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Abstract. Joins in the frame of nuclei are hard to describe explicitly because

a pointwise join of a set of closure operators on a complete lattice fails to be
idempotent in general. We calculate joins of nuclei as least fixed points of

inflationary operators on prenuclei. Using a recent fixed-point theorem due to
Pataraia, we deduce an induction principle for joins of nuclei. As an illustration

of the technique, we offer a simple (and also intuitionistic) proof of the localic

Hofmann–Mislove Theorem.

1. Introduction

A frame, or locale, is a complete lattice in which binary meets distribute over
arbitrary joins. A nucleus on a frame is an inflationary and idempotent map that
preserves finite meets. Under the pointwise ordering, the nuclei on a frame form
themselves a frame. Meets of nuclei are calculated pointwise, but joins are harder
to describe explicitly, as pointwise joins fail to be idempotent in general.

Thus, prenuclei are introduced as a tool for calculating joins [14]. A prenucleus
on a frame is an inflationary map that preserves finite meets. Banaschewski con-
siders a slightly more general notion with the same terminology [1]. The prenuclei
also form a complete lattice. A simple but important technical property of prenu-
clei is that, as opposed to nuclei, they are closed under composition and under the
formation of pointwise directed joins. The inclusion of the frame of nuclei into the
lattice of prenuclei has a left adjoint, which, as any left adjoint to an inclusion, as-
signs to each prenucleus p the least nucleus p̄ with p ≤ p̄, referred to as the nuclear
reflection of p. Thus, the join of a set of nuclei in the frame of nuclei is the nuclear
reflection of its join in the lattice of prenuclei.

There are at least four ways of obtaining the reflection. Let p be a prenucleus
on a frame T . Simmons [13, 14] defines inductively, for all ordinals α and limit
ordinals λ,

p0(u) = u, pα+1(u) = p(pα(u)), pλ(u) =
∨
{pα(u) | α < λ}.

Then pα must be idempotent for a sufficiently large ordinal α, and p̄ is then pα for
such α. Banaschewski [1] shows that

p̄(u) =
∧
{v ∈ T | u ≤ v = p(v)},

Johnstone [9] shows that

p̄(u) =
∧
{((u⇒ v) ∧ (p(v)⇒ v))⇒ v | v ∈ T},
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and Wilson [17] shows that

p̄(u) =
∧
{(p(v)⇒ v)⇒ v | u ≤ v},

where the symbol ⇒ denotes Heyting implication.
We propose a fifth way of obtaining the nuclear reflection, which is based on the

observation that p̄ is the least nucleus k satisfying the fixed-point equation p◦k = k.
We apply a version of Tarski’s fixed-point theorem due to Pataraia [12] to conclude
that p̄ enjoys the following induction principle.

1.1. If p is a prenucleus and Q is an inductive set of prenuclei such that q ∈ Q
implies p ◦ q ∈ Q, then p̄ ∈ Q.

Here a set of prenuclei is called inductive if it has the least prenucleus as a
member and is closed under the formation of directed joins.

We also propose a related sixth way of computing the join of a set J of nuclei,
which is based on the observation that the join is the least nucleus k satisfying the
family of fixed-point equations j ◦ k = k with j ∈ J . We apply a generalization of
Pataraia’s fixed-point theorem, from single inflationary maps to sets of inflationary
maps, to conclude that the join enjoys the following induction principle.

1.2. If J is a set of nuclei and Q is an inductive set of prenuclei such that j ∈ J
and q ∈ Q together imply j ◦ q ∈ Q, then

∨
J ∈ Q.

Although this second induction principle also refers to prenuclei, it avoids the
cumbersome detour of calculating the join in the lattice of prenuclei and then
reflecting it back to the frame of nuclei.

As an illustration of the technique, we consider the Hofmann–Mislove Theo-
rem [4, Theorem 2.16] [10]. We offer a simple proof of a localic version, first
established by Johnstone [8, Lemma 2.4], which is based on the same idea but uses
the second induction principle instead of transfinite induction, so that it is intu-
itionistic in the sense of topos logic [6]. Essentially, this means that the principle of
excluded middle, the axiom of choice and proper classes are not allowed—in par-
ticular, ordinals are ruled out. For another intuitionistic proof, based on different
methods, see Vickers [16], and for a direct intuitionistic proof in the stably locally
compact case, see Escardó [3].

Our development is largely self-contained, but we assume that the reader is fa-
miliar with basic order-theoretic concepts. The standard reference to locale theory
is Johnstone [7], where it is emphasized that many important topological theorems
that unavoidably rely on non-constructive principles have intuitionistic localic ver-
sions.

In Section 2, we develop Pataraia’s fixed-point theorem in detail because it is
unpublished (a brief sketch is published as [15, Exercises 3.44 and 3.45]). But we
do include one new result, which is applied in Section 3 to establish the induction
principles discussed above. We finish by considering the localic Hofmann–Mislove
Theorem in Section 4.

I am grateful to Harold Simmons for discussions on frames. Alex Simpson com-
municated Pataraia’s theorem to me and indicated that it can often be used as a
substitute for arguments based on transfinite induction. Thanks to Dito Pataraia
for letting me have a copy of his original manuscript and allowing me to include
a proof. Achim Jung is gratefully acknowledged for careful readings of previous
versions and various suggestions regarding the presentation of the material.
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2. A common-fixed-point theorem

This section is based on Pataraia [12]. A poset is directed complete if it has joins
of directed subsets. A monotone endomap f of a poset is said to be inflationary if
x ≤ f(x) holds for all elements x of the poset.

Lemma 2.1. The set of all inflationary maps on any non-empty directed complete
poset has a common fixed point.

Proof. The set of inflationary maps under the pointwise ordering is directed com-
plete because it is closed under the formation of pointwise directed joins. It is
directed because the identity is inflationary and because if f and g are inflationary
then f ◦ g is an inflationary map above f and g. By directed completeness, there is
a maximum inflationary map >. If f is inflationary then > ≤ f ◦ >, and, because
f ◦ > is inflationary, f ◦ > ≤ > by construction of >. Therefore >(x) is a common
fixed point of the inflationary maps for any element x of the poset.

By an inductive poset we mean a directed complete poset with a least element,
and by an inductive subset of an inductive poset we mean a subset that has the
least element as a member and is closed under the formation of directed joins. The
following generalizes a proposition by Pataraia from single inflationary maps to sets
of inflationary maps, but we stress that the idea of proof is the same.

Theorem 2.2. Any set F of inflationary maps on an inductive poset D has a least
common fixed point. Moreover, any inductive subset of D that is closed under f for
each f ∈ F has the least common fixed point as a member.

Proof. Let X be the intersection of the inductive subsets of D that are closed
under f for each f ∈ F . Then each f ∈ F restricts to an inflationary map on X,
and by Lemma 2.1, the set F has a common fixed point in X, say x. Let y ∈ D be
another. The set I = {d ∈ D | d ≤ y} is inductive, and if d ∈ I and f ∈ F then
f(d) ≤ f(y) = y which shows that f(d) ∈ I. Therefore x ≤ y because X ⊆ I.

In our applications, the least fixed point is known to exist in advance, and the
induction principle formulated in the second clause of the theorem is used in order
to deduce properties of it.

We include the following for the sake of completeness, but we remark that is not
needed for the purposes of this paper.

Corollary 2.1. Any monotone endomap of an inductive poset has a least fixed
point.

Proof. If f : E → E is a monotone endomap of an inductive poset E, then D =
{x ∈ E | x ≤ f(x)} is an inductive subset of E and is closed under f , and the
restriction of f to D is inflationary. Hence the result follows from Theorem 2.2 and
the fact that D contains all fixed points of f .

Notice this does not generalize from single monotone maps to sets of monotone
maps, as exemplified by the poset with one minimal and two maximal elements
and by the two constant endomaps that fix each maximal element.

3. Joins in the frame of nuclei

Lemma 3.1. For any given prenucleus p, a nucleus k satisfies the inequality p ≤ k
if and only if it satisfies the fixed-point equation p ◦ k = k.
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Proof. The inequality k ≤ p◦k always holds because p is inflationary. If p ≤ k then
p ◦ k ≤ k ◦ k = k. Conversely, if p ◦ k = k then p ≤ p ◦ k = k because p is monotone
and k is inflationary.

Theorem 3.2. Let P be a set of prenuclei and k be the least nucleus with p ≤ k
for all p ∈ P . If Q is an inductive set of prenuclei such that p ∈ P and q ∈ Q
together imply p ◦ q ∈ Q, then k ∈ Q.

Proof. For each p ∈ P , the function q 7→ p ◦ q is an inflationary map of the lattice
of prenuclei because p is inflationary. By Theorem 2.2, these maps have a least
common fixed point, say r, which belongs to any inductive set Q of prenuclei such
that p◦ q ∈ Q whenever p ∈ P and q ∈ Q. But Lemma 3.1 shows that k is the least
nucleus satisfying the family of fixed-point equations p ◦ k = k with p ∈ P . Thus,
if we show that the prenucleus r is actually a nucleus, we conclude that k = r and
we are done. The set Q′ of prenuclei q with q ◦ r ≤ r is inductive. If p ∈ P and
q ∈ Q′ then q ◦ r ≤ r and hence p ◦ q ◦ r ≤ p ◦ r = r, which shows that p ◦ q ∈ Q′.
It follows that r ∈ Q′ and hence that r is idempotent, as required.

We are interested in the following two special cases.

Corollary 3.1 (Reflection induction). If p is a prenucleus and Q is an inductive
set of prenuclei such that q ∈ Q implies p ◦ q ∈ Q, then p̄ ∈ Q.

Corollary 3.2 (Join induction). If J is a set of nuclei and Q is an inductive set
of prenuclei such that j ∈ J and q ∈ Q together imply j ◦ q ∈ Q, then

∨
J ∈ Q.

The following well-known property of nuclear reflections [9] can be proved by
reflection induction.

Proposition 3.3. The fixed points of a prenucleus p coincide with those of its
nuclear reflection p̄. In particular, p̄(u) is the least fixed point of p above u.

Proof. Since p ◦ p̄ = p̄ by Lemma 3.1, every fixed point of p̄ is a fixed point of p.
Conversely, let u be a fixed point of p. The set Q of prenuclei q with q(u) = u
is inductive. If q ∈ Q then q(u) = u and hence p(q(u)) = p(u) = u, which shows
that p ◦ q ∈ Q. Therefore p̄(u) = u by the reflection-induction principle. For the
particular case, if u ≤ v = p(v) then p̄(u) ≤ p̄(v) = v because p̄ is monotone.

In order to show that (an isomorphic manifestation of) the lattice of nuclei is
a frame, Isbell [5] established the frame distributivity law by a rather complicated
argument. Johnstone [7, Proposition 2.5] and Simmons [14, Lemma 3.1] obtained
simpler proofs by defining Heyting implication, relying on the fact that a complete
lattice is a frame if and only if it is a Heyting algebra. The join-induction principle
allows us to provide a particularly simple proof of the frame distributivity law.

Let k be a nucleus, J be a set of nuclei, and l denote
∨
{k∧j | j ∈ J}. It is enough

to show that k∧
∨
J ≤ l. By the distributivity law of the underlying frame and the

fact that finite meets and directed joins of prenuclei are computed pointwise, the
set Q of prenuclei q with k∧ q ≤ l is inductive. If j ∈ J then k∧ j ≤ l, and hence if
q ∈ Q then (k∧j)◦(k∧q) ≤ l◦l = l. But (k∧j)◦(k∧q) = k◦k∧k◦q∧j◦k∧j◦q = k∧j◦q
because k ≤ k◦q and k ≤ j ◦k, which shows that j ◦q ∈ Q and hence that

∨
J ∈ Q.

The arguments of this section generalize in two directions. Firstly, notice that
they only mention existence of finite meets and directed joins, and distributivity
of the former over the latter. Posets with such structure are known as preframes.
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Thus, the join-induction principle holds for the frame of nuclei on a preframe.
Secondly, we can drop the requirement of existence of finite meets and any dis-
tributivity law altogether. In this case, we obtain a join-induction principle for the
complete lattice of closure operators on a directed complete poset, with prenuclei
replaced by inflationary maps.

4. The Hofmann–Mislove–Johnstone Theorem

We finish this paper with a more sophisticated illustration of the join-induction
principle. The Hofmann–Mislove Theorem says that the compact saturated subsets
of a sober topological space are in order-reversing bijection with the Scott open
filters of open sets [4, Theorem 2.16]. Recall that a set is saturated if it is the
intersection of its neighbourhoods, and that a filter is Scott open if it is inaccessible
by directed joins. Here we prove a localic version due to Johnstone [8, Lemma 2.4].

Theorem 4.1 (Johnstone). The compact fitted quotient frames of any frame are
in order-reversing bijection with the Scott open filters of opens.

We begin by discussing the terminology and notation used in the formulation
and proof of the theorem. A typical example of a frame is the topology of a topo-
logical space, and, in fact, frames can be regarded as generalized (sober) topologies.
The elements of a frame are referred to as opens and are ranged over by the let-
ters u, v, w, and the bottom and top opens are denoted by the symbols 0 and 1.
A homomorphism of frames is a function that preserves finite meets and arbitrary
joins. Topologically, frame homomorphisms correspond to continuous maps in the
opposite direction. A quotient of a frame is a direct image of a nucleus on the
frame. Topologically, (spatial) quotient frames correspond to (sober) subspaces [2].
Moreover, joins of nuclei correspond to intersections of subspaces. Each open v
induces a nucleus v◦ defined by

v◦(u) = (v ⇒ u) =
∨
{w | w ∧ v ≤ u}.

Nuclei of this form are called open as they correspond to open subspaces. A fitted
nucleus is a join of open nuclei. Thus, fitted nuclei correspond to saturated sub-
spaces. A nucleus j on a frame T is said to be compact if the top open is compact
(every open cover has a finite subcover) in the quotient frame j(T ).

In what follows, T stands for an arbitrary frame. In order to prove Theorem 4.1,
we begin with some standard facts that relate nuclei and filters of opens [11]. For
a nucleus j on T and a set φ ⊆ T , define

∇j = j−1(1), ∆φ =
∨
{v◦ | v ∈ φ}.

Notice that if j ≤ k then ∇j ⊆ ∇k, and if φ ⊆ γ then ∆φ ≤ ∆γ.

Lemma 4.2. 1. ∇j is a filter.
2. ∆φ is a fitted nucleus.
3. ∆∇j ≤ j.
4. φ ⊆ ∇∆φ.

Proof. (1): j preserves finite meets. (2): By definition. (3): If v ∈ ∇j then v◦(u) =
(v ⇒ u) ≤ j(v ⇒ u) = j(v ⇒ u) ∧ 1 = j(v ⇒ u) ∧ j(v) = j((v ⇒ u) ∧ v) ≤ j(u) for
any u ∈ T , and hence v◦ ≤ j. (4): If v ∈ φ then ∆φ(v) ≥ v◦(v) = (v ⇒ v) = 1.
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Lemma 4.3(2) below is due to Johnstone [8, Lemma 2.4(ii)]. Our proof is based
on the same idea, but we use the join-induction principle formulated in Corollary 3.2
instead of ordinals and transfinite induction.

Lemma 4.3. 1. j ≤ ∆∇j if j is fitted.
2. ∇∆φ ⊆ φ if φ is a Scott open filter.

Proof. (1): The assumption amounts to j = ∆φ for some φ ⊆ T . Hence the claim
amounts to ∆φ ≤ ∆∇∆φ, which follows from Lemma 4.2(4) and monotonicity of ∆.
(2): Let Q be the set of prenuclei q with q−1(φ) ⊆ φ, that is, such that q(u) ∈ φ
implies u ∈ φ. The least prenucleus, being the identity, belongs to Q. If D ⊆ Q is a
directed set with (

∨
D)(u) ∈ φ then q(u) ∈ φ for some q ∈ D because directed joins

of prenuclei are computed pointwise and φ is Scott open, and u ∈ φ because q ∈ Q,
which shows that

∨
D ∈ Q. If v◦ ◦q(u) = (v ⇒ q(u)) ∈ φ for v ∈ φ and q ∈ Q, then

q(u) ≥ v ∧ (v ⇒ q(u)) is in φ because φ is a filter, and hence so is u because q ∈ Q,
from which it follows that v◦ ◦ q ∈ Q. By the join-induction principle, the nucleus
∆φ is in Q. Therefore (∆φ)−1(1) ⊆ φ because 1 ∈ φ.

The following is Lemma 2.4(i) of Johnstone [8] with the same proof.

Lemma 4.4. The nucleus j is compact if and only if the filter ∇j is Scott open.

Proof. (⇒): If
∨
U ∈ ∇j for U ⊆ T directed, then j(

∨
U) = 1. By compactness

of j and the fact that j(
∨
U) is the join of j(U) in j(T ), there is some u ∈ U with

j(u) = 1 and hence with u ∈ ∇j. (⇐): If V ⊆ j(T ) is a directed set whose join
in j(T ) is 1, then

∨
V ∈ ∇j because the join of V in j(T ) is j(

∨
V ). By Scott

openness of ∇j, there is some v ∈ V with v ∈ ∇j, that is, with j(v) = 1, and hence
with v = 1 as V ⊆ j(T ) and j is idempotent.

The Hofmann–Mislove–Johnstone Theorem follows directly from the above three
lemmas and the fact that the frame of quotients is dually isomorphic to the frame
of nuclei.
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[3] M.H. Escardó. The regular-locally-compact coreflection of stably locally compact locale. Jour-
nal of Pure and Applied Algebra, 157(1):41–55, 2001.

[4] K.H. Hofmann and M. Mislove. Local compactness and continuous lattices. In B. Ba-
naschewski and R.-E. Hoffmann, editors, Continuous Lattices, volume 871 of Lecture Notes
in Mathematics, pages 209–248, 1981.

[5] John R. Isbell. Atomless parts of spaces. Math. Scand., 31:5–32, 1972.
[6] P.T. Johnstone. Topos Theory. Academic Press, London, 1977.

[7] P.T. Johnstone. Stone Spaces. Cambridge University Press, Cambridge, 1982.
[8] P.T. Johnstone. Vietoris locales and localic semilattices. In Continuous lattices and their

applications (Bremen, 1982), pages 155–180. Dekker, New York, 1985.
[9] P.T. Johnstone. Two notes on nuclei. Order, 7(2):205–210, 1990.

[10] K. Keimel and J. Paseka. A direct proof of the Hofmann–Mislove theorem. Proc. Amer. Math.
Soc., 120(1):301–303, 1994.

[11] D.S. MacNab. Modal operators on Heyting algebras. Algebra Universalis, 12(1):5–29, 1981.

[12] D. Pataraia. A constructive proof of Tarski’s fixed-point theorem for dcpo’s. Presented in the

65th Peripatetic Seminar on Sheaves and Logic, in Aarhus, Denmark, November 1997.



JOINS IN THE FRAME OF NUCLEI 7

[13] H. Simmons. An algebraic version of Cantor–Bendixson analysis. In Categorical aspects of

topology and analysis (Ottawa, Ont., 1980), pages 310–323. Springer, Berlin, 1982.

[14] H. Simmons. Near-discreteness of modules and spaces as measured by Gabriel and Cantor.
J. Pure Appl. Algebra, 56(2):119–162, 1989.

[15] P. Taylor. Practical foundations of mathematics. Cambridge University Press, Cambridge,
1999.

[16] S.J. Vickers. Constructive points of powerlocales. Math. Proc. Cambridge Philos. Soc.,

122(2):207–222, 1997.
[17] J.T. Wilson. The Assembly Tower and Some Categorical and Algebraic Aspects of Frame

Theory. PhD thesis, School of Computer Science, Carnegie Mellon University, May 1994.

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

E-mail address: mhe@cs.bham.ac.uk http://www.cs.bham.ac.uk/~mhe/


