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Abstract In particular, programming languages for exact real num-
ber computation with an explicit distinction between opera-
Real PCF is an extension of the programming language tional semantics, which is representation-dependent, and de-
PCF with a data type for real numbers. Although a Real notational semantics, which is representation-independent,
PCF definable real number cannot be computed in finitely have hardly been investigated. Two exceptions are [6]
many steps, itis possible to compute an arbitrarily small ra- and [16]. Such programming languages do allow for cor-
tional interval containing the real number in a sufficiently rectness proofs based on analytical methods.
large number of steps. Based on a domain-theoretic ap- Real PCF [16] is an extension of the programming lan-
proach to integration, we show how to define integration guage PCF [23] with a data type for real numbers, with op-
in Real PCF. We propose two approaches to integration in erational and denotational semantics. Of course, the opera-
Real PCF. One consists in adding integration as primitive. tional semantics cannot evaluate a program denoting a real
The other consists in adding a primitive for maximization number in finitely many steps. However, it can compute an
of functions and then recursively defining integration from arbitrarily small rational interval containing the real number
maximization. In both cases we have an adequacy theo-n a sufficiently large number of steps.
rem for the corresponding extension of Real PCF. Moreover, Based on previous work on domain theory and integra-
based on previous work on Real PCF definability, we showtion [11, 8], we show how to handle integration in Real
that Real PCF extended with the maximization operator is PCF. In domain-theoretic integration, one obtains increas-
universal, which implies that it is also fully abstract. ingly better approximations to the value of the integral of
a real-valued function. This has led to exact computations
of integrals in various fields such as statistical physics [7],
1. Introduction gterural nets [9], stochastic processes [10], and fractal geom-
y [12].
In order to handle integration in Real PCF, we generalize
Traditionally, in computing science one represents real Riemann integration of real-valued maps of a real variable
numbers by floating-point approximations. If we assume to interval-valued maps of an interval variable. This also ex-
that these approximations are “exact” then we can provetends the results in the interval analysis approach to integra-
correctness of numerical programs by analytical methods.tion [22].
Such an idealization is the idea behind the so-called BSS We propose two approaches to integration in Real PCF.
model [3]. However, such “correct” programs do not pro- One consists in adding integration as primitive. The other
duce correctresults in practice, due to the presence of roundeonsists in adding a primitive for maximization of functions
off errors. Moreover, they are inappropriate for problems and then recursively defining integration from maximiza-
whose solution is sensitive to small variations on the input. tion. In both cases we have an adequacy theorem for the
As a consequence, “exact real number computation” hascorresponding extension of Real PCF. Moreover, based on
been advocated as an alternative solution (see e.g. [4, 5, 25previous work on Real PCF definability [14], we show that
on the practical side and e.g. [2, 20, 21, 24, 26, 27, 28] onReal PCF extended with the maximization operator is uni-
the foundational side). However, work on exact real number versal, which implies that it is also fully abstract.
computation has focused agpresentationsf real numbers The fact that we are able to handle integration in Real
and has neglected the issuedaita typedor real numbers.  PCF shows the strength of such a denotational approach to



exact real number computation and makes explicit the effec-correspond to the following maps of the unit interval into it-

tive content of domain-theoretic integration. self:

Since numerical solution to differential equations is in-
variably based on integration of functions, Real PCF with so(z) = (z+0)/2
integration also provides a framework for solving differen- si(z) = (z+1)/2
ial ion ny precision. ’
tial equations up to any precisio s(z) = (@+1)/2

Organization Thus, a binary expansion represents an intersection of a

In Section 2 we briefly introduce Real PCF. In Section 3 shrinking chain of intervals:

we define interval Riemann integrals. In Section 4 we ex-

tend Real PCF with a primitive for integration. In Section 5

we define a function maximization operator. In Section 6 we represents
gxtend Real PCF with a pnmm_ve for mgxm?lzatlon.. In Sec- ﬂ Sa, 0+ 054 ([0,1]).
tion 7 we show how to recursively define integration from /
maximization. In Section 8 we define multiple integrals and
show how to define them from interval Riemann integration. Example 2.1 Routine algebra shows that the average oper-
In Section 9 we show that Real PCF extended with maxi- ationz @& y = (x + y)/2 satisfies the equations

mization is universal.

a1 Qp -

n>1

Several proofs have been omitted due to lack of space. so(2) ®so(y) = so(z®y)
For a full version of this paper containing all proofs see [13]. so(z) ®s1(y) = si(z@y)
s1(x) B soly) = si(z@y)

2. Real PCF :
si(z) ®si(y) = si(z@y),

In this section we summarize the results of [16, 14] \yhich can be considered asaxursive definitiorof the av-
needed in this paper. We assume familiarity with PCF [23, erage map [15]. O

19]. We are deliberately informal concerning syntax. For
simplicity and without essential loss of generality, we re-  There is no reason to commit ourselves to the particular

strict ourselves to the unit intervfl, 1]. operationsso, s1 ands;. These operations are uniquely de-
_ termined by their imagef), 1], [, 2], and [, 1] respec-
2.1. Interval expansions tively, in the following sense. Given any intervial, b] C

. . . [0, 1], there is a unique increasing linear map
Itis well-known that decimal expansions of real numbers

are not appropriate for real number computation, if we read consj,p) : [0,1] — [0,1]
infinite expansions from left to right. For example, multipli-

cation by3 is not computable w.r.t. decimal representation. with rangefa, b], namely

In fact, any base has essentially the same problem [28].

Let us consider binary expansions of numbers in the unit consp(z) = (b—a)r+a.
interval. In this case, a solution for the above problem is to . o
allow the dlglt% in addition to the dlgltg) and1. Accord- That IS,cons|q,p) rescalesandtranslateshe unit interval so

ing to Martin-Lof [21], this kind of solution goes back to that it becomesa, b]. Therefore the maps), s, ands, are

Brouwer. equal to the mapsons, 1], cons1 s}, and consy1 1 re-
Fora, € {0,1,1}, the sequence spectively.
a1ag -y - Definition 2.2 A sequence of intervals
represents the number a1, b1], [az, ba], - . ., [an, bul,
7;1 an2 " is said to be annterval expansionof the interval

Therefore the operations ﬂ CONS[q, py] © CONS[q, ] © -+~ © cONS[, 5.1([0,1]). O

a1a2...an... — 0a1a2...an... TLZl
102 Gp - > 5A102° - Ap - For example, interval expansions formed from the inter-
a1ag - Qp - — 1a1a2...an... Vals



[0, 1/10],[1/10, 2/10],...,[9/10, 1] 3. Theinformation order of (Z,C) coincides with the

) ) _ prefix preorderof (Z, O, L), in the sense that
are essentiallydecimal expansionsf real numbers con-
tained in the unit interval. x C ziff x Oy = z for somey.
Interval expansions denote iterated selections of subin- . . e _
) . Moreover, such & is unique iffx is non-maximal.
tervals. For example, the interval expansion

Iltems 1 and 2 are the basis for the operational semantics of

[0, 51,04, 31, [3, 1,10, 4],- .-, Real PCF and item 3 is the fundamental link between the de-
. _ notational and the operational semantics.
which corresponds to the binary expansigno - - -, can be If x C z andx is non-maximal then we denote the unique

interpreted as the following sequence of instructions: selecty suchthatc Oy = z byz 1 x. Now it is easy to see
the two middle quarter parts of the interV@J 1], selectthe  that a shrinking a chain of intervals can be represented by
second half of the resulting interval, select the first half of 5, interval expansion. In fact, if
the resulting interval, and so on. Thus, an interval expan-
sion denotes an intersectiongfrinkingchain of intervals. agLaL---LCaL...
Conversely, any shrinking chain of intervals gives rise to an s 3 chain of non-singleton intervals with jainthen the se-
interval expansion, as shown at the end of the next subsecquenCe
tion.

aj, (a2 day),...,(ap+1 Bay,),...

2.2. The unit interval domain is an interval expansion of.

We think of intervals aapproximations of real numbers  2.3. Real PCF
the singleton intervals beintgxact” approximations We

consider these approximationggneralized real numbers. The linear mapsons, for a # 1 with distinct rational
Therefore, we sometimes notationally identify singleton in- end-pointswill play a rdle analogous to thedle played by
tervals and real numbers. the successor map on natural numbers.

We letZ be the set of closed subintervalsj@f1] ordered The predecessor map, undefined or arbitrarily defined at
by reverse inclusion, denoted hy. The lettersx,y, z, zero, is a left inverse of the successor map. Similarly, we
a, b, c in bold font range ovefZ, and we put now look for a continuous left inverse obns,; that is, a

maptail, such that
x = [x,X].
tail, (cons,(x)) = x.
(Z,C) is a continuous Scott domain (bounded complete
w-continuous dcpo) [1] with bottom element= [0, 1]. Its
way-below relation is given by taila(a 0 x) = x,

Since this equation is equivalent to

x <y iff the interior ofx containsy. we see thatail, removes the prefis from its argument, if
such a prefix exists.

In order to defineail,, first considerons, ; as a map
[0,1] — [0,1]. The co-restriction ofonsy, ; to its range
[a, ] is invertible. Hence the continuous map

The setMax(Z) of maximal elements (singleton intervals)
with the subspace topology of the Scott topologyZofs
homeomorphic to the Euclidean unit interval. More gener-
ally, we can consider the domalfu, b] of all closed subin-
tervals offa, b]. tailf, 4 : [0,1] — [0, 1]

Definition 2.3 Given intervalsx,y € Z, define a binary  defined by
operationC onZ b .
P y cons’alb] (a) fz<a
x Oy = consx(y). tailj 4 (z) = cons,'y (x) if z € [a, b]
cons[‘lb} () fz>b

a1

Recall that a monoid is a set together with an associative bi-
nary operation and a neutral element.

0 ifz<a
Theorem 2.4 1. The magons, : Z — Z is continuous = (z—a)/(b—a) ifzca]
for everya € 7. 1 if x>b

2. (Z,0, L) is a monoid. = max(0, min((x — a)/(b —a), 1)).



is a left inverse otonsy, ;) ¢ [0,1] — [0,1]. We thus let ~ whereL = [0, 3], C = [}, 2], andR = [4, 1]. By means
tailj, ) : Z — Z be defined by of the primitives that we have introduced, this recursive def-
. ) . inition can be rewritten as
ta'll[a,b] ([I, y]) = [tall[a,b] (I), taJll[a,b] (y)} .
This map is clearly a left inverse obns, ;) : Z — Z and is
continuous. The left-inverses sf, S1 ands; correspond-
ing to tailp 1y, tails 3, andtail;y ) respectively are

x@y =pifx <y L
then pif y <) 4 then consy (taily (x) ® taily(y))
else conse(taily (x) @ tailg(y))
else pif y <) 1 then consc(tailg(x) @ taily(y))
po(x) = min(2z, 1) else consg(tailg(x) @ tailg(y)).

(z) = max(0, min(2z — 1, 1))

13
41

|

3 For recursive definitions of the complement map- 1—z,
pi(z) = max(0, 2z —1). multiplication, and logarithm see [16].

We need two more primitives, in addition to the linear pefinition 2.7 Real PCF consists of PCF extended with a
mapscons, and their left inverseail,. ground typeZ for the unit interval and constants for the

The first is a counterpart of the equality test for zero on ,initive operations introduced in this subsection
natural numbers. For eaghe (0,1) define a continuous

mapx — (x <, r) :Z — T, whereT = {true,false} 1,  An extension of PCF with a further type for the real line is
by introduced in [16].

true ifxX<r
X<, r = false ifx>r
L otherwise

2.4. A note on the parallel conditional

) ) _ ) Recall that thesequential conditionals defined by
We are interested in the case thas rational.

Remark 2.5 The functionx — (x </, r) : T — T, . v ifp=true
defined by if pthenzelsey =< y !f p = false
1L ifp=_1.
true ifxX<r
x<\r = false ifx>7r Proposition 2.8 Let R be a domain witiMax(R) homeo-
1L otherwise morphic to the real line or the unit interval, ldd be any

. N but not conti dh ¢ tabl domain, letp : R — 7 be a continuous predicate, let
IS monotone but not continuous, and hence not computa e'g, h : R — D be continuous functions, and define a function

In fact, equality of real numbers is not decidable [21] (see f:R— Dby

Subsection 2.4 below). The map— (x <, r) can be

regarded as the best continuous approximation to the mono- f(x) = if p(z) then g(x) else h(z).

tone functionx — (x <, r). O

If p is non-trivial, in the sense that there are maximal ele-

mentse andy such thap(x) = true andp(y) = false, then

fisnot total in the sense thaf(z) = L for some maximal

X if p = true element.

pif p then x else y = y if p = false

xMNy ifp=_1.

The second primitive is a stronger version of the condi-
tional, called theoarallel conditionat

Proof The non-empty disjoint sets§ = p~!(true) N
Max(R) andV = p~!(false) N Max(R) are open in
This map is also continuous. The idea is thally isthe best N ax(R), because is continuous, andtrue} and {false}
information compatible with botk andy. Therefore, ifthe  are open ir7”. Hencell UV # Max(R), becausélax(R)
condition is undefined then this information can be safely js connected. Therefore there is some maximal element
produced anyway (see Subsection 2.4 below). suchthap(z) = L. O

Example 2.6 The recursive definition of average of real 1NuS, the sequential conditional is not appropriate for defi-
numbers given in Example 2.1 generalizes to a recursivenition by cases of total functions di, because it produces
definition of average of intervals: non-total functions in non-trivial cases.
In most definitions by cases of the form
consy,(x) ®consp(y) = consp(x@y

f(x) = pif p(x) then g(x) else h(x)

consy,(x) @ consp(y) = consc(xX®@y

)

(%) (¥) ( )
consg(x) @ consp(y) = consc(x®y) which occur in practice, one has thatz) = g(z) for all

(%) (¥) ( )

consg(x) @ consgr(y) = consgr(x®y), maximalz with p(z) = L. This is the case, for instance,



in the recursive definition of average given in Example 2.6.
Another example is given by the following definition of the
absolute value function:

|z| = pif © <, O0then — z else x.
For the case = 0 one has

|0] = pif L then —0else 0 =0M0=0.

Definition 2.9 A Real PCF program of the foreons, (X)
is said to be apartially evaluated progranwith partial re-
sulta.

The above reduction rules allow us to partially evaluate any
program, producing better and betigartial results con-
verging to itsactualresult, in the sense of Theorem 2.11 be-
low.

Definition 2.10 We extend the notion afomputable PCF

Hence, the parallel conditional is also useful to overcome thetermto Real PCF by adding the following clause to the in-

fact that equality of real numbers is not decidable.
2.5. Adequacy

The operational semantics of Real PCF is given by the
following reduction rules:
1. cons,(consp (X)) — CONScons, (b) (X)
2. tail,(consp(x)) — fix (consy,)
3. taily(consp(x)) — fix (consg)
4. tail,(consp(x)) — consg,, (b (X)
ifaCbanda#b
. tail,(consp (x)) — CONS¢ail, (b) (tailgaiy, (a) (%))
if tail,(b) andtail, (a) are non-maximal
. consy(x) <y r—true ifa<r
. consa(x) < r—false ifa>r

. pif true then x else y — x

© 00 N O

. pif false then x elsey — y

10. pif p then cons,(x) else consp (y) —

consamb (pif p then consgai, -\ (a) (%)
else  consgail,,, (b) ()

ifamnb# L.
Roughly, these rules

1.
computations on intervals with rational end-points,

namely thesubscriptf cons andtail,
2. “factor out” as manyons primitives as possible.

The underlying idea is that if we have a programof the
form

cons, (X') with X’ unevaluated

then we know that the result &f is contained in the inter-
val a, because by definitiotons, is a map with range.

ductive definition given in [23]:

A Real PCF progranX denoting a generalized
real numberx is computableif for every non-
bottom intervaly < x, as close tox as we
please X produces a partial resubs with

yCalx.

Theorem 2.11 (Adequacy)Every Real PCF term is com-
putable.

It follows that a program has some partial evaluation iff it
does not denote bottom; it is important here thatinnot be
bottom in a primitive operatiotons,.

3. Interval Riemann integrals

A generalization of the Riemann theory of integration
based on domain theory was introduced in [8]. Essentially,
a domain-theoretic framework for the integration of real-
valued functions w.r.t. any finite measure on a compact met-
ric space was constructed using the probabilistic power do-
main of the upper space of the metric space. In this pa-
per we will only be concerned with integration w.r.t. to the
Lebesgue measure (uniform distributionf. Other mea-
sures inR™ will be dealt with in a future paper.

In order to extend Real PCF with integration, we embark
on anovel approach compared to [8] for integration w.r.t. the
Lebesgue measurelitr We work with the continuous dcpo
R = IR of compact intervals of the real line ordered by re-
verse inclusion, and we consider integration of maps of type
R™ — RrathertharR™ — R, and we deduce various prop-

reduce computations on generalized real numbers togrties which are interesting in their own right as well.

Addition in the continuous dcpR is defined by
Xx+y=[x+y,X+7]

The map(x,y) — x +y : R x R — R is continuous.
Given a real numbet and an intervak, we put

X = ax = [xo, Xa].
The mapx — xa : R — R is continuous too. We also put

dx =X — x.



A partition of an intervalla, b] is a finite set of the form
P =Ala,x1],[z1, 2], .., [Xn-1, Tn], [Tn, b]}.

We denote byP[a, b] the set of all partitions dfs, b]. A par-
tition @ refinesa partitionP if ) is obtained by partitioning
some elements aP.

Lemma 3.1 P[a,b] is directed by the refinement order.
That is, for any two partitions df:, b] there is a third parti-
tion refining both.

Definition 3.2 Letf : R — R be a map anda, b] be an
interval. Aninterval Riemann sunof f on|[a, b] is a sum of
the form

Z f(x)dx

xeP

for P € Pla,b]. O

Lemma 3.3 Letf : R — R be amonotonemap(w.r.t. the
information order) If a partition @ of an intervalla, b] re-
fines a partitionP then

Z f(x)dx C Z f(x)dx.

xeP xeQ

Therefore, the set of interval Riemann sumg oh [a, ] is
directed.

Definition 3.4 Theinterval Riemann integralof a mono-
tonemapf : R — R on an intervala, b] is defined by

/:f: L] > f(x)dx.

PcPlab] xEP
We sometimes denofa@ f byf;7 fx)dx. O

Proposition 3.5 For all monotone map$, g : R — R and
all real numbersy and 3,

/f
b ac
/f+/f
a b

/ '(af + g)

0,
[
ab b
a/erﬂ/g.

Clearly, ff f depends only on the values tHfahssumes
onIfa,b].

Theorem 3.6 For every intervala, b], the integration map
b
f»—>/ f: [Ia,b —R]—R

is continuous.

Proof LetF be a directed subset ffa, b] — R]. Then

fu-

|_| Z (|_| _7:) (x)dx

P xeP

= 1> <|_| f(x)> dx

P xcP \feF

- UYL rooax

P xePfcF

= |_| |_| Zf(x)dx

P feFxeP

- LU rooax

feF P xeP

= |_|/bf.D

feFy,

Lemma 3.7 Let [a, b] be an interval, letB be any basis of
I[a, b], and denote byPg|a, b] the partitions offa, b] con-
sisting of basis elements. Then for aontinuousunction
f:Ia,b] = R,

/ab f= || > f(x)dx.

QePpla,b] x€Q

Remark 3.8 Moore [22] handles integration by consider-
ing sums which are essentially interval Riemann sums for
partitions consisting aof intervals of the same length, but he
restricts his definition to rational functions. The integrand
is assumed to be monotone w.r.t. inclusion and continuous
w.r.t. the Hausdorff metric on intervals. Since the Haus-
dorff metric induces the Lawson topology @, the inte-
grand is Scott continuous [17, 18]. Therefore Lemma 3.7
above and Theorem 3.12 below show that our definition gen-
eralizes that of Moore to all Scott continuous functions

Given any continuous functiofi: R — R, the function
If: R — R defined by

is also continuous. Since continuous maps preserve con-
nectedness and compactness,

Lf(x) = [inf f(x), sup f(x)].

Hence the end-points of an interval Riemann sum are given
by lower and upper Darboux sums respectively:

YO If(x)dx = | > inf f(x)dx, Y sup f(x)dx| .

xeP xeP xeP



Therefore 4. Integration in Real PCF

b b b b
/ If = [/ f,/ f] = {/ f}. Again, for simplicity and without essential loss of gener-

ality, we restrict ourselves to the unit interval. Clearly, the

mapfo1 : [Z - R] — Rrestrictsto]Z — Z] — Z. We

denote the restriction by.

If({z}) = {f(2)}. In this section we adq : [Z — Z] — T as a primitive
operation to Real PCF.

The mapl f is anextensionof the mapf, in the sense that

Any continuous mag : R — R has infinitely many distinct

continuous extensions ® — R. The extensiodf ischar- ~ Lémma4.1 Forany continuous map: 7 — 7,

acterized as the greatest one. Theorem 3.12 below shows

thatIf can be replaced bgnycontinuous extensiofin the / cons, © f = consa ( / f> )

above equation.

Lemma 3.9 For every continuous functiofi : R — R /f = /fo consy, @ /fo CONSg.

there is a greatest continuous functibn: R — R such

that Proof (Outline) The first equation is linearity. For the sec-

fivax R = | Max R ond equation we have

. b -1
given by /f _ / ¢

10 = |iut £((a)) sup (D) ;
W = |inf £((x)). supFTET]] L
— /02f /éf

rex TEX

+

Lemma 3.10 For any continuous : R — R, . .
/b /b R = / f(%)idx +/ f (=) 1dx
f = f. 0 0

. . . ) = /foconsLEB/foconsR. O
Theorem 3.11 The interval Riemann integral of a continu-
ous functionf : R — R depends only on the value thét
assumes at maximal elements, in the sense that for any con- . .
tinuous functiorg : R — R, Notation 4.2 1. [Ydx stands for[ AxY'.

2. [ F(x)dx stands for[ F'if F'is a primitive operation

b b
f| Max(R) = 8| Max(R) |mpI|eS / f= / g. of typeI —TI. |
o This notation is ambiguous. For instangegons, (x)dx
Proof By Lemma 3.9f| nax(r) = 8| Max(r) iMpliest = g. can stand for both cons, and [ Ax cons,(x). However,
Therefore the result follows from Lemma 3.10.0 his ambiguity does not introduce inconsistencies, because

both terms have the same meaning.
Lemma 4.1 gives rise to the following reduction rules:

. . 1. [ consa(Y)dx — cons, ([ Vdx)
/a f = {/a f} 2. [Y[x]dx — [Y[consy(x)]dx @ [ Y[consg(x)]dx

!/ H !/
Proof We know that this is true fof = If. If f is any ex- 3 [Yidx— [Yidx WY =Y.
tension then Lemma 3.9 implies thiat= If. Therefore the HereY[x] is a term of typeZ with some free occurrences
result follows from Theorem 3.11. O of x, andY [ X'] denotes the terii with all free occurrences

The significance of Theorems 3.11 and 3.12 is that some-of x replaced by the ternX.

times it is easy to obtain a Real PCF program for an exten- We call these rules theutput, input, and production
sion of a functionf but it is difficult or undesirable to ob-  rules respectively. Intuitively, the output rule produces par-
tain a program for its greatest continuous extension. Fortial output, the input rule supplies partial input, and the pro-
instance, the distributive law does not hold for the greatestduction rule partially evaluates the integrand (with no input
continuous extensions of addition and multiplication, so that or with the partial input supplied by the input rule in previ-
two different definitions of the same function can give rise ous reduction steps).
to two different extensions and two different programs [22]. In order to establish adequacy we need some lemmas.

Theorem 3.121f f : R — Ris continuous and : R — R
is a continuous extension @fthen



Lemma 4.3 For every natural numbern define a map 5. A supremum operator
[T -1 Thy
In this section we define a supremum operator. The pre-

n 2" . .
/( ) F=3f ({k -1 kD 1 sentation follows the same pattern as Section 3.
Pt 2n Ton | ) on’ Recall that an extensialf : R — R of any continu-
ous functionf : R — R was defined in Section 3. This
Thenf(") is continuous, and construction clearly generalizes to real valued continuous of
) several real variables. For example, we have that
[e=U ][ = -
30 Imax(x,y) = [max(x,y), max(X,y)].
where the join is directed. When there is not danger of ambiguity, we wrjtenstead
Lemma 4.4 For every natural numben, of If.
(0) Lemmab5.1 Letf : R — R be amonotonemap(w.r.t. the
/ f = f(), information order) If a partition @ of an intervalla, b] re-
(nt1) (n) (n) fines a partitionP then
f = f f .
/ / PeonsL / S man £ (x) C max f(x).
xE xE
Corollary 4.5 For everyn there is a program in Real PCF
(without the integration primitive) defining"™. Definition 5.2 For a functionf : R — R we write
Lemma 4.6 If F : T — Tis a closed computable term then sup f = sup f(x).
la,b] z€la,b]

every partial result produced by the prografﬁ") Fis also

produced by the progranfi F. Thesupremumof amonotonemapf : R — R on an inter-

Proof By induction onn. For the base case use the pro- val[a, ] is defined by

duction rule, the output rule, and the fact tHatis com-

putable. For the inductive step use the input Rildimes, supf = |_| max f(x). O
the fact thatd and f(") are computable, and the fact that o0

PecPla,b]
Y a is computable ifY'[x] is computable. "
[consa(x)]1 pu 1] i pu = Proposition 5.3 For all monotone map§, g : R — R and

Lemma 4.7 [ is a computable primitive operation. all real numbersy and g3,

Proof Let F' be any closed computable program denoting a supf = f(a)

functionf : 7 — 7, and lety < [ f. Since/ f is the join of [a,a] ’

the chain{ [ £},,>0, there is am such thaty < f(") f, max(sup f,supf) = supf,

by a basic property of the way-below relationdontinuous [a;b]  [b,c] [ac]

dcpos. Now,[ " F is computable becausé™ andF are supmax(af, fg) = max(asupf, fsupg).

. . . [a,b] [a,b] [a,b]
computable. Hence there is somevithy C a C f( g

such that/ ™ F partially evaluates to a program of the form  Clearly, sup;, ,; £ depends only on the values tHags-

cons, (X), by definition of computability. But sumes ori[a, b].

(n) Theorem 5.4 For every intervala, b], the supremum map

yoac [ fc [t
f — supf : [I[a,b] = R] = R

and [ F partially evaluates to a program of the form [a,b]
cons, (X'), by virtue of Lemma 4.6. Thereforg is com- ) ]
putable. 0 is continuous.
Theorem 4.8 (Adequacy)Every term in Real PCF ex- Lemma5.5 Let[a,b] be aninterval, and leB be any basis
tended with integration is computable. of I[a, b]. Then for anycontinuousgunctionf : Ija,b] — R,
Proof Extend the proof of adequacy of Real PCF given
in [16] by including Lemma 4.7 as one of the inductive Subpf = |_| ?Eagf(x).
steps. O [ Qepplab)



Clearly, forf : R — R continuous we have that Notation 6.3 1. sup, Y stands forsup AxY.

max Tf(x) = [mgg inf £(), ma Supf(x)] _ 2. sup, F'(x) stands forsup F if F is a primitive oper-

xeP ation of typeZ — 7. O
Therefore Lemma 6.2 gives rise to the following reduction rules:
sup If =<supf ;.
[a,b] la,b] 1. supcons,(Y) — cons, (sup Y)

Lemma 5.6 For any continuous : R — R,
2. sup Y[x] — max (squ[consL (x)})

supf = supf. .

[a,b] [a,b]
Theorem 5.7 The supremum of a continuous functibn (SI)J(PY[COHSR(X)])
R — R depends only on the value thBtassumes at maxi-
mal elements. 3.supY —supY’ ifY =Y.

Theorem 5.8 If f : R — Ris continuousand : R — R

. ; . Notice that these are the reduction rules farith [ and®
is a continuous extension gfthen

replaced byup andmax respectively. We obtain the fol-

lowing similar results:
supf = sup f o . ]
[a,b] [a,b] Lemma 6.4 For every natural numbemn define a map

e L . . sup™ : [T — I] — T by

An infimum operatoinf is defined similarly, by replac-

ing max by min. sup™f = s <{k1, k}) '
k=1 2 2n
6. Real PCF extended with supremum
Thensup'™ is continuous, and

This section follows the same pattern as Section 4. )
Again, for simplicity and without essential loss of general- sup f = I_I sup*™’f,
ity, we restrict ourselves to the unit interval. Clearly, the n20
mapsupyg ) : [Z — R| — Rrestricts toZ — 7] — I.
We denote the restriction byip.

In this section we adslp : [I — I] — 7 as a primitive Lemma 6.5 For every natural numben,
operation to Real PCF.

where the join is directed.

. . supOf = f(L),
Lemma 6.1 max andmin (in curried formZ — 7 — 7)
are definable in Real PCF. sup(”H)f = max (sup(")f o consy,, sup(")f o consR> .
Proof max can be recursively defined by Corollary 6.6 For everyn there is a Real PCF program

max(x,y) = pif x <1 1 definingsup™.

then pif y <, 1 then consy (max(tailz (x), taily (y)))
else y

else pif y <, 1 then x
else consg(max(tailg(x), tailg(y))),

Lemma6.7 If F : T — Zis a closed computable term
then every partial result produced by the progranp(™ F
is also produced by the prograsap F'.

andmin can be defined by Lemma 6.8 sup is a computable primitive operation.

min(x,y) =1 -max(1—x,1—y). O Theorem 6.9 (Adequacy)Every term in Real PCF ex-
tended withsup is computable.

Lemma 6.2 For any continuous map: 7 — 7, The operationnf is definable fromsup by

sup cons, o f = cons, (supf), inff =1-— S‘ip(l - f(x)),

sup f = max (sup f o consy, sup f o consg) . so there is no need to include it as primitive too.



7. A Recursive definition of integration

It is natural to ask if the integration operator, added in
Section 4 as primitive, is already recursively definable in
Real PCF.

Let D = [[Z — Z] — Z]. Then the second equation
of Lemma 4.1 leads one to consider the ndap D — D
defined by

G(F)(f) = F(f oconsy,) ® F(f o consg).

Thus the integration operatgris a fixed point ofG. How-
ever, the least fixed point is the bottom elemenbof

Peter Freyd suggested that if we restrict ourselves to the

subspace)’ C D of functionsF € D such that
inff < F(f) <supf,

thenG restricts to a magg?’ : D’ — D’, and [ is the
least fixed point of5’. We use this idea in a modified form,
obtaining [ directly as the least fixed point of a function
H:D— D.

Define a map : R? — R by

p(x,y, z) = max(z, min(y, z)).
Then, giveru < b, the map
r(z) = p(a,z,b)

is idempotent,
a <r(x)<b,

and
r(z)=ziff a <a <b.

Define a function : D — D by
H(F)(f) = p(inf f, F(f o consy) & F(f o consg),supf).

Lemma 7.1 For every continuous functiofi: Z — Z,

(n)
= [t

wheref is defined as in Lemma 3.9.

Proof By induction onn. For the base case use the fact that
f(L) =p(inff, L ,supf). O

Proposition 7.2 [ is the least fixed point of .
Proof Immediate consequence of Lemmas 4.3 and 7.0

Corollary 7.3 The integration operator is definable in Real
PCF extended withup.

Proof We clearly have that
Ip(x,y,2z) = max(x, min(y, z)).
ThereforeH is definable. O

8. Multiple integrals

A partition of ahyper-cube

a=(a,...,a,) €R"

is a cartesian product

—

P=P x---xP,

of partitions ofa, .. ., a,, respectively. We denote the set of
partitions ofa by Pa. Refinements are defined coordinate-
wise. Thevolumeof ann-dimensional hyper-cubg is

dX = dxq - - - dx,,.

Definition 8.1 Letf : R™ — R be a map andi be ann-
dimensional hyper-cube. rwultiple interval Riemann sum
of f ona is a sum of the form

> f(R)dR

ReP

forPePa. 0O

Definition 8.2 Themultiple interval Riemann integrabf a
monotone map : R — R on a hyper-cuba is defined by

/f: ] > f®adz o
a PepPa =xecP

Forn = 1 this definition reduces to our previous definition:

/ f:/f.
a) a

Theorem 8.3 (Fubini’'s Rule) For every natural number
n > 1, every continuous functioh : R™ — R, and ev-
ery n-dimensional hyper-cubs,

/5f - /<a1) (/a f(x)dil> dx1,

wherea’ = (ag,...,a,)and X' = (x2,...,Xy).

Proof For notational simplicity and without essential loss
of generality, we prove the claim for = 2:

L. X

PxQ€eP(a,b) (x,y)ePXQ

Ll L > > f0ey)dxdy

PePa QePb xeP yeQ

|_| Z |_| Zf(}gy)dy dx

PcPa xcP \QePb yeQ

//\X/ Ayf(x,y). O
(a) (b)

f(x,y)d(x,y)



Corollary 8.4 For everyn there is a program in Real PCF by
extended with either integration enp which computes the

multiple integration operatoyf : [Z" — Z] — Z of ordern. sy(n) = if n=0then 0 else consg(spy(n — 1))

(r) = ifz <, 1/4then 0 else ry(tailg(z)) + 1,

Proof Since PCF does not have cartesian products, we haverN
to use curried maps. Our primitive or program for integra-  s7(t
tion takes care of the case = 1. The equation of the rr(z
above theorem can be read as a definition of a program for

= iftthen1lelse0
= if # <, 1/2 then false else true

_ — —

the casen + 1 from a program for the case By the ad- Then(sp, rp) is a section-retraction pair with as a retract,
equacy theorems, these programs indeed compute multiplén the sense that
integrals of order.. 0O rposp =idp

This application of the adequacy theorems shows that ad- ) ] o ) .
equacy is a powerful result. In fact, it allows us to derive @ndsp o 7p is an idempotent off with image isomorphic
correct programs from analytical results, in a representation-t0 D. This is immediate fo) = 7. ForD = N, we prove

independent fashion. This is precisely the idea behind denoY induction om thatry o syr(n) = n. If n = Lorn =0
tational semantics. this is immediate. For the inductive step we have that

ryosy(n+1) = ray(consg(sy(n))
= ry(tailg o consg(sa(n))) +1
= ra(sy(n) +1
Definition 9.1 A programming languagé is universal if = n+1 bytheinduction hypothesis.

every computable element in the universe of discourge of
is L-definable. O

9. Universality of Real PCF extended with the
supremum operator

It follows that the diagram below commutes:

sup
PCEF is not universal; however, PCF extended with the par- Z—-1I] — I
allel conditional and the existential quantification operator WHSTT lw
3: (N — T) — T defined by

W-—-T7 —— T
true if p(n) = true for for somen 3

A(p) =< false if p(L) = false e
N otherwise. In fact, letp € [N — 7] and definef : T — T by

is universal [23]. Real PCF with no extensions is not univer- f=(n—sr)(p)=sToporn.
sal, becausé is not definable [14]. If we extend Real PCF
with 3 and the computation rules givenloc. cit,, then the
adequacy property remains true. The following universality
result is proved in [14]:

If there is somen such thatp(n) = true, then there is
somex such thatf(x) = 1, namelyx = sx(n), and in
this case we have thatpf = 1. If p(L) = false, then
f(1) = 0, and in this case we have thatp f = 0. There-

Theorem 9.2 Real PCF extended withis universal. fore 3 is definable. O

Corollary 9.3 Real PCF extended withis fully abstract. Corollary 9.5 Real PCF extended witlup is universal and
hence fully abstract.

The reader is referred to [23] for the definition of full ab-

straction. We do not know whether Real PCF extended with integra-
Although Theorem 9.2 implies thatip is definable in tion is universal. Moreover, we do not know whether inte-

Real PCF extended with, we do not know a neat fixed- gration is definable in Real PCF with no extensions.

point definition ofsup. For applications of Real PCF to real analysis, it seems

more natural to include the supremum operator as a prim-

itive operation than to include the existential quantification

operator.

Proposition 9.4 . The existential quantification operatar
is definable in Real PCF extended wsilnp.

Proof For D € {N, T}, define continuous maps . ) ) ) .
Remark 9.6 Notice that the section-retraction pairs defined

in the proof of Proposition 9.4 are expressed in terms of se-

D
o
D=1 guential primitives only, and that the maximum operation

SD



onZ represents the “parallel or” operatianhon 7 defined
in [23], in the sense that the following diagram commutes:

max

IxT A

STXSTT J{TT

TxT —— T

\%
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