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Abstract

Real PCF is an extension of the programming language
PCF with a data type for real numbers. Although a Real
PCF definable real number cannot be computed in finitely
many steps, it is possible to compute an arbitrarily small ra-
tional interval containing the real number in a sufficiently
large number of steps. Based on a domain-theoretic ap-
proach to integration, we show how to define integration
in Real PCF. We propose two approaches to integration in
Real PCF. One consists in adding integration as primitive.
The other consists in adding a primitive for maximization
of functions and then recursively defining integration from
maximization. In both cases we have an adequacy theo-
rem for the corresponding extension of Real PCF. Moreover,
based on previous work on Real PCF definability, we show
that Real PCF extended with the maximization operator is
universal, which implies that it is also fully abstract.

1. Introduction

Traditionally, in computing science one represents real
numbers by floating-point approximations. If we assume
that these approximations are “exact” then we can prove
correctness of numerical programs by analytical methods.
Such an idealization is the idea behind the so-called BSS
model [3]. However, such “correct” programs do not pro-
duce correct results in practice, due to the presence of round-
off errors. Moreover, they are inappropriate for problems
whose solution is sensitive to small variations on the input.

As a consequence, “exact real number computation” has
been advocated as an alternative solution (see e.g. [4, 5, 25]
on the practical side and e.g. [2, 20, 21, 24, 26, 27, 28] on
the foundational side). However, work on exact real number
computation has focused onrepresentationsof real numbers
and has neglected the issue ofdata typesfor real numbers.

In particular, programming languages for exact real num-
ber computation with an explicit distinction between opera-
tional semantics, which is representation-dependent, and de-
notational semantics, which is representation-independent,
have hardly been investigated. Two exceptions are [6]
and [16]. Such programming languages do allow for cor-
rectness proofs based on analytical methods.

Real PCF [16] is an extension of the programming lan-
guage PCF [23] with a data type for real numbers, with op-
erational and denotational semantics. Of course, the opera-
tional semantics cannot evaluate a program denoting a real
number in finitely many steps. However, it can compute an
arbitrarily small rational interval containing the real number
in a sufficiently large number of steps.

Based on previous work on domain theory and integra-
tion [11, 8], we show how to handle integration in Real
PCF. In domain-theoretic integration, one obtains increas-
ingly better approximations to the value of the integral of
a real-valued function. This has led to exact computations
of integrals in various fields such as statistical physics [7],
neural nets [9], stochastic processes [10], and fractal geom-
etry [12].

In order to handle integration in Real PCF, we generalize
Riemann integration of real-valued maps of a real variable
to interval-valued maps of an interval variable. This also ex-
tends the results in the interval analysis approach to integra-
tion [22].

We propose two approaches to integration in Real PCF.
One consists in adding integration as primitive. The other
consists in adding a primitive for maximization of functions
and then recursively defining integration from maximiza-
tion. In both cases we have an adequacy theorem for the
corresponding extension of Real PCF. Moreover, based on
previous work on Real PCF definability [14], we show that
Real PCF extended with the maximization operator is uni-
versal, which implies that it is also fully abstract.

The fact that we are able to handle integration in Real
PCF shows the strength of such a denotational approach to



exact real number computation and makes explicit the effec-
tive content of domain-theoretic integration.

Since numerical solution to differential equations is in-
variably based on integration of functions, Real PCF with
integration also provides a framework for solving differen-
tial equations up to any precision.

Organization

In Section 2 we briefly introduce Real PCF. In Section 3
we define interval Riemann integrals. In Section 4 we ex-
tend Real PCF with a primitive for integration. In Section 5
we define a function maximization operator. In Section 6 we
extend Real PCF with a primitive for maximization. In Sec-
tion 7 we show how to recursively define integration from
maximization. In Section 8 we define multiple integrals and
show how to define them from interval Riemann integration.
In Section 9 we show that Real PCF extended with maxi-
mization is universal.

Several proofs have been omitted due to lack of space.
For a full version of this paper containing all proofs see [13].

2. Real PCF

In this section we summarize the results of [16, 14]
needed in this paper. We assume familiarity with PCF [23,
19]. We are deliberately informal concerning syntax. For
simplicity and without essential loss of generality, we re-
strict ourselves to the unit interval[0, 1].

2.1. Interval expansions

It is well-known that decimal expansions of real numbers
are not appropriate for real number computation, if we read
infinite expansions from left to right. For example, multipli-
cation by3 is not computable w.r.t. decimal representation.
In fact, any base has essentially the same problem [28].

Let us consider binary expansions of numbers in the unit
interval. In this case, a solution for the above problem is to
allow the digit 1

2 in addition to the digits0 and1. Accord-
ing to Martin-Löf [21], this kind of solution goes back to
Brouwer.

Foran ∈ {0, 1
2 , 1}, the sequence

a1a2 · · · an · · ·
represents the number

∑

n≥1

an2−n.

Therefore the operations

a1a2 · · · an · · · 7→ 0 a1a2 · · · an · · ·
a1a2 · · · an · · · 7→ 1

2 a1a2 · · · an · · ·
a1a2 · · · an · · · 7→ 1 a1a2 · · · an · · ·

correspond to the following maps of the unit interval into it-
self:

s0(x) = (x + 0)/2
s 1

2
(x) = (x + 1

2 )/2

s1(x) = (x + 1)/2.

Thus, a binary expansion represents an intersection of a
shrinking chain of intervals:

a1a2 · · · an · · ·

represents ⋂

n≥1

sa1 ◦ · · · ◦ san
([0, 1]).

Example 2.1 Routine algebra shows that the average oper-
ationx⊕ y = (x + y)/2 satisfies the equations

s0(x)⊕ s0(y) = s0(x⊕ y)
s0(x)⊕ s1(y) = s 1

2
(x⊕ y)

s1(x)⊕ s0(y) = s 1
2
(x⊕ y)

s1(x)⊕ s1(y) = s1(x⊕ y),

which can be considered as arecursive definitionof the av-
erage map [15]. �

There is no reason to commit ourselves to the particular
operationss0, s 1

2
ands1. These operations are uniquely de-

termined by their images[0, 1
2 ], [ 1

4 ,
3
4 ], and [ 1

2 , 1] respec-
tively, in the following sense. Given any interval[a, b] ⊆
[0, 1], there is a unique increasing linear map

cons[a,b] : [0, 1] → [0, 1]

with range[a, b], namely

cons[a,b](x) = (b− a)x + a.

That is,cons[a,b] rescalesandtranslatesthe unit interval so
that it becomes[a, b]. Therefore the mapss0, s 1

2
ands1 are

equal to the mapscons[0, 1
2 ], cons[ 14 , 3

4 ], andcons[ 12 , 1] re-
spectively.

Definition 2.2 A sequence of intervals

[a1, b1], [a2, b2], . . . , [an, bn], . . .

is said to be aninterval expansionof the interval

⋂

n≥1

cons[a1,b1] ◦ cons[a2,b2] ◦ · · · ◦ cons[an,bn]([0, 1]). �

For example, interval expansions formed from the inter-
vals



[0, 1/10], [1/10, 2/10], . . . , [9/10, 1]

are essentiallydecimal expansionsof real numbers con-
tained in the unit interval.

Interval expansions denote iterated selections of subin-
tervals. For example, the interval expansion

[0, 1
2 ], [ 1

4 ,
3
4 ], [ 1

2 , 1], [0, 1
2 ], . . . ,

which corresponds to the binary expansion0 1
210 · · · , can be

interpreted as the following sequence of instructions: select
the two middle quarter parts of the interval[0, 1

2 ], select the
second half of the resulting interval, select the first half of
the resulting interval, and so on. Thus, an interval expan-
sion denotes an intersection ofshrinkingchain of intervals.
Conversely, any shrinking chain of intervals gives rise to an
interval expansion, as shown at the end of the next subsec-
tion.

2.2. The unit interval domain

We think of intervals asapproximations of real numbers,
the singleton intervals being“exact” approximations. We
consider these approximations asgeneralized real numbers.
Therefore, we sometimes notationally identify singleton in-
tervals and real numbers.

We letI be the set of closed subintervals of[0, 1] ordered
by reverse inclusion, denoted byv. The lettersx,y, z,
a,b, c in bold font range overI, and we put

x = [x,x].

(I,v) is a continuous Scott domain (bounded complete
ω-continuous dcpo) [1] with bottom element⊥ = [0, 1]. Its
way-below relation is given by

x ¿ y iff the interior ofx containsy.

The setMax(I) of maximal elements (singleton intervals)
with the subspace topology of the Scott topology ofI is
homeomorphic to the Euclidean unit interval. More gener-
ally, we can consider the domainI[a, b] of all closed subin-
tervals of[a, b].

Definition 2.3 Given intervalsx,y ∈ I, define a binary
operation� onI by

x� y = consx(y).

Recall that a monoid is a set together with an associative bi-
nary operation and a neutral element.

Theorem 2.4 1. The mapconsa : I → I is continuous
for everya ∈ I.

2. (I,�,⊥) is a monoid.

3. Theinformation order of (I,v) coincides with the
prefix preorderof (I,�,⊥), in the sense that

x v z iff x� y = z for somey.

Moreover, such ay is unique iffx is non-maximal.

Items 1 and 2 are the basis for the operational semantics of
Real PCF and item 3 is the fundamental link between the de-
notational and the operational semantics.

If x v z andx is non-maximal then we denote the unique
y such thatx � y = z by z � x. Now it is easy to see
that a shrinking a chain of intervals can be represented by
an interval expansion. In fact, if

a1 v a2 v · · · v an v . . .

is a chain of non-singleton intervals with joinx then the se-
quence

a1, (a2 � a1), . . . , (an+1 � an), . . .

is an interval expansion ofx.

2.3. Real PCF

The linear mapsconsa for a 6= ⊥ with distinct rational
end-pointswill play a rôle analogous to the rôle played by
the successor map on natural numbers.

The predecessor map, undefined or arbitrarily defined at
zero, is a left inverse of the successor map. Similarly, we
now look for a continuous left inverse ofconsa; that is, a
maptaila such that

taila(consa(x)) = x.

Since this equation is equivalent to

taila(a� x) = x,

we see thattaila removes the prefixa from its argument, if
such a prefix exists.

In order to definetaila, first considercons[a,b] as a map
[0, 1] → [0, 1]. The co-restriction ofcons[a,b] to its range
[a, b] is invertible. Hence the continuous map

tail[a,b] : [0, 1] → [0, 1]

defined by

tail[a,b](x) =





cons−1

[a,b](a) if x ≤ a

cons−1

[a,b](x) if x ∈ [a, b]
cons−1

[a,b](b) if x ≥ b

=





0 if x ≤ a
(x− a)/(b− a) if x ∈ [a, b]
1 if x ≥ b

= max(0, min((x− a)/(b− a), 1)).



is a left inverse ofcons[a,b] : [0, 1] → [0, 1]. We thus let
tail[a,b] : I → I be defined by

tail[a,b]([x, y]) = [tail[a,b](x), tail[a,b](y)].

This map is clearly a left inverse ofcons[a,b] : I → I and is
continuous. The left-inverses ofs0, s 1

2
ands1 correspond-

ing to tail[0, 1
2 ], tail[ 14 , 3

4 ], andtail[ 12 , 1] respectively are

p0(x) = min(2x, 1)
p 1

2
(x) = max(0, min(2x− 1

2 , 1))

p1(x) = max(0, 2x− 1).

We need two more primitives, in addition to the linear
mapsconsa and their left inversestaila.

The first is a counterpart of the equality test for zero on
natural numbers. For eachr ∈ (0, 1) define a continuous
mapx 7→ (x <⊥ r) : I → T , whereT = {true, false}⊥,
by

x <⊥ r =





true if x < r
false if x > r
⊥ otherwise.

We are interested in the case thatr is rational.

Remark 2.5 The functionx 7→ (x <′⊥ r) : I → T ,
defined by

x <′⊥ r =





true if x < r
false if x ≥ r
⊥ otherwise.

is monotone but not continuous, and hence not computable.
In fact, equality of real numbers is not decidable [21] (see
Subsection 2.4 below). The mapx 7→ (x <⊥ r) can be
regarded as the best continuous approximation to the mono-
tone functionx 7→ (x <′⊥ r). �

The second primitive is a stronger version of the condi-
tional, called theparallel conditional:

pif p then x else y =





x if p = true
y if p = false

x u y if p = ⊥.

This map is also continuous. The idea is thatxuy is the best
information compatible with bothx andy. Therefore, if the
condition is undefined then this information can be safely
produced anyway (see Subsection 2.4 below).

Example 2.6 The recursive definition of average of real
numbers given in Example 2.1 generalizes to a recursive
definition of average of intervals:

consL(x)⊕ consL(y) = consL(x⊕ y)
consL(x)⊕ consR(y) = consC(x⊕ y)
consR(x)⊕ consL(y) = consC(x⊕ y)
consR(x)⊕ consR(y) = consR(x⊕ y),

whereL = [0, 1
2 ], C = [ 1

4 ,
3
4 ], andR = [ 1

2 , 1]. By means
of the primitives that we have introduced, this recursive def-
inition can be rewritten as

x ⊕ y = pif x <⊥ 1
2

then pif y <⊥ 1
2 then consL(tailL(x)⊕ tailL(y))

else consC(tailL(x)⊕ tailR(y))
else pif y <⊥ 1

2 then consC(tailR(x)⊕ tailL(y))
else consR(tailR(x)⊕ tailR(y)). �

For recursive definitions of the complement mapx 7→ 1−x,
multiplication, and logarithm see [16].

Definition 2.7 Real PCF consists of PCF extended with a
ground typeI for the unit interval and constants for the
primitive operations introduced in this subsection.�

An extension of PCF with a further type for the real line is
introduced in [16].

2.4. A note on the parallel conditional

Recall that thesequential conditionalis defined by

if p then x else y =





x if p = true
y if p = false
⊥ if p = ⊥.

Proposition 2.8 Let R be a domain withMax(R) homeo-
morphic to the real line or the unit interval, letD be any
domain, letp : R → T be a continuous predicate, let
g, h : R → D be continuous functions, and define a function
f : R → D by

f(x) = if p(x) then g(x) else h(x).

If p is non-trivial, in the sense that there are maximal ele-
mentsx andy such thatp(x) = true andp(y) = false, then
f is not total, in the sense thatf(z) = ⊥ for some maximal
elementz.

Proof The non-empty disjoint setsU = p−1(true) ∩
Max(R) and V = p−1(false) ∩ Max(R) are open in
Max(R), becausep is continuous, and{true} and{false}
are open inT . HenceU ∪ V 6= Max(R), becauseMax(R)
is connected. Therefore there is some maximal elementz
such thatp(z) = ⊥. �
Thus, the sequential conditional is not appropriate for defi-
nition by cases of total functions onR, because it produces
non-total functions in non-trivial cases.

In most definitions by cases of the form

f(x) = pif p(x) then g(x) else h(x)

which occur in practice, one has thatf(x) = g(x) for all
maximalx with p(x) = ⊥. This is the case, for instance,



in the recursive definition of average given in Example 2.6.
Another example is given by the following definition of the
absolute value function:

|x| = pif x <⊥ 0 then − x else x.

For the casex = 0 one has

|0| = pif ⊥ then − 0 else 0 = 0 u 0 = 0.

Hence, the parallel conditional is also useful to overcome the
fact that equality of real numbers is not decidable.

2.5. Adequacy

The operational semantics of Real PCF is given by the
following reduction rules:

1. consa(consb(x)) → consconsa(b)(x)

2. taila(consb(x)) → fix (consL) if a ≤ b

3. taila(consb(x)) → fix (consR) if b ≤ a

4. taila(consb(x)) → constaila(b)(x)

if a v b anda 6= b

5. taila(consb(x)) → constaila(b)(tailtailb(a)(x))

if taila(b) andtailb(a) are non-maximal

6. consa(x) <⊥ r → true if a < r

7. consa(x) <⊥ r → false if a > r

8. pif true then x else y → x

9. pif false then x else y → y

10. pif p then consa(x) else consb(y) →

consaub(pif p then constailaub(a)(x)
else constailaub(b)(y))

if a u b 6= ⊥.

Roughly, these rules

1. reduce computations on generalized real numbers to
computations on intervals with rational end-points,
namely thesubscriptsof cons andtail,

2. “factor out” as manycons primitives as possible.

The underlying idea is that if we have a programX of the
form

consa(X ′) with X ′ unevaluated,

then we know that the result ofX is contained in the inter-
val a, because by definitionconsa is a map with rangea.

Definition 2.9 A Real PCF program of the formconsa(X)
is said to be apartially evaluated programwith partial re-
sult a.

The above reduction rules allow us to partially evaluate any
program, producing better and betterpartial results con-
verging to itsactualresult, in the sense of Theorem 2.11 be-
low.

Definition 2.10 We extend the notion ofcomputable PCF
term to Real PCF by adding the following clause to the in-
ductive definition given in [23]:

A Real PCF programX denoting a generalized
real numberx is computableif for every non-
bottom intervaly ¿ x, as close tox as we
please,X produces a partial resulta with

y v a v x.

Theorem 2.11 (Adequacy)Every Real PCF term is com-
putable.

It follows that a program has some partial evaluation iff it
does not denote bottom; it is important here thata cannot be
bottom in a primitive operationconsa.

3. Interval Riemann integrals

A generalization of the Riemann theory of integration
based on domain theory was introduced in [8]. Essentially,
a domain-theoretic framework for the integration of real-
valued functions w.r.t. any finite measure on a compact met-
ric space was constructed using the probabilistic power do-
main of the upper space of the metric space. In this pa-
per we will only be concerned with integration w.r.t. to the
Lebesgue measure (uniform distribution) inRn. Other mea-
sures inRn will be dealt with in a future paper.

In order to extend Real PCF with integration, we embark
on a novel approach compared to [8] for integration w.r.t. the
Lebesgue measure inR. We work with the continuous dcpo
R = IR of compact intervals of the real line ordered by re-
verse inclusion, and we consider integration of maps of type
Rn →R rather thanRn → R, and we deduce various prop-
erties which are interesting in their own right as well.

Addition in the continuous dcpoR is defined by

x + y = [x + y,x + y].

The map(x,y) 7→ x + y : R × R → R is continuous.
Given a real numberα and an intervalx, we put

xα = αx = [xα,xα].

The mapx 7→ xα : R→ R is continuous too. We also put

dx = x− x.



A partition of an interval[a, b] is a finite set of the form

P = {[a, x1], [x1, x2], . . . , [xn−1, xn], [xn, b]}.

We denote byP[a, b] the set of all partitions of[a, b]. A par-
tition Q refinesa partitionP if Q is obtained by partitioning
some elements ofP .

Lemma 3.1 P[a, b] is directed by the refinement order.
That is, for any two partitions of[a, b] there is a third parti-
tion refining both.

Definition 3.2 Let f : R → R be a map and[a, b] be an
interval. Aninterval Riemann sumof f on [a, b] is a sum of
the form

∑

x∈P

f(x)dx for P ∈ P[a, b]. �

Lemma 3.3 Let f : R → R be amonotonemap(w.r.t. the
information order). If a partition Q of an interval[a, b] re-
fines a partitionP then

∑

x∈P

f(x)dx v
∑

x∈Q

f(x)dx.

Therefore, the set of interval Riemann sums off on [a, b] is
directed.

Definition 3.4 Theinterval Riemann integralof a mono-
tonemapf : R→ R on an interval[a, b] is defined by

∫ b

a

f =
⊔

P∈P[a,b]

∑

x∈P

f(x)dx.

We sometimes denote
∫ b

a
f by

∫ b

a
f(x)dx. �

Proposition 3.5 For all monotone mapsf ,g : R → R and
all real numbersα andβ,

∫ a

a

f = 0,

∫ b

a

f +
∫ c

b

f =
∫ c

a

f ,

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

Clearly,
∫ b

a
f depends only on the values thatf assumes

on I[a, b].

Theorem 3.6 For every interval[a, b], the integration map

f 7→
∫ b

a

f : [I[a, b] →R] →R

is continuous.

Proof LetF be a directed subset of[I[a, b] →R]. Then

b∫

a

⊔
F =

⊔

P

∑

x∈P

(⊔
F

)
(x)dx

=
⊔

P

∑

x∈P

( ⊔

f∈F
f(x)

)
dx

=
⊔

P

∑

x∈P

⊔

f∈F
f(x)dx

=
⊔

P

⊔

f∈F

∑

x∈P

f(x)dx

=
⊔

f∈F

⊔

P

∑

x∈P

f(x)dx

=
⊔

f∈F

b∫

a

f . �

Lemma 3.7 Let [a, b] be an interval, letB be any basis of
I[a, b], and denote byPB [a, b] the partitions of[a, b] con-
sisting of basis elements. Then for anycontinuousfunction
f : I[a, b] →R,

∫ b

a

f =
⊔

Q∈PB [a,b]

∑

x∈Q

f(x)dx.

Remark 3.8 Moore [22] handles integration by consider-
ing sums which are essentially interval Riemann sums for
partitions consisting ofn intervals of the same length, but he
restricts his definition to rational functions. The integrand
is assumed to be monotone w.r.t. inclusion and continuous
w.r.t. the Hausdorff metric on intervals. Since the Haus-
dorff metric induces the Lawson topology onR, the inte-
grand is Scott continuous [17, 18]. Therefore Lemma 3.7
above and Theorem 3.12 below show that our definition gen-
eralizes that of Moore to all Scott continuous functions.�

Given any continuous functionf : R → R, the function
If : R→ R defined by

If(x) = f(x)

is also continuous. Since continuous maps preserve con-
nectedness and compactness,

If(x) = [inf f(x), sup f(x)].

Hence the end-points of an interval Riemann sum are given
by lower and upper Darboux sums respectively:

∑

x∈P

If(x)dx =

[∑

x∈P

inf f(x)dx,
∑

x∈P

sup f(x)dx

]
.



Therefore
∫ b

a

If =

[∫ b

a

f,

∫ b

a

f

]
=

{∫ b

a

f

}
.

The mapIf is anextensionof the mapf , in the sense that

If({x}) = {f(x)}.
Any continuous mapf : R→ R has infinitely many distinct
continuous extensions toR→ R. The extensionIf is char-
acterized as the greatest one. Theorem 3.12 below shows
thatIf can be replaced byanycontinuous extensionf in the
above equation.

Lemma 3.9 For every continuous functionf : R → R
there is a greatest continuous functionf̂ : R → R such
that

f|MaxR = f̂|MaxR,

given by

f̂(x) =
[
inf
x∈x

f({x}), sup
x∈x

f({x})
]

.

Lemma 3.10 For any continuousf : R→ R,
∫ b

a

f =
∫ b

a

f̂ .

Theorem 3.11 The interval Riemann integral of a continu-
ous functionf : R → R depends only on the value thatf
assumes at maximal elements, in the sense that for any con-
tinuous functiong : R → R,

f|Max(R) = g|Max(R) implies
∫ b

a

f =
∫ b

a

g.

Proof By Lemma 3.9,f|Max(R) = g|Max(R) impliesf̂ = ĝ.
Therefore the result follows from Lemma 3.10.�
Theorem 3.12 If f : R→ R is continuous andf : R→ R
is a continuous extension off then

∫ b

a

f =

{∫ b

a

f

}
.

Proof We know that this is true forf = If . If f is any ex-
tension then Lemma 3.9 implies thatf̂ = If . Therefore the
result follows from Theorem 3.11. �

The significance of Theorems 3.11 and 3.12 is that some-
times it is easy to obtain a Real PCF program for an exten-
sion of a functionf but it is difficult or undesirable to ob-
tain a program for its greatest continuous extension. For
instance, the distributive law does not hold for the greatest
continuous extensions of addition and multiplication, so that
two different definitions of the same function can give rise
to two different extensions and two different programs [22].

4. Integration in Real PCF

Again, for simplicity and without essential loss of gener-
ality, we restrict ourselves to the unit interval. Clearly, the
map

∫ 1

0
: [I → R] → R restricts to[I → I] → I. We

denote the restriction by
∫

.
In this section we add

∫
: [I → I] → I as a primitive

operation to Real PCF.

Lemma 4.1 For any continuous mapf : I → I,
∫

consa ◦ f = consa

(∫
f
)

,

∫
f =

∫
f ◦ consL ⊕

∫
f ◦ consR.

Proof (Outline) The first equation is linearity. For the sec-
ond equation we have

∫
f =

∫ 1

0

f

=
∫ 1

2

0

f +
∫ 1

1
2

f

=
∫ 1

0

f
(
x
2

)
1
2dx +

∫ 1

0

f
(
x+1

2

)
1
2dx

=
∫

f ◦ consL ⊕
∫

f ◦ consR. �

Notation 4.2 1.
∫

Y dx stands for
∫

λxY .

2.
∫

F (x)dx stands for
∫

F if F is a primitive operation
of typeI → I. �

This notation is ambiguous. For instance,
∫

consa(x)dx
can stand for both

∫
consa and

∫
λx consa(x). However,

his ambiguity does not introduce inconsistencies, because
both terms have the same meaning.

Lemma 4.1 gives rise to the following reduction rules:

1.
∫

consa(Y )dx → consa
(∫

Y dx
)

2.
∫

Y [x]dx → ∫
Y [consL(x)]dx⊕ ∫

Y [consR(x)]dx

3.
∫

Y dx → ∫
Y ′dx if Y → Y ′.

HereY [x] is a term of typeI with some free occurrences
of x, andY [X] denotes the termY with all free occurrences
of x replaced by the termX.

We call these rules theoutput, input, and production
rules respectively. Intuitively, the output rule produces par-
tial output, the input rule supplies partial input, and the pro-
duction rule partially evaluates the integrand (with no input
or with the partial input supplied by the input rule in previ-
ous reduction steps).

In order to establish adequacy we need some lemmas.



Lemma 4.3 For every natural numbern define a map∫ (n) : [I → I] → I by

∫ (n)

f =
2n∑

k=1

f
([

k − 1
2n

,
k

2n

])
1
2n

.

Then
∫ (n)

is continuous, and
∫

f =
⊔

n≥0

∫ (n)

f ,

where the join is directed.

Lemma 4.4 For every natural numbern,
∫ (0)

f = f(⊥),

∫ (n+1)

f =
∫ (n)

f ◦ consL ⊕
∫ (n)

f ◦ consR.

Corollary 4.5 For everyn there is a program in Real PCF

(without the integration primitive) defining
∫ (n)

.

Lemma 4.6 If F : I → I is a closed computable term then

every partial result produced by the program
∫ (n)

F is also
produced by the program

∫
F .

Proof By induction onn. For the base case use the pro-
duction rule, the output rule, and the fact thatF is com-
putable. For the inductive step use the input rule2n times,

the fact that⊕ and
∫ (n)

are computable, and the fact that
Y [consa(x)] is computable ifY [x] is computable. �
Lemma 4.7

∫
is a computable primitive operation.

Proof Let F be any closed computable program denoting a
functionf : I → I, and lety ¿ ∫

f . Since
∫

f is the join of

the chain{∫ (n) f}n≥0, there is ann such thaty ¿ ∫ (n) f ,
by a basic property of the way-below relation incontinuous

dcpos. Now,
∫ (n)

F is computable because
∫ (n)

andF are

computable. Hence there is somea with y v a v ∫ (n) f
such that

∫ (n)
F partially evaluates to a program of the form

consa(X), by definition of computability. But

y v a v
∫ (n)

f v
∫

f

and
∫

F partially evaluates to a program of the form
consa(X ′), by virtue of Lemma 4.6. Therefore

∫
is com-

putable. �
Theorem 4.8 (Adequacy)Every term in Real PCF ex-
tended with integration is computable.

Proof Extend the proof of adequacy of Real PCF given
in [16] by including Lemma 4.7 as one of the inductive
steps. �

5. A supremum operator

In this section we define a supremum operator. The pre-
sentation follows the same pattern as Section 3.

Recall that an extensionIf : R → R of any continu-
ous functionf : R → R was defined in Section 3. This
construction clearly generalizes to real valued continuous of
several real variables. For example, we have that

Imax(x,y) = [max(x,y), max(x,y)].

When there is not danger of ambiguity, we writef instead
of If .

Lemma 5.1 Let f : R → R be amonotonemap(w.r.t. the
information order). If a partition Q of an interval[a, b] re-
fines a partitionP then

max
x∈P

f(x) v max
x∈Q

f(x).

Definition 5.2 For a functionf : R→ R we write

sup
[a,b]

f = sup
x∈[a,b]

f(x).

Thesupremumof amonotonemapf : R→ R on an inter-
val [a, b] is defined by

sup
[a,b]

f =
⊔

P∈P[a,b]

max
x∈P

f(x). �

Proposition 5.3 For all monotone mapsf ,g : R → R and
all real numbersα andβ,

sup
[a,a]

f = f(a),

max(sup
[a,b]

f , sup
[b,c]

f) = sup
[a,c]

f ,

sup
[a,b]

max(αf , βg) = max(α sup
[a,b]

f , β sup
[a,b]

g).

Clearly, sup[a,b] f depends only on the values thatf as-
sumes onI[a, b].

Theorem 5.4 For every interval[a, b], the supremum map

f 7→ sup
[a,b]

f : [I[a, b] →R] → R

is continuous.

Lemma 5.5 Let [a, b] be an interval, and letB be any basis
of I[a, b]. Then for anycontinuousfunctionf : I[a, b] → R,

sup
[a,b]

f =
⊔

Q∈PB [a,b]

max
x∈Q

f(x).



Clearly, forf : R→ R continuous we have that

max
x∈P

If(x) =
[
max
x∈P

inf f(x), max
x∈P

sup f(x)
]

.

Therefore

sup
[a,b]

If =

{
sup
[a,b]

f

}
.

Lemma 5.6 For any continuousf : R→ R,

sup
[a,b]

f = sup
[a,b]

f̂ .

Theorem 5.7 The supremum of a continuous functionf :
R → R depends only on the value thatf assumes at maxi-
mal elements.

Theorem 5.8 If f : R → R is continuous andf : R → R
is a continuous extension off then

sup
[a,b]

f =

{
sup
[a,b]

f

}
.

An infimum operatorinf is defined similarly, by replac-
ing max by min.

6. Real PCF extended with supremum

This section follows the same pattern as Section 4.
Again, for simplicity and without essential loss of general-
ity, we restrict ourselves to the unit interval. Clearly, the
mapsup[0,1] : [I → R] → R restricts to[I → I] → I.
We denote the restriction bysup.

In this section we addsup : [I → I] → I as a primitive
operation to Real PCF.

Lemma 6.1 max andmin (in curried formI → I → I)
are definable in Real PCF.

Proof max can be recursively defined by

max(x,y) = pif x <⊥ 1
2

then pif y <⊥ 1
2 then consL(max(tailL(x), tailL(y)))

else y
else pif y <⊥ 1

2 then x
else consR(max(tailR(x), tailR(y))),

andmin can be defined by

min(x,y) = 1−max(1− x, 1− y). �

Lemma 6.2 For any continuous mapf : I → I,

sup consa ◦ f = consa (sup f) ,

sup f = max (sup f ◦ consL, sup f ◦ consR) .

Notation 6.3 1. supx Y stands forsup λxY .

2. supx F (x) stands forsup F if F is a primitive oper-
ation of typeI → I. �

Lemma 6.2 gives rise to the following reduction rules:

1. sup
x

consa(Y ) → consa

(
sup
x

Y

)

2. sup
x

Y [x] → max
(

sup
x

Y [consL(x)]
)

(
sup
x

Y [consR(x)]
)

3. sup
x

Y → sup
x

Y ′ if Y → Y ′.

Notice that these are the reduction rules for
∫

with
∫

and⊕
replaced bysup andmax respectively. We obtain the fol-
lowing similar results:

Lemma 6.4 For every natural numbern define a map
sup(n) : [I → I] → I by

sup(n)f =
2n

max
k=1

f
([

k − 1
2n

,
k

2n

])
.

Thensup(n) is continuous, and

sup f =
⊔

n≥0

sup(n)f ,

where the join is directed.

Lemma 6.5 For every natural numbern,

sup(0)f = f(⊥),

sup(n+1)f = max
(
sup(n)f ◦ consL, sup(n)f ◦ consR

)
.

Corollary 6.6 For everyn there is a Real PCF program
definingsup(n).

Lemma 6.7 If F : I → I is a closed computable term
then every partial result produced by the programsup(n)F
is also produced by the programsupF .

Lemma 6.8 sup is a computable primitive operation.

Theorem 6.9 (Adequacy)Every term in Real PCF ex-
tended withsup is computable.

The operationinf is definable fromsup by

inf f = 1− sup
x

(1− f(x)),

so there is no need to include it as primitive too.



7. A Recursive definition of integration

It is natural to ask if the integration operator, added in
Section 4 as primitive, is already recursively definable in
Real PCF.

Let D = [[I → I] → I]. Then the second equation
of Lemma 4.1 leads one to consider the mapG : D → D
defined by

G(F )(f) = F (f ◦ consL)⊕ F (f ◦ consR).

Thus the integration operator
∫

is a fixed point ofG. How-
ever, the least fixed point is the bottom element ofD.

Peter Freyd suggested that if we restrict ourselves to the
subspaceD′ ⊆ D of functionsF ∈ D such that

inf f ≤ F (f) ≤ sup f ,

thenG restricts to a mapG′ : D′ → D′, and
∫

is the
least fixed point ofG′. We use this idea in a modified form,
obtaining

∫
directly as the least fixed point of a function

H : D → D.
Define a mapp : R3 → R by

p(x, y, z) = max(x, min(y, z)).

Then, givena ≤ b, the map

r(x) = p(a, x, b)

is idempotent,
a ≤ r(x) ≤ b,

and
r(x) = x iff a ≤ x ≤ b.

Define a functionH : D → D by

H(F )(f) = p (inf f , F (f ◦ consL)⊕ F (f ◦ consR), sup f) .

Lemma 7.1 For every continuous functionf : I → I,

Hn(⊥)(f) =
∫ (n)

f̂ ,

wheref̂ is defined as in Lemma 3.9.

Proof By induction onn. For the base case use the fact that
f̂(⊥) = p(inf f ,⊥, sup f). �
Proposition 7.2

∫
is the least fixed point ofH.

Proof Immediate consequence of Lemmas 4.3 and 7.1.�
Corollary 7.3 The integration operator is definable in Real
PCF extended withsup.

Proof We clearly have that

Ip(x,y, z) = max(x,min(y, z)).

ThereforeH is definable. �

8. Multiple integrals

A partition of ahyper-cube

~a = (a1, . . . ,an) ∈ Rn

is a cartesian product

~P = P1 × · · · × Pn

of partitions ofa1, . . . ,an respectively. We denote the set of
partitions of~a by P~a. Refinements are defined coordinate-
wise. Thevolumeof ann-dimensional hyper-cube~x is

d~x = dx1 · · · dxn.

Definition 8.1 Let f : Rn → R be a map and~a be ann-
dimensional hyper-cube. Amultiple interval Riemann sum
of f on~a is a sum of the form

∑

~x∈~P

f(~x)d~x for ~P ∈ P~a. �

Definition 8.2 Themultiple interval Riemann integralof a
monotone mapf : Rn →R on a hyper-cube~a is defined by

∫

~a

f =
⊔

~P∈P~a

∑

~x∈~P

f(~x)d~x. �

Forn = 1 this definition reduces to our previous definition:

∫

(a)

f =
∫ a

a

f .

Theorem 8.3 (Fubini’s Rule) For every natural number
n > 1, every continuous functionf : Rn → R, and ev-
eryn-dimensional hyper-cube~a,

∫

~a

f =
∫

(a1)

(∫

~a′
f(x)d~x′

)
dx1,

where~a′ = (a2, . . . ,an) and ~x′ = (x2, . . . ,xn).

Proof For notational simplicity and without essential loss
of generality, we prove the claim forn = 2:

∫

(a,b)

f =
⊔

P×Q∈P(a,b)

∑

(x,y)∈P×Q

f(x,y)d(x,y)

=
⊔

P∈Pa

⊔

Q∈Pb

∑

x∈P

∑

y∈Q

f(x,y)dxdy

=
⊔

P∈Pa

∑

x∈P


 ⊔

Q∈Pb

∑

y∈Q

f(x,y)dy


 dx

=
∫

(a)

λx
∫

(b)

λyf(x,y). �



Corollary 8.4 For everyn there is a program in Real PCF
extended with either integration orsup which computes the
multiple integration operator

∫
: [In → I] → I of ordern.

Proof Since PCF does not have cartesian products, we have
to use curried maps. Our primitive or program for integra-
tion takes care of the casen = 1. The equation of the
above theorem can be read as a definition of a program for
the casen + 1 from a program for the casen. By the ad-
equacy theorems, these programs indeed compute multiple
integrals of ordern. �

This application of the adequacy theorems shows that ad-
equacy is a powerful result. In fact, it allows us to derive
correct programs from analytical results, in a representation-
independent fashion. This is precisely the idea behind deno-
tational semantics.

9. Universality of Real PCF extended with the
supremum operator

Definition 9.1 A programming languageL is universal if
every computable element in the universe of discourse ofL
isL-definable. �

PCF is not universal; however, PCF extended with the par-
allel conditional and the existential quantification operator
∃ : (N → T ) → T defined by

∃(p) =





true if p(n) = true for for somen
false if p(⊥) = false
⊥ otherwise.

is universal [23]. Real PCF with no extensions is not univer-
sal, because∃ is not definable [14]. If we extend Real PCF
with ∃ and the computation rules given inloc. cit., then the
adequacy property remains true. The following universality
result is proved in [14]:

Theorem 9.2 Real PCF extended with∃ is universal.

Corollary 9.3 Real PCF extended with∃ is fully abstract.

The reader is referred to [23] for the definition of full ab-
straction.

Although Theorem 9.2 implies thatsup is definable in
Real PCF extended with∃, we do not know a neat fixed-
point definition ofsup.

Proposition 9.4 . The existential quantification operator∃
is definable in Real PCF extended withsup.

Proof ForD ∈ {N , T }, define continuous maps

D
rD

¿
sD

I

by

sN (n) = if n = 0 then 0 else consR(sN (n− 1))
rN (x) = if x <⊥ 1/4 then 0 else rN (tailR(x)) + 1,

sT (t) = if t then 1 else 0
rT (x) = if x <⊥ 1/2 then false else true

Then(sD, rD) is a section-retraction pair withD as a retract,
in the sense that

rD ◦ sD = idD

andsD ◦ rD is an idempotent onI with image isomorphic
to D. This is immediate forD = T . ForD = N , we prove
by induction onn thatrN ◦ sN (n) = n. If n = ⊥ or n = 0
this is immediate. For the inductive step we have that

rN ◦ sN (n + 1) = rN (consR(sN (n))
= rN (tailR ◦ consR(sN (n))) + 1
= rN (sN (n)) + 1
= n + 1 by the induction hypothesis.

It follows that the diagram below commutes:

[I → I]
sup−−−−→ I

rN→sT

x
yrT

[N → T ] −−−−→
∃

T

In fact, letp ∈ [N → T ] and definef : I → I by

f = (rN → sT )(p) = sT ◦ p ◦ rN .

If there is somen such thatp(n) = true, then there is
somex such thatf(x) = 1, namelyx = sN (n), and in
this case we have thatsup f = 1. If p(⊥) = false, then
f(⊥) = 0, and in this case we have thatsup f = 0. There-
fore∃ is definable. �

Corollary 9.5 Real PCF extended withsup is universal and
hence fully abstract.

We do not know whether Real PCF extended with integra-
tion is universal. Moreover, we do not know whether inte-
gration is definable in Real PCF with no extensions.

For applications of Real PCF to real analysis, it seems
more natural to include the supremum operator as a prim-
itive operation than to include the existential quantification
operator.

Remark 9.6 Notice that the section-retraction pairs defined
in the proof of Proposition 9.4 are expressed in terms of se-
quential primitives only, and that the maximum operation



on I represents the “parallel or” operation∨ on T defined
in [23], in the sense that the following diagram commutes:

I × I max−−−−→ I
sT ×sT

x
yrT

T × T −−−−→
∨

T
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