The geometry of constancy
(in HOTT and in cubicaltt)

Martin Hotzel Escardd
(Joint with Thierry Coquand)

University of Birmingham, UK

HoTT/UF at RDP in Warsaw, 2015

Exiting propositional truncations

Often we have || X || — X, even when we don't know whether X is empty
or inhabited.

E.g. Forany f: N =N, we have ||}° fn=0]—=> yfrn=0.

If there is a root of f, then we can find one.

Exiting propositional truncations

However, global choice
IT 1x1-x
X:U

implies that all types have decidable equality.
(And even X + =X for all X : U if we have quotients.)

By Hedberg's theorem, if every type has decidable equality then every
type is a set and hence global choice negates univalence.

So global choice is both a constructive and a homotopy type theory
taboo.

Exiting propositional truncations

Theorem (with Nicolai, Thierry and Thorsten):

A type X has a choice function || X || — X iff it has a constant
endomap X — X.

Question:

Can we eliminate || X|| — A using a constant map X — A?

Two answers: Yes (Nicolai Kraus) and no (Mike Shulman).

Nicolai considers coherently constant functions.
Mike considers arbitrary constant functions.

Constancy

There are many notions of constancy.

We investigate the following:

1. A function f: X — A is constant if any two of its values are equal.

constant f def H fxr = fy.
z,y: X
2. This is data rather than property, unless A is a set.
Called a modulus of constancy of f.

A function can have zero, one or more moduli of constancy.

3. E.g. the function f : 1 — S' with definitional value base has
Z-many moduli of constancy k,, : constant f:

def n
kin(2)(y) = loop™.

Set-valued constant functions

1. For any proposition P, by definition of truncation:

X — Xl

!

-

f

Y

P proposition (so f constant)

2. Can replace P by a set A:

a proposition
X (1 because A is a set
T

~“and f is constant

constant by assumption
(but then in a unique way

\
\
\
[
\
: A set by assumption
because A is a set) Y P

Propositional truncation as a set quotient

1. Le. || X|| is the set-quotient of X by the chaotic relation:

X

1]
I

¥
Y

constant .
A set by assumption

by assumption

2. Can we replace A by an arbitrary type?

X —|IX|

\

| =

Sl

A

A arbitrary

f

constant
by assumption

No, not in genera|(Shu|n1an,http://homotopytypetheory.org/2015/06/

11/not-every-weakly-constant-function-is-conditionally- constant/)

http://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/
http://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/

When do we get a factorization of a constant function?

X — X1l
I

7

Y
A arbitrary

f

constant

The factorization is possible if any of the following conditions holds:
1. X is empty.
2. X has a given point.
3. We have a function || X|| — X.
4. We have a function A — X.
5

. Ais a set.

What other sufficient conditions?

And what about necessary conditions?

Also, given any factorization, we can construct another one for which the
triangle commutes judgementally.

How to construct a counter example

cannot have
a known point X ——— = || X]||
or be empty |

f

constant
by assumption

:want: no f possible

y
A cannot be a set

Natural attempt to get a counter-example

Let s : S be an arbitrary point of the circle.
Let A be an arbitrary type.

Let f: s = base — A be constant.

We can’t know a point of the path space s = base in general.

But we know it is inhabited, that is, ||s = base||

Hence ||s = base || = 1 by propositional univalence/extensionality.

s = base ——————>||s = base ||

=

constant

\

\

\

[

by assumption v
y assumpt A arbitrary

Attempt to get a counter-example

s = base ————— > ||s = base ||

=

constant

|

|

|

|

by assumption v
y P A arbitrary

Can we expect to be able to get a point of an arbitrary type A,

from any given constant function f : s = base — A,

even though we can't expect to get a point of s = base in general?

To our surprise, we can.

The attempt fails.

Theorem /Construction

s = base

|ls = base || s =base ——— 1
I
[
[

I

|

|

constant f ‘

I

A
A arbitrary

For any s : S' and any constant function f : s = base — A into an
arbitrary type, we can find a : A such that fp = a for all p: s = base.

H H constant [— Z H fr=a.

s:91 AU fis=base—A a:A p:s=base

Proof outline

1. First show that for any given family of constant functions

I H s = base — A(s),
s:S1

each of them factors through 1. We get f : [],.q1 A(s)

This allows us to use induction on the circle and on paths.

2. For any type X, consider the universal constant map on X,
Bx : X = S(X), constructed as a HIT.

3. By (1) applied to the family 3, : s = base — S(s = base) given
by (2), we get a function §: [],.q1 S(s = base).

4. Now, given a single constant function f : s = base — A, it factors
through the universal constant map s : s = base — S(s = base) as
f':S(s =base) — A by (2), and hence we get the required point
of A as using (3), as f'(5(s)).

Step 1
For any f :[],.q1 s = base = A(s), with f base constant,
there is f : [[,.q1 A(s) such that fsp= fs forall p: s = base.

1. Lemma Any transport of a value of f is a value of f:

H H H Z transport [(fbr) = fV' q.

b,b/:St rib=b L:b=b' q:b'=Db

This doesn't depend on the fact that S* is the circle or on the
constancy of f base, and has a direct proof by based path induction.

2. We are interested in this particular case:

Z transport loop (f base (refl base)) = f base q.

q:base=Dbase
3. Then the constancy of f base gives
transport loop (f base (refl base)) = f base (refl base),

which makes S'-induction work.

Step 2
For any type X, consider the universal constant map on X,
B:X — S(X),
defined as a HIT with higher constructor

{: H Bx = Py.

z,y: X

X SX

I
:f such that ap f(lxy) = kxy

constant f ‘
with modulus k: [], fz=fy A

When X is the terminal type 1, we get the circle S*.

Universal property of the constancy HIT

g X —=8X),

¢ o] Bx=p8y.
z,y: X
There is an equivalence
SX A Z constant f

[X—A

g +— (g9opB, A\zy.apg (fzy)).

This generalizes the universal property of the circle

St A = Za:a

a:A

Z constant f.

fi1-A

I

Side remark

(Not used in the proof, at least not explicitly.)

1. The universal constant map fx : X — S(X) is a surjection.

2. The type S(X) is conditionally connected, meaning that

1 ls=tl

s,t:5(X)

(“Conditionally” because it is empty if (and only if) X is empty.)

cubicaltt proof

Demonstrate and discuss some fragments of the
geometry0fConstancy.ctt file (on my papers web page).

The constant factorization problem

Because the universal map X — || X|| into a proposition is constant (in a
unique way), the universal property of S(X) gives a function

[T s = 1x|-
X:U

The existence of a function in the other direction,

IT X1 — sx),
X:U

is equivalent to the statement that all constant functions f: X — A
factor through X — || X]||.

But we know that this is not the case, by Shulman’s construction.

However, this does hold for X = (s = base) and all A.

Step 3

By (1) applied to the family 35 : s = base — S(s = base) of constant
functions given by (2), we get a function

B H S(s = base).

s:51

This is perhaps surprising, because we don't have, of course,
H s = base,
5:51

as that would mean that that the circle is contractible.

How come we are able to pick a point of the generalized circle

S(s = base), without being able to pick a point of the path space
s = base, naturally in s : S'?

Step 4

Now, given a single constant function f : s = base — A, it factors
through the universal constant map s : s = base — S(s = base) as
f': S(s =Dbase) — A by (2), and hence we get the required point of A
using (3), as

Theorem

Conjecture

In a type theory with || — || and (hence) function extensionality.

All constant functions f : X — A of any two types factor through
X — || X|| if and only if all types are sets (zero-truncated).

And hence univalence fails if all constant functions factor through the
truncations of their domains.

(Shulman’s construction exhibits a family of constant functions such that
if all of them factor through the truncation of their domain, then
univalence fails.)

