the numerical and lexicographical orders coincide.
In particular, a normal pair of numerals denote the same number if and only if
they are equal. (10) After this preliminary discussion on the effective character
of the order relation, we discuss the main difficulty in real number computation,
namely that the (in)equality predicates are undecidable. We show that this is
not as bad as it may seem at first sight, by exhibiting a general computable
definition-by-cases scheme based on inequality tests. (11) We finish by briefly
discussing functional approaches for real number computation, putting the above
ideas together.
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Chapter 2

Floating-point computation

In the usual approach to real number computation, one singles out a large, but
finite, set M ⊆ R of “machine numbers”. These are typically “floating-point
numbers”. A main problem with this approach is that if x and y are machine
numbers, then x + y, xy, . . . are not necessarily machine numbers. Thus, ma-
chine numbers fail to form a field, already by failing to be closed under the field
operations.

A solution consists in taking machine numbers close to the mathematical value
of the expressions. But is this really a solution? Ignoring overflow problems, we
now have a sort of closure under the operations, but the field axioms are not
satisfied, because the operations have been modified. Thus, if we use algebra and
analysis to construct a numerical program, we don’t necessarily get a correct or
“approximately correct” program.

Example—the logistic map This is the function f : [0, 1] → [0, 1] defined by

f(x) = ax(1− x),

for some constant a. According to Devaney [18], this was first considered as a
model of population growth by the Belgian mathematician Pierre Verhulstby in
1845. For example, a value 0.45 may represent 45% of the maximum population
of fish in given lake. Our task is, given x0, to compute the orbit

x0, f(x0), f(f(x0)), . . . , fn(x0), . . . ,

which collects the population values of successive generations. We wish to com-
pute an initial segment of the orbit for a given initial population x0. We choose
a = 4, as at this value of the constant the logistic map becomes chaotic, in
a precise mathematical sense—see e.g. Devaney [18]. For the purposes of our
discussion, it suffices to say that its value is sensitive to small variations of its
variable.

Let’s compute orbits for the same initial value, in simple and double precision.
Here is a C program.
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#include <stdio.h>

#include <math.h>

void main(void)

{

float const a = 4.0;

float const x0 = 0.671875; /* this is machine representable */

float x = x0;

double y = x0;

int i;

for (i = 0; i <= 60; i++) {

printf("%d\t%f\t%f\n",i,x,y);

x = a * x * (1.0-x);

y = a * y * (1.0-y);

}

}

The last entry of the table produced by the program is

60 0.934518 0.928604

So f 60(x0) seems to be approximately 0.93. But, is it? Let’s see. Here is the full
table.

0 0.671875 0.671875
1 0.881836 0.881836
2 0.416805 0.416805
3 0.972315 0.972315
4 0.107676 0.107676
5 0.384327 0.384327
6 0.946479 0.946479
7 0.202625 0.202625
8 0.646273 0.646274
9 0.914417 0.914416
10 0.313034 0.313037
11 0.860174 0.860179
12 0.481098 0.481084
13 0.998571 0.998569
14 0.005708 0.005717
15 0.022702 0.022736
16 0.088748 0.088876
17 0.323486 0.323907
18 0.875371 0.875965
19 0.436387 0.434601
20 0.983813 0.982892
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21 0.063698 0.067261
22 0.238564 0.250949
23 0.726604 0.751894
24 0.794603 0.746197 <-- The tables are similar up to here
25 0.652837 0.757549
26 0.906564 0.734675
27 0.338824 0.779711
28 0.896089 0.687047
29 0.372453 0.860054
30 0.934927 0.481445
31 0.243355 0.998623
32 0.736534 0.005501
33 0.776207 0.021884
34 0.694838 0.085621
35 0.848153 0.313159
36 0.515158 0.860362
37 0.999081 0.480558
38 0.003673 0.998488
39 0.014638 0.006039
40 0.057696 0.024009
41 0.217467 0.093730
42 0.680701 0.339779
43 0.869388 0.897317
44 0.454209 0.368558
45 0.991613 0.930892
46 0.033268 0.257328
47 0.128646 0.764442
48 0.448383 0.720282
49 0.989343 0.805903
50 0.042174 0.625693
51 0.161581 0.936805
52 0.541891 0.236806
53 0.992980 0.722916
54 0.027881 0.801234
55 0.108415 0.637033
56 0.386646 0.924888
57 0.948604 0.277882
58 0.195019 0.802655
59 0.627947 0.633600
60 0.934518 0.928604

From the table, we can’t conclude anything about the value of f 60(x0). Thus,
machine-number computation can be

1. ineffective (the answer may not be correct, so we don’t get a solution),

2. unreliable (we don’t know whether the answer is correct).

This is of course well-known. Numerical analysis tries to predict these problems,
and avoid them whenever possible. For example, we learn from numerical analysis
that if a square matrix is ill-conditioned then floating-point inversion is unlikely
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to produce a result close to mathematical inversion. Some proposed solutions to
this problem include the following.

1. Interval arithmetic [40].

(a) Sometimes effective (the intervals may grow very large),

(b) always reliable.

2. Stochastic arithmetic [58, 17]. In this approach, results are computed a
number of times in floating-point arithmetic, usual two or three, with the
intermediate results randomly perturbed. Then probability theory is used
to estimate the number of correct digits of the result.

(a) Sometimes effective,

(b) probabilistically reliable.

3. Multiple-precision arithmetic (libraries, Mathematica, Maple).

(a) More effective, but still ineffective,

(b) more reliable, but still unreliable,

(c) inefficient.

4. Exact arithmetic, which is the subject of this paper.

(a) Reliable,

(b) often effective,

(c) inefficient—but maybe not as multiple precision,

(d) sometimes requires different programming techniques.

In principle, multiple-precision arithmetic is as good as exact arithmetic, because
for any problem that can be solved using exact arithmetic there is a precision for
which multiple-precision computation produces accurate results. There are two
problems with this, however. Firstly, it may be difficult, or effectively impossible,
to determine the necessary precision in advance. Secondly, the necessary precision
may be excessively large, so that all intermediate results are computed with that
precision when, in practice, only a few of them will actually need that precision
to guarantee an accurate overall result.
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Chapter 3

Exact numerical computation

In order to solve the problems discussed in the previous chapter, we move from
naive attempts to more sophisticated attempts, in which we try to get exact
numerical values.

First attempt In the example of the logistic map, we can reliably use rational
arithmetic, because the logistic map is rational. But we have

1. bad performance, and

2. unfeasible resource consumption.

For n > 20, the computation of fn(x0) runs out of memory in a standard package
for rational arithmetic—the reason is that rather large, relatively prime numera-
tors and denominators arise. But floating-point computation in simple precision
already seems to give a fairly accurate answer in this case. Nothing is gained in
practice.

Second attempt We can compute the logistic map using finite, but arbitrarily
large binary expansions. Notice that this is different from multiple precision, as
the size of a multiple-precision number is fixed in advance. This is

1. reliable, but

2. unfeasible in terms of time and space consumption.

For n > 10, the computation of fn(x0) takes more than I was patient to wait for.
Thus, this is even worse than rational arithmetic. It is easy to see why this is the
case. If x has a binary expansion with n digits, then 1− x has often n digits as
well. But if x and y have m and n digits then xy has mn digits. Thus, fn(x0)
has approximately 2nm digits if x0 has m digits.
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Towards a third attempt In functional programming languages such as Haskell,
a technique called lazy evaluation is used as the underlying computing machin-
ery [6]. The idea is that if one wants to compute a small initial segment of a
large sequence, it is not necessary, in general, to evaluate the whole sequence. In
fact, in this way one can meaningfully compute with infinite sequences. Here is
an example.

> from n = n : from (n+1)

> from 0

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ctrl-C

> take 5 (from 11)

[11, 12, 13, 14,15]

> take 6 (map square (from 1))

[1, 4, 9, 16, 25, 36]

The Haskell operator “:” (pronounced “cons”) takes an element x and a se-
quence s, producing a sequence x : s whose first term is x and whose remaining
terms are those of s. For example, 3 : [4, 5, 6] = [3, 4, 5, 6]. Thus, from a de-
notational point of view, from n is the sequence of all integers starting from n.
Operationally, this works more or less as follows. In order to evaluate a list ex-
pression e, the computing machinery tries to reduce the expression to the form []
(the empty sequence) or x : e′ (a head-normal form). Initially, e′ is left uneval-
uated; if, and only when, more terms of the sequence are required, e′ is further
reduced (to either the empty sequence or a head-normal form). Thus, if one
asks for the expression from 0 to be evaluated, one gets the infinite sequence of
natural numbers. In this case, the execution only stops when one explicitly inter-
rupts it, because only finitely many states are needed to evaluate the expression.
For other expressions, infinitely many states may be needed, in which case the
execution is interrupted when the computer runs out of memory or the user runs
out of patience, whichever happens first. But an infinite list can also be used
as an intermediate step in the computation of a finite list. For example, take
5 (from 11) takes the first five elements of the infinite list of natural numbers
starting from 11, and its computation successfully terminates after finitely many
steps producing a finite list.

A slightly more interesting example is this (well-known) implementation of
the sieve of Erasthotenes to compute the infinite list of prime numbers:

> notdivisibleby m n = (n ‘mod‘ m) /= 0

> sieve (p:l) = p : sieve (filter (notdivisibleby p) l)

> prime = sieve (from 2)

> prime

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,

79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,

163,167,173,179, ctrl-C
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Here the filter function takes a predicate and list, and produces a list containing
the elements of the given list that satisfy the predicate.

Third attempt In this attempt we proceed as in the second, but using lazy
evaluation. But, as it turns out, if there is an improvement, it is imperceptible.
The reason is more or less obvious. In the usual algorithms, which are the ones
that we implemented, least significant digits are computed first. Thus, even if
one wants only one significative digit of fn(x0), more than 2n digits have to be
computed first.

Towards a fourth attempt It is natural to wonder whether there exist al-
gorithms that compute most significant digits first. Let’s begin by considering
multiplication by three. Assume that we want to multiply a decimal numeral by
three, and suppose that, at some stage, the scanned part of the input is “0 · 3”.
The first output digit can be either 0 or 1. If we eventually scan an input digit < 3
then it has to be 0, and if we eventually scan a digit > 3 then it has to be 1.
Thus, while the next scanned digit is 3, we can’t determine the first output digit.
Therefore, to get the first digit of

3× 0.333333333333333333333333333333333333333333

we are forced to compute all the 43 digits of the input.
A solution to this problem, first proposed by Cauchy [16] in 1840, is the use

of negative digits. For example

91̄52̄ = 9× 103 − 1× 102 + 5× 21 − 2× 20

= 9000− 100 + 50− 2

= 8948,

where we have written the negation symbol on the top of negative digits for
clarity. Intuitively, in order to compute a function,

1. we estimate an output digit (after reading some input digits),

2. if it turns out to be not quite correct (after reading more input digits), we
can use a negative digit to adjust the estimate.

For example, let’s consider multiplication by three again. Suppose that “0.3” is
an initial prefix of the input. Then we can safely produce “1.” as an initial prefix
of the output. In fact, if we later read a digit 0, discovering that the numeral has
“0.30” as an initial prefix, we can now output a negative digit 1̄, having produced
“1.1̄” up to this point, which is the same as “0.9”. A mathematical discussion of
these issues is the subject of Chapter 6 below.
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Fourth attempt We thus compute with signed-digit, arbitrary large binary
expansions, processing digits from left to right using a lazy language. As discussed
above, computations are performed by demand. For example, if one wants 5
correct digits of y = h(g(x)), one may need

1. 49 digits of the intermediate value g(x),

2. 7 digits of the input x.

Six correct decimal digits of f 60(x0) can be computed in a fraction of a second.
It is effective up to f 250(x0) in my PC, with a not very careful implementation in
the Haskell functional programming language, using an interpreter rather than a
compiler.

The following is the output produced by a Haskell implementation. The first
column displays six correct decimal digits. Internally, the program first computes
d(6 + 1) log2 10e = 24 correct signed binary digits, which are then converted to
decimal. For comparison, I have also produced the results with floating-point
computations, using the two different, but mathematically equivalent, expressions
f1(x) = 4x(1 − x) and f2(x) = 1 − (2x − 1)2 of the logistic map. The floating-
point numbers are computed in simple precision and displayed with six digits
too. Notice that the floating-point answers differ from those produced by the C
implementation, although both languages use the same floating-point standard—
I guess that this is due to “optimizations” implemented by the C compiler based
on the field properties of real numbers.

n exact Float 1 Float 2
-----------------------------------------------------------------
0 0.671875 0.671875 0.671875
1 0.881836 0.881836 0.881836
2 0.416805 0.416805 0.416805
3 0.972315 0.972315 0.972315
4 0.107676 0.107676 0.107676
5 0.384327 0.384327 0.384327
6 0.946479 0.946479 0.946479
7 0.202625 0.202625 0.202625
8 0.646273 0.646273 0.646273
9 0.914416 0.914417 0.914417
10 0.313037 0.313035 0.313033
11 0.860179 0.860177 0.860174
12 0.481084 0.481091 0.481099
13 0.998569 0.998570 0.998571
14 0.005716 0.005712 0.005707
15 0.022735 0.022720 0.022700
16 0.088875 0.088815 0.088740
17 0.323907 0.323710 0.323462
18 0.875965 0.875688 0.875338
19 0.434601 0.435436 0.436486
20 0.982892 0.983326 0.983864
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21 0.067261 0.065585 0.063503
22 0.250949 0.245135 0.237881
23 0.751894 0.740176 0.725175
24 0.746197 0.769262 0.797184
25 0.757549 0.709991 0.646726
26 0.734675 0.823615 0.913886
27 0.779711 0.581093 0.314793
28 0.687047 0.973695 0.862793
29 0.860054 0.102451 0.473525
30 0.481445 0.367818 0.997196
31 0.998623 0.930112 0.011183
32 0.005501 0.260015 0.044233
33 0.021884 0.769629 0.169108
34 0.085620 0.709201 0.562043
35 0.313159 0.824940 0.984603
36 0.860362 0.577656 0.060641
37 0.480558 0.975878 0.227856
38 0.998488 0.094160 0.703751
39 0.006038 0.341177 0.833942
40 0.024009 0.899100 0.553930
41 0.093730 0.362875 0.988366
42 0.339781 0.924787 0.045993
43 0.897320 0.278223 0.175511
44 0.368548 0.803259 0.578828
45 0.930881 0.632135 0.975145
46 0.257366 0.930161 0.096950
47 0.764515 0.259846 0.350203
48 0.720128 0.769305 0.910244
49 0.806175 0.709899 0.326801
50 0.625028 0.823770 0.880008
51 0.937472 0.580692 0.422376
52 0.234472 0.973955 0.975898
53 0.717980 0.101467 0.094084
54 0.809939 0.364686 0.340930
55 0.615752 0.926760 0.898787
56 0.946406 0.271503 0.363877
57 0.202886 0.791157 0.925882
58 0.646894 0.660911 0.274497
59 0.913689 0.896431 0.796593
60 0.315445 0.371371 0.648129
61 0.863758 0.933818 0.912231
62 0.470720 0.247207 0.320263
63 0.996571 0.744383 0.870779

Last attempt Ok, the above is fine, but how about functions such as 1/x? One
could of course truncate the infinite numeral representing a number such as 1/3
to a finite large numeral, but then the above problems would be reintroduced. In
our last, and successful, attempt, we use potentially infinite sequences of signed
digits, rather than arbitrary large sequences. Because our previous algorithms
process digit sequences from left to right, it turns out that they already work in
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this more general setting.
This is inefficient, compared to floating-point computation, but works. All

sorts of improvements (empirically and/or theoretically justified) have been pro-
posed, with good gains in performance, sometimes with more than one order of
magnitude, for both time and space. But, despite these advances and unforeseen
advances, one is most likely to continue using floating-point approximations and
live with round-off errors when this is possible.

The point is, however, as the logistic map illustrates, that sometimes floating-
point computations don’t produce correct answers. In this case, as inefficient as it
can be, exact numerical computation is of help. Of course, one can sometimes use
symbolic methods, and this is the whole point of computer algebra. But it is often
the case that computer algebra gives a symbolic solution to a problem, which then
has to be numerically evaluated for some values of the variables. Then, even if the
symbolic solution is mathematically correct, one tends to have little confidence
on the numerical solution. It is very likely that computer algebra systems will
include engines for exact numerical evaluation of symbolic expressions in the near
future.

As we mentioned in the introduction, many (non-commercial) packages for
exact real number computation have been implemented in a variety of program-
ming languages. In particular, David Plume [46] implemented a framework for
exact real number computation as his BSc honour project in the functional pro-
gramming languages Haskell. His project report, which is available from my
home page, is a well-written introductory account to some technical aspects of
the subject.

Other approaches are briefly discussed in Chapter 7 below. They consist
of the use of more sophisticated notations for real numbers, such as Cauchy
sequences of dyadic rationals with fixed rate of convergence, continued fractions,
and infinite compositions of Möbius transformations. From the point of view
of efficiency, some approaches are better than others for some problems, and
worse than others for other problems. However, much of the theory of exact real
number computation is independent of the particular notation systems under
consideration.
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Chapter 4

Operational and denotational
semantics

In this chapter we compare the computing machinery of an arbitrary program-
ming language with a built-in data type for real numbers with the mathematical
interpretation of its constructs.

Operational semantics As for any programming language, the underlying
computing machinery operates on concrete entities. These entities can be se-
quences of signed binary digits, or any of the notation systems for real numbers
discussed in Chapter 7 below. This underlying machinery is called the operational
semantics of the language. It is this is what makes the language into a computer
language.

Denotational semantics On the other hand, from the point of view of the
programmer, who, in the case of real number computation, is typically a mathe-
matician, a physicist or an engineer, representation details are mostly irrelevant.
Whereas the operational semantics assigns computational mechanisms to pro-
gram constructs, the denotational semantics assigns mathematical entities to
them. These entities are real numbers, functions, sequences etc.

Example In order to make the distinction between operational and denota-
tional semantics clear, consider for example the command

y := 4x(1-x)

in a typical programming language. The denotational meaning of this is clear:
the state of the store is changed so that the location called y holds the math-
ematical value 4x(1 − x) after execution. The operational meaning of this will
vary. Under floating-point computation, this will cause some memory locations
to be transfered to registers, some operations on the registers to be performed,
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and some registers to be transfered to memory. Under exact computation, what
actually happens is much more complicated. To begin with, x isn’t a memory lo-
cation anymore; now it is a “real number generator”, that is, a piece of code that
generates as many digits of a given number as we are patient to wait for. Also, for
example, the multiplication operation is now implemented as a procedure that
builds a third real number generator from two given generators.

Computational adequacy Of course, one expects the operational and the
denotational semantics to match. This property is known as computational ade-
quacy. If computational adequacy holds, one can develop correct programs using
algebra and analysis, completely ignoring the details of the operational semantics.
(Of course, in order to obtain efficient programs, some aspects of the operational
semantics will have to be taken into account. But, again, for such purposes, it is
often sufficient to consider abstractions of the operational semantics.)

Examples As the basic operations on floating-point numbers don’t match the
basic operations on real numbers, computational adequacy doesn’t hold for floating-
point computation—this is another way of putting the well-known fact that com-
puter programs developed using algebra and analysis in a rigorous fashion some-
times produce wrong answers in practice. But computational adequacy has been
proved for some data types and programming languages for exact real number
computation [25, 47]. This is discussed in Chapter 11 below.
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Chapter 5

The space of decimal expansions

In analysis one is interested in approximation processes (limits) and functions
that preserve the approximation processes (continuous functions). A topology
on a set consists of structure that allows one to define approximation processes
in the set. For example, such a structure on the real numbers is induced by the
usual notion of distance.

In this chapter we are interested in a topological structure on the set of deci-
mal expansions of real numbers, and its relation to the topological structure on
the set of real numbers. Notice the distinction; a decimal expansion is a con-
crete syntactic entity (a sequence of digits), but a real number is an abstract
mathematical entity.

To motivate this, consider a program that runs forever, printing the decimal
expansion of π. At any stage of the computation, only a finite prefix of the decimal
expansion will be observed. However, a prefix as long as we are patient to wait
for will be observed. Moreover, the collection of all such (finite) prefixes uniquely
determines the entire (infinite) decimal expansion. Thus, the computation can
be thought as a sequence of approximations that converges to the entire decimal
expansion.

Now consider a program that runs forever, sometimes reading decimal digits
from the input, and sometimes printing decimal digits to the output, so that a
function on decimal expansions is implemented. As before, both the input and
the output are infinite. However, it is clear that finite amounts of output digits
can depend only on finite amounts of input digits. In this sense, the program
respects the approximation process describe above and hence is continuous with
respect to this notion of approximation.

All this can be made mathematically precise in various ways. For instance,
one can define a notion of distance between decimal expansions. For simplicity,
we shall consider only fractional infinite decimal expansions in these notes; we
therefore ignore the decimal point and the leading digit zero, so that a decimal
expansion is just a sequence of decimal digits. We can say, for example, that
the distance between two distinct expansions α and β is 2−n where n is the first
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position at which they differ—admittedly, the number 2−n is rather arbitrary,
and other choices such as 1/n work equally well. With this, continuity in the
above sense is formalized by the usual ε−δ definition that occurs in real analysis.
In this way, the decimal expansions are made into a metric space.

If we abstract from the metric, whose numerical details are for the most part
irrelevant, one gets a topological space. Let α ≡n β mean that the distance
between α and β is smaller than 2−n, that is, that αi = βi for all i < n. Then
a set U of decimal expansions is open with respect to this notion of distance iff
whenever α ∈ U there is an n such that β ∈ U for all β ≡n α. A sequence αi of
decimal expansions converges to a decimal expansion β iff for every open set U
with β ∈ U , as small as we please, there is an n such that αi ∈ U for all i ≥ n.
A function φ of decimal expansions is continuous with respect to this topology
iff for every α and every n there is a k such that α ≡k β implies φ(α) ≡n φ(β)
for all β. The reader who is familiar with topology may have noticed that this
way of topologizing decimal expansions is equivalent to endowing the digit set
D = {0, 1, . . . , 9} with the discrete topology and then the set DN of decimal
expansions with the product topology.

In the following chapters we use topological arguments to prove computational
propositions. Unfortunately, we cannot include all the background details here,
so refer the interested reader to Smyth [54] and Vickers [57] for introductions to
topology for computer scientists.
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Chapter 6

Computational inadequacy of
decimal notation

The introduction of decimal notation, centuries ago, was a breakthrough regard-
ing efficient approximate computation by hand—and nowadays by electronic dig-
ital computers. A perhaps surprising fact, discovered by the constructive mathe-
matician Brouwer in 1920, is that infinite decimal numerals are are not suitable
notation for exact computation. Another discovery of Brouwer is that computable
functions are continuous (but see Chapter 7 below). We sketch topological proofs
these two facts.

The denotation map As above, we only consider fractional numbers, ignoring
the decimal point and the leading zero in decimal notation. A numeral is an
infinite sequence over the digit alphabet D = {0, 1, . . . , 9}. A numeral α ∈ DN

denotes the number

JαK =
∑
i>0

αi · 10−(i+1) ∈ [0, 1].

The denotation map α 7→ JαK is the fundamental link between the operational and
denotational semantics of real number computation as discussed in Chapter 4—
but notice that different operational semantics will use different notation spaces.
Our denotation map is a surjection

q : DN ³ [0, 1].

It is not an injection because the decimal rationals m/10n ∈ (0, 1) have two
decimal notations—the reason is that we consider infinitely long runs of digits 9
as legitimate as infinitely long runs of digits 0, because there is no way of ruling
out the former by computational means.
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Realizers A function φ : DN → DN realizes a function f : [0, 1] → [0, 1] if

f(JαK) = Jφ(α)K,
as illustrated in the following diagram:

DN φ−−−→ DN

q

y
yq

[0, 1] −−−→
f

[0, 1].

Of course, here we are interested in computable realizers. The realizer lives at the
operational level, whereas the function that it realizes lives at the denotational
level. As we discussed above, a necessary (but not sufficient) condition for a
function φ : DN → DN being computable is that finite subsequences of φ(α)
depend only on finite subsequences of α. In this case we say that φ is of finite
character. We state as a proposition a fact that we already discussed in the
previous chapter (where D is topologized as in Chapter 5).

Proposition 6.1 A function φ : DN → DN is of finite character iff it is contin-
uous.

This is the first link between computability and continuity, at an operational level.
To get a link at the denotational level, we state the following.

Proposition 6.2 The surjection q : DN ³ [0, 1] is a topological quotient map.

Proof Simply because it is continuous, and a continuous surjection of compact
Hausdorff spaces is always a quotient map. ¤
By a basic property of topological quotient maps, we get the following.

Corollary 6.3 A function f : [0, 1] → [0, 1] with a realizer φ : DN → DN of
finite character is necessarily continuous.

Unfortunately, the converse is not true.

Proposition 6.4 There are continuous functions f : [0, 1] → [0, 1] with no
realizer of finite character, for example f(x) = 3x/10.

Proof Let φ : DN → DN be a realizer of f . Then, for any α and any n ≥ 0,
the value of φ(3n2α) is of the form 0β. Thus, if φ were continuous, φ(3ω) would
be of the form 0β′. But, similarly, for any α and any n ≥ 0, the value of φ(3n4α)
is of the form 1β, and continuity of φ would imply that φ(3ω) would be of the
form 1β′′. Thus, φ(3ω) would have to be of the forms 0β′ and 1β′′ at the same
time. Since this is impossible, we conclude that φ cannot be continuous. ¤
This is of course independent of the choice of a base—but different counter-
examples are needed for different bases. The argument of Proposition 6.4 is a
topological version of the computational argument already given in Chapter 3.
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Chapter 7

Alternative notations

The proposed solutions to this computational problem of decimal notation include
the adoption of the following alternative notations for real numbers:

1. Base 2/3 with digits 0 and 1.

(Brouwer 1920, Turing 1937b)

2. Any integral base with negative digits.

(Leslie 1817, Cauchy 1840, Avizienis 1964, Wiedmer 1980)

3. Nested sequences of rational intervals.

(Grzegorczyk 1957)

4. Cauchy sequences of rationals with fixed rate of convergence.

(Bishop 1967 )

5. Continued fractions.

(Vuillemin 1988)

6. Base Golden Ratio with digits 0 and 1.

(Di Gianantonio 1996)

7. Infinitely iterated Möbius transformations.

(Edalat and Potts 1997)

These proposed notations are all equivalent, in the sense that one can effectively
translate between them. This is sometimes formulated as a “Church-Turing The-
sis” for real number computation. For example, the basic operations, the trigono-
metric and logarithmic functions, and many functions that occur in analysis are
computable with respect to these notation systems.

Topologically, these systems are characterized as maximal in the following
sense: given any other notation system for the reals for which the denotation map
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is a topological quotient, there is a continuous translation from any of the above
notations [36, 63]. For example, decimal notation is not maximal, because it is
not possible to continuously translate signed-digit decimal to standard decimal
notation—if it were, then it would be possible to continuously multiply by three
in decimal notation, which contradicts Proposition 6.4.

Signed-digit notation We take signed-digit binary notation as our paradig-
matic example. A signed-digit numeral is an infinite sequence over the signed-
digit alphabet 3 = {1̄, 0, 1}, where 1̄ stands for −1. As before, a numeral α ∈ 3N

denotes the number

JαK =
∑
i>0

αi · 2−(i+1) ∈ [−1, 1],

and the surjection α 7→ JαK is a quotient map q : 3N ³ [−1, 1]. The above
definitions and facts for standard numerals apply to signed-digit numerals, except
that now one has that, in contrast to Proposition 6.4,

Proposition 7.1 Every continuous function f : [−1, 1] → [−1, 1] has a realizer
φ : 3N → 3N of finite character.

The same holds for functions of several arguments, with realizers defined in the
obvious way.

Proof Müller [41], and Weihrauch and Kreitz [63, 36], showed that the quotient
map q : 3N ³ [−1, 1] is admissible (or maximal) in the following sense. For
every quotient map q′ : 3N ³ [−1, 1], there is a (far from unique) continuous
map t : 3N → 3N which translates from q′-notation to q-notation, meaning that
q′ = q ◦ t. The same argument shows that, more generally, for every continuous
map g : 3N → [−1, 1] there is a continuous map φ : 3N → 3N such that g = q ◦ φ.
(In other words, the space 3N is projective over the quotient map q.) Then the
result follows by taking g = f ◦ q. ¤

Since one can effectively translate between the representations of real numbers
discussed in Chapter 7, all of them have the same property.

Computability For the purposes of this paper, a function f : [−1, 1] → [−1, 1]
is computable if it has a computable realizer φ : 3N → 3N. Computability on 3N

can be defined e.g. via Turing machines with (read-only) input tapes and (write-
only) output tapes, in additions to the usual (read-write) working tapes [35, 62,
64]. In practice, an intuitive understanding of computability on 3N is enough for
most purposes.

We have seen that computable functions f : [−1, 1] → [−1, 1] are continuous.
More generally, a computable partial function is continuous on its domain of
definition. For example, the function 1/x is continuous and computable on R\{0},
but cannot be extended to a continuous function at 0. In practice, one gets non-
termination at points of discontinuity.
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Chapter 8

Canonical forms

Using the following lemma, it is an easy exercise to see that 0 and 1 have only one
signed-digit binary representation, that each binary rational m/2n ∈ (0, 1) has
countably infinite representations, and that every other number has uncountably
many representations. Let ≡ be the equivalence relation on numerals induced by
the denotation function:

α ≡ β iff JαK = JβK.

Lemma 8.1 The following identities hold for all α ∈ 3? and β ∈ 3N:

α01̄β ≡ α1̄1β, α01β ≡ α11̄β.

But each number has two canonically associated representations. Recall that

α < β holds in the lexicographical order iff there is an integer k such
that αk < βk and αi = βi for each i < k.

Proposition 8.2 Every number is denoted by a smallest and by a largest signed-
digit numeral in the lexicographical order.

Proof The preimage of a point by the quotient map q : 3N → [−1, 1] is a
closed set because q is continuous. But topologically closed subsets of 3N are
closed under non-empty infima and suprema in the lexicographical order (in fact,
this characterizes topologically closed subsets). ¤
However, there are no effectively determinable canonical forms:

Proposition 8.3 There is no continuous, denotation-preserving idempotent map
c : 3N → 3N such that c(q−1({x})) is a singleton for each x ∈ [−1, 1].

Proof If there were, [−1, 1] would be a retract of 3N. But 3N is a totally
disconnected space, and such spaces are closed under retracts. On the other
hand, [−1, 1] is connected. ¤
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Chapter 9

Numerical order in signed-digit
notation

As in the previous chapter, we order numerals lexicographically. If α, β are binary
numerals without negative digits, then

α 6 β implies JαK 6 JβK.
This property fails for signed-digit numerals (for example, for α = 1̄1ω and β =
01̄ω one has α < β but JαK = 0 66 −1/2 = JβK). Moreover, its converse fails for
both standard and signed-digit numerals (for example, for α = 10ω and β = 01ω

one has that JαK = JβK = 1/2 but α 66 β). However, it turns out that signed-
digit numerals admit a very strong order-normalization property that standard
numerals don’t [28].

Order normalization A pair (α, β) of numerals is order-normal it its lexico-
graphical order coincides with its numerical order, in the sense that

1. α < β and JαK < JβK, or

2. α = β, or

3. α > β and JαK > JβK.
Thus, for order-normal pairs (α, β), the condition JαK = JβK implies α = β. In
order to emphasize that order-normality is a property of pairs of numerals and
not of single numerals, we observe that the pair (α, α) is always order-normal.

Theorem 9.1 There is a computable, denotation-preserving idempotent map

norm : 3N × 3N → 3N × 3N

whose fixed-points are order-normal pairs.
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That is, norm(α, β) = (α′, β′) implies that

1. (JαK, JβK) = (Jα′K, Jβ′K),
2. (α′, β′) is order-normal, and

3. norm(α′, β′) = (α′, β′).

In particular, one can always assume w.l.o.g. that any two numerals that denote
the same numbers are themselves the same, despite the fact that single numerals
don’t have effectively determinable canonical forms. Since one can effectively
translate between the notation systems of real numbers discussed in Chapter 7,
all of them have the same property.

Lemma 8.1 is the fundamental ingredient of the proof of the theorem, which is
not included here. Together with topology, the identities of the lemma actually
capture all identities induced by the denotation function. Let ∼ be the least
equivalence relation such that

α01̄β ∼ α1̄1β, α01β ∼ α11̄β.

The relation ∼ is strictly weaker than the relation ≡. For example, 11̄ω ≡ 1̄1ω,
because both numerals denote the number 0, but they are not related by ∼, be-
cause it is not possible to obtain one from the other by finitely many applications
of the above identities. But if we add limits to ∼ then we get ≡.

Proposition 9.2 The relation ≡ is the topological closure of the relation ∼ in
the product space 3N × 3N.

(Notice that≡ has to be closed because the denotation quotient map is continuous
and DN and [−1, 1] are Hausdorff spaces.)
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Chapter 10

Inequality tests in real number
computation

In all effective approaches to exact real number computation via concrete rep-
resentations, the (in)equality relations are undecidable. This is not surprising,
because an infinite amount of information must be checked in order to decide that
two given numbers are equal. In particular, this means that it is not possible to
obtain exact algorithms from finite-precision algorithms by simply changing the
underlying representation of numbers. The reason is that (in)equality tests are
the basic ingredient for branching and looping.

Nevertheless, many definitions by cases consisting of inequalities, such as

min(x, y) =

{
x if x 6 y,

y otherwise,

do produce computable functions—but they don’t produce algorithms, because
such functions cannot be computed by first evaluating the condition and then
computing the corresponding branch. As an application of the order-normalization
Theorem 9.1, we obtain.

Theorem 10.1 There is a computable partial function

cases : [−1, 1]4 ⇀ [−1, 1]

such that

cases(x, t, y, z) =

{
y if x < t or y = z,

z if x > t or y = z,

with domain of definition {(x, t, y, z) | x = t implies y = z}.
Notice that, given this domain of definition, an equivalent specification is

cases(x, t, y, z) =

{
y if x 6 t,

z if x > t.

26



Proof We first consider an analogous lexicographical case-analysis operator

lexcases :
(
3N

)4
⇀ 3N such that

lexcases(α, β, γ, δ) =

{
γ if α < β or γ = δ,

δ if α > β or γ = δ,

with domain of definition {(α, β, γ, δ) | α = β implies γ = δ}. In order to compute
lexcases(α, β, γ, δ), we can first output the greatest common prefix of γ and δ.
If it is finite then γ 6= δ and hence we must have α < β or α > β. In the
first case we output the remainder of γ and in the second the remainder of δ.
Now, a realizer for the numerical case-analysis operator is given by φ(α, β, γ, δ) =
lexcases(α′, β′, γ′, δ′) where (α′, β′) = norm(α, β) and (γ′, δ′) = norm(γ, δ). ¤

Although the operator is partial, it can be used to define total functions. For
example,

min(x, y) = cases(x, y, x, y),

which shows that min is indeed computable. If f, g : R → R are computable
functions that agree at a computable number x0, then the function h : R → R
defined by

h(x) =

{
f(x) if x 6 x0,

g(x) if x > x0

is also computable, because

h(x) = cases(x, x0, f(x), g(x)).

Also, some partial functions such as

sgn(x) =

{
−1 if x < 0,

1 if x > 0

can be defined by

sgn(x) = cases(x, 0,−1, 1)

and hence are computable.
Notice that the case-analysis operator is a continuous map, defined on a subset

of [−1, 1]4, which cannot be extended to a continuous map on any larger subset.
In other words, the points (x, t, y, z) with x = t but y 6= z are singularities of the
case-analysis operator. This means that the partial character of the case-analysis
operator is due to topological rather than recursion-theoretic reasons.

27



Chapter 11

Functional approaches

The distinction between operational and denotational aspects of built-in data
types discussed in Chapter 4 also applies to data types implemented by the
programmer, of course. The operational aspects of an abstract data type are
hidden in their internal implementation, whereas its denotational aspects are
part of its specification, which assigns mathematical meaning to the operations
available in the external interface.

Turing-complete real number data types By a Turing-complete data type
it is meant a data type for which all computable operations are definable from the
operations available in the interface. Boehm and Cartwright [12] argue that there
cannot be any Turing-complete abstract data type for real numbers. Accepting
the fact that the computable real numbers are enumerable but not recursively
enumerable, by an argument which is essentially the same as Cantor’s argument
of uncountability of the real numbers, it is easy to see why this is the case.

Partial real numbers and Turing-completeness The same limitations arise
in computation over the natural numbers; as it is well-known, the computable
total functions are not recursively enumerable, so there cannot be any Turing-
complete programming language that defines only total functions [50]. Kleene’s
idea was to generalize the notion of computable function to partial functions in
order to obtain Turing-completeness results—the computable partial functions
include the computable functions as a subset, but they are recursively enumer-
able. Similarly, it is possible add partial real numbers in order to obtain Turing-
completeness results for abstract or built-in real number data types. A general
theory of partiality in computation, known as domain theory, has been devel-
oped since the late 60’s, initially by Dana Scott, and shortly after by many other
people—see e.g. [1, 2, 31, 39, 45]. In this way, Turing-completeness for abstract or
built-in data types for real number computation is possible. This has been devel-
oped only in the context of higher-order functional programming languages—as
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far as we know, no Turing-completeness theorems for imperative data types, in
the presence of partial real numbers, has been proved or disproved.

Real PCF PCF is a paradigmatic functional programming language used for
theoretical investigations [51] in programming-language semantics. It has op-
erational and denotational semantics connected by an adequacy property [44].
Several extensions of PCF with data types for real numbers have been discussed
in the literature [19, 25, 47], and practical versions of these theoretical languages
have been implemented by Edalat’s group at Imperial College.

The idea is that one starts from a ground type R for real numbers, in addition
to the usual ground types N and B for natural numbers and booleans, and that
new types are obtained by iterating a function space construction. Thus, the
types include

1. functions of real numbers, R → R,

2. predicates defined on real numbers, R → B,

3. sequences of real numbers, N → R,

4. sequences of sequences of real numbers, N → (N → R),

5. sequences of functions, N → (R → R),

6. functionals mapping sequences to numbers (such as limit operators), (N →
R) → R,

7. functionals mapping functions to numbers (such as definite integration and
supremum operators and distributions), (R → R) → R,

8. functionals mapping predicates to truth-values (such as quantification op-
erators), (R → B) → B.

and so on. The syntactic framework is a simply typed lambda calculus with
recursion [4]—in practice, this means that PCF is a functional programming
language such as Haskell or ML [6, 43], limited to the bare minimum level of
sophistication, in order to simplify the theoretical investigations. The semantic
framework is domain theory, already mentioned above, and one uses an interval
domain proposed by Dana Scott as the interpretation of real numbers. The idea
is that singletons give complete information or “total real numbers” and that
other intervals give incomplete information or “partial real numbers”. This is
related to interval analysis, of course. But a term of the language denoting the
number

√
2 doesn’t produce a floating-point interval approximation of

√
2 under

the operational semantics; rather, it produces better and better approximations
of this value. In practice, this can be a signed-digit binary expansion of

√
2, for

example, and, for theoretical purposes, this is taken as a shrinking sequence of
rational intervals whose intersection is the singleton interval {√2}.
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Operational semantics of Real PCF The paper [25] contains a develop-
ment of an operational semantics for PCF extended with real numbers (referred
to as Real PCF) and a proof of its computational adequacy, which states that
the operational semantics produces a convergent sequence of better and better
approximations to the mathematical value of a program. The main idea for de-
veloping an operational semantics is the observation that the prefix order of the
monoid of increasing affine endomaps of the unit interval is isomorphic to the
information (=reverse inclusion) order of the interval domain. Moreover, under
the isomorphism, infinitely iterated concatenations in this monoid correspond
to joins in the domain. Thus, computations are operationally implemented as
infinitely iterated compositions of rational affine maps. These infinitely iterated
compositions can be regarded as multi-base expansions allowing not only negative
but also rational digits.

In the paper [47] it is proposed to work with the larger monoid of Möbius
transformations. This is possible because the information refinement property
still holds. Again, a computationally adequate operational semantics is obtained.
Advantages of generalizing affine maps to Möbius transformations include the
fact that the basic transcendental functions can be elegantly implemented in
this framework via the theory of continued fractions, as Edalat and Potts have
shown [24].

Turing-completeness of Real PCF A Turing-completeness result for Real
PCF is proved in [26]. It says that every computable mathematical entity in the
universe of discourse of Real PCF is denoted by at least one program. Thus, one
can be reassured that no relevant construction has been unadvertly omitted from
the language. Of course, for efficiency or simplicity reasons, one can introduce
more constructions, as it is done in [47].

An invariance result was also proved. Essentially, it shows that one hasn’t
made any mistake in the choice of the effective presentation of the interval do-
main. It was previously proved by Kanda and Park in 1980 that in general it is
possible to effectively present the same domain in different ways that give differ-
ent sets of computable elements [53, 32]. One thus wonders whether the standard
presentation of the interval domain, namely Cantor’s enumeration of the rational
intervals, is a good choice, or whether there can be cleverer choices that give
more computable elements. Let’s say that an effective presentation is reasonable
if it is makes the four basic operations computable and the inequality relation
semidecidable. Cantor’s presentation is certainly reasonable in this sense. But
can we say more? It is proved that any two reasonable effective presentations are
equivalent, in the sense that one can effectively translate between them.
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