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(Joint with Thierry Coquand)

University of Birmingham, UK

HoTT/UF at RDP in Warsaw, 2015



Exiting propositional truncations

Often we have ‖X‖ → X, even when we don’t know whether X is empty
or inhabited.

E.g. For any f : N→ N, we have ‖
∑

n:N fn = 0‖ →
∑

n:N fn = 0.

If there is a root of f , then we can find one.



Exiting propositional truncations

However, global choice ∏
X:U

‖X‖ → X

implies that all types have decidable equality.

(And even X + ¬X for all X : U if we have quotients.)

By Hedberg’s theorem, if every type has decidable equality then every
type is a set and hence global choice negates univalence.

So global choice is both a constructive and a homotopy type theory
taboo.



Exiting propositional truncations

Theorem (with Nicolai, Thierry and Thorsten):

A type X has a choice function ‖X‖ → X iff it has a constant
endomap X → X.

Question:

Can we eliminate ‖X‖ → A using a constant map X → A?

Two answers: Yes (Nicolai Kraus) and no (Mike Shulman).

Nicolai considers coherently constant functions.
Mike considers arbitrary constant functions.



Constancy

There are many notions of constancy.

We investigate the following:

1. A function f : X → A is constant if any two of its values are equal.

constant f
def
=

∏
x,y:X

fx = fy.

2. This is data rather than property, unless A is a set.

Called a modulus of constancy of f .

A function can have zero, one or more moduli of constancy.

3. E.g. the function f : 1→ S1 with definitional value base has
Z-many moduli of constancy κn : constant f :

κn(x)(y)
def
= loopn .



Set-valued constant functions

1. For any proposition P , by definition of truncation:

X //

f
$$

‖X‖

f̄

��
P proposition (so f constant)

2. Can replace P by a set A:

X //

f

%%

**

‖X‖

f̄

��

ww

a proposition
because A is a set
and f is constant

Im f

��
constant by assumption

(but then in a unique way
because A is a set)

A set by assumption



Propositional truncation as a set quotient

1. I.e. ‖X‖ is the set-quotient of X by the chaotic relation:

X //

f
$$

‖X‖

f̄

��constant
by assumption

A set by assumption

2. Can we replace A by an arbitrary type?

X //

f
$$

‖X‖

f̄ ?

��constant
by assumption

A arbitrary

No, not in general (Shulman, http://homotopytypetheory.org/2015/06/

11/not-every-weakly-constant-function-is-conditionally-constant/)

http://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/
http://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/


When do we get a factorization of a constant function?

X //

f
$$

‖X‖

f̄ ?

��constant
A arbitrary

The factorization is possible if any of the following conditions holds:

1. X is empty.

2. X has a given point.

3. We have a function ‖X‖ → X.

4. We have a function A→ X.

5. A is a set.

What other sufficient conditions?

And what about necessary conditions?

Also, given any factorization, we can construct another one for which the
triangle commutes judgementally.



How to construct a counter example

cannot have
a known point

or be empty
X //

f
$$

‖X‖

want: no f̄ possible

��constant
by assumption

A cannot be a set



Natural attempt to get a counter-example

Let s : S1 be an arbitrary point of the circle.

Let A be an arbitrary type.

Let f : s = base→ A be constant.

We can’t know a point of the path space s = base in general.

But we know it is inhabited, that is, ‖s = base ‖
Hence ‖s = base ‖ = 1 by propositional univalence/extensionality.

s = base //

f

%%

**

‖s = base ‖

��
constant

by assumption

1

?

��
A arbitrary



Attempt to get a counter-example

s = base //

f

%%

**

‖s = base ‖

��
constant

by assumption

1

?

��
A arbitrary

Can we expect to be able to get a point of an arbitrary type A,

from any given constant function f : s = base→ A,

even though we can’t expect to get a point of s = base in general?

To our surprise, we can.

The attempt fails.



Theorem/Construction

s = base //

constant f

%%

**

‖s = base ‖

��

1

a

��
A arbitrary

s = base //

constant f
$$

1

a

��
A

For any s : S1 and any constant function f : s = base→ A into an
arbitrary type, we can find a : A such that fp = a for all p : s = base.

∏
s:S1

∏
A:U

∏
f :s=base→A

constant f →
∑
a:A

∏
p:s=base

fp = a.



Proof outline

1. First show that for any given family of constant functions

f :
∏
s:S1

s = base→ A(s),

each of them factors through 1. We get f̄ :
∏

s:S1 A(s)

This allows us to use induction on the circle and on paths.

2. For any type X, consider the universal constant map on X,
βX : X → S(X), constructed as a HIT.

3. By (1) applied to the family βs : s = base→ S(s = base) given
by (2), we get a function β̄ :

∏
s:S1 S(s = base).

4. Now, given a single constant function f : s = base→ A, it factors
through the universal constant map βs : s = base→ S(s = base) as
f ′ : S(s = base)→ A by (2), and hence we get the required point
of A as using (3), as f ′(β̄(s)).



Step 1
For any f :

∏
s:S1 s = base→ A(s), with f base constant,

there is f̄ :
∏

s:S1 A(s) such that f s p = f̄ s for all p : s = base.

1. Lemma Any transport of a value of f is a value of f :∏
b,b′:S1

∏
r:b=b

∏
l:b=b′

∑
q:b′=b

transport l (f b r) = f b′ q.

This doesn’t depend on the fact that S1 is the circle or on the
constancy of f base, and has a direct proof by based path induction.

2. We are interested in this particular case:∑
q:base=base

transport loop (f base (refl base)) = f base q.

3. Then the constancy of f base gives

transport loop (f base (refl base)) = f base (refl base),

which makes S1-induction work.



Step 2

For any type X, consider the universal constant map on X,

β : X → S(X),

defined as a HIT with higher constructor

` :
∏

x,y:X

βx = βy.

X
β //

constant f
$$

SX

f̄ such that ap f̄(`xy) = kxy

��
with modulus k :

∏
x,y fx = fy A

When X is the terminal type 1, we get the circle S1.



Universal property of the constancy HIT

β : X → S(X),

` :
∏

x,y:X

βx = βy.

There is an equivalence

SX → A ∼=
∑

f :X→A

constant f

g 7→ (g ◦ β, λxy. ap g (`xy)).

This generalizes the universal property of the circle

S1 → A ∼=
∑
a:A

a = a

∼=
∑

f :1→A

constant f.



Side remark

(Not used in the proof, at least not explicitly.)

1. The universal constant map βX : X → S(X) is a surjection.

2. The type S(X) is conditionally connected, meaning that∏
s,t:S(X)

‖s = t‖.

(“Conditionally” because it is empty if (and only if) X is empty.)



cubicaltt proof

Demonstrate and discuss some fragments of the
geometryOfConstancy.ctt file (on my papers web page).



The constant factorization problem

Because the universal map X → ‖X‖ into a proposition is constant (in a
unique way), the universal property of S(X) gives a function∏

X:U

S(X)→ ‖X‖.

The existence of a function in the other direction,∏
X:U

‖X‖ → S(X),

is equivalent to the statement that all constant functions f : X → A
factor through X → ‖X‖.

But we know that this is not the case, by Shulman’s construction.

However, this does hold for X = (s = base) and all A.



Step 3

By (1) applied to the family βs : s = base→ S(s = base) of constant
functions given by (2), we get a function

β̄ :
∏
s:S1

S(s = base).

This is perhaps surprising, because we don’t have, of course,∏
s:S1

s = base,

as that would mean that that the circle is contractible.

How come we are able to pick a point of the generalized circle
S(s = base), without being able to pick a point of the path space
s = base, naturally in s : S1?



Step 4

Now, given a single constant function f : s = base→ A, it factors
through the universal constant map βs : s = base→ S(s = base) as
f ′ : S(s = base)→ A by (2), and hence we get the required point of A
using (3), as

a
def
= f ′(β̄(s)).

Theorem
s = base //

constant f
$$

1

a

��
A



Conjecture

In a type theory with ‖ − ‖ and (hence) function extensionality.

All constant functions f : X → A of any two types factor through
X → ‖X‖ if and only if all types are sets (zero-truncated).

And hence univalence fails if all constant functions factor through the
truncations of their domains.

(Shulman’s construction exhibits a family of constant functions such that
if all of them factor through the truncation of their domain, then
univalence fails.)


